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Abstract

The solution of the Poisson equation is a crucial step in electronic structure calcula-

tions, yielding the electrostatic potential—a key component of the quantum mechanical

Hamiltonian. In recent decades, theoretical advances and increases in computer perfor-

mance have made it possible to simulate the electronic structure of extended systems

in complex environments. This requires the solution of more complicated variants of

the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concen-

trations with non-linear dependencies, and diverse boundary conditions. The analytic

solutions generally used to solve the Poisson equation in vacuum (or with homogeneous
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permittivity) are not applicable in these circumstances and numerical methods must

be used.

In this work, we present DL MG, a flexible, scalable and accurate solver library,

developed specifically to tackle the challenges of solving the Poisson equation in modern

large-scale electronic structure calculations on parallel computers. Our solver is based

on the multigrid approach and uses an iterative high-order defect correction method

to improve the accuracy of solutions.

Using two chemically relevant model systems, we tested the accuracy and compu-

tational performance of DL MG when solving the generalized Poisson and Poisson-

Boltzmann equations, demonstrating excellent agreement with analytic solutions and

efficient scaling to ∼ 109 unknowns and 100s of CPU cores. We also applied DL MG in

actual large scale electronic structure calculations, using the ONETEP linear-scaling

electronic structure package to study a 2615 atom protein-ligand complex with rou-

tinely available computational resources. In these calculations, the overall execution

time with DL MG was not significantly greater than the time required for calculations

using a conventional FFT-based solver.

1 Introduction

What is the electrostatic potential corresponding to a given charge density? This decep-

tively simple question is key to modelling the electronic structure of atoms, molecules and

materials, where the classical electrostatic potential forms a foundation upon which quantum

mechanical many-body effects can be modeled. Consequently, developing efficient techniques

for answering this question—by solving the Poisson equation—is a central concern for re-

searchers interested in the electronic structure of matter.

For reasons of practicality, electronic structure calculations have historically tended to be

restricted to the study of small systems in vacuum with fully open or fully periodic boundary

conditions (BCs). In this case, the Poisson equation can be efficiently solved using analytic

2

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


solutions (as described in section 2.1). However, in recent years it has become possible—

perhaps even routine—to perform electronic structure calculations on systems numbering

100s or 1000s of atoms and to include the effect of the surrounding environment. This

has been driven by prodigious growth in the computing power available to researchers and

theoretical developments allowing electronic structure calculations to scale efficiently with

respect to system size and number of processors. In particular, progress in this area has

been enabled by the development of so-called linear-scaling, or O(N), methods, in which

the asymptotic computational cost increases linearly with system size, N . These meth-

ods have been implemented in several software packages, including ONETEP,1 BigDFT,2

CONQUEST,3 OpenMX,4 Quickstep,5 and SIESTA.6

When modelling large chemical systems, such as biomolecules and nanoparticles, ne-

glecting the environment can have a substantial effect on the properties of the system. For

example, without the screening effect of a solvent, it is possible for systems to develop un-

physical surface states and dipole moments.7 This issue can be resolved by simply including

solvent molecules in the electronic structure calculation. However, this explicit approach

is very costly, even using linear-scaling methods, because of the significant increase in the

number of atoms that must be treated quantum mechanically and the need to statistically

average over solvent configurations. In addition, it is generally the case that the electronic

structure of the environment is not of interest and may complicate the interpretation of

results.

The generalized Poisson and Poisson-Boltzmann equations (see section 2.1) offer a compu-

tationally inexpensive means of embedding a charge density in an electrostatic environment,

avoiding the complexities of explicit modelling of the environment. Solving these equations

yields an electrostatic potential which includes an implicit representation of the electrostatic

effects of the environment—a solvent, for example. However, analytic solutions for these

more complicated variants of the Poisson equation are only available for specific cases (see

section 4.1.1), necessitating the use of numerical methods.

3

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


To be practical in the context of large scale electronic structure calculations, a numerical

Poisson solver must:

• solve the Poisson equation for arbitrary input charge densities,

• have accuracy comparable to methods based on analytic solutions for the Poisson

equation in vacuum (e.g. using Fast Fourier Transforms (FFTs) to solve the equation

in reciprocal space, section 2.1),

• scale efficiently with problem size, and

• scale efficiently to large numbers of parallel processors.

In addition, if the solver is to provide an implicit representation of the environment, it must

also be able to solve the more complicated generalized Poisson and/or Poisson-Boltzmann

equations.

Using the multigrid approach,8–10 Poisson solvers which satisfy all of these requirements

can be developed. Multigrid methods provide a framework in which relatively simple iter-

ative solvers can be applied on a hierarchy of progressively coarsening grids, yielding rapid

convergence at low computational cost (section 2.3). With careful design and selection of

components, multigrid solvers can also achieve excellent parallel efficiency (see ch. 6 of Ref.

10).

The use of multigrid solvers for solving the Poisson equation in electronic structure cal-

culations is well-established, with many publications describing their successful application

in this context.11–17 Multigrid methods have also been applied as efficient solvers for real-

space discretizations of the Kohn-Sham eigenvalue equations in density functional theory

(DFT).18–21

Solvers based on the multigrid approach have proven particularly effective for solving

the generalized Poisson equation in implicit solvent models based on Fattebert and Gygi’s

electrostatic model12,14–17,22,23 (section 2.2). The smoothly varying function used to represent
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the dielectric permittivity in these models poses no problem for multigrid solvers, requiring

only that the operator stencil (appendix A) is modified to incorporate variable coefficients.

While multigrid is clearly well-suited for solving the Poisson equation in electronic struc-

ture calculations featuring electrostatic embedding, it is not the only approach in use.

For example, Andreussi et al. implemented the self-consistent continuum solvation (SCCS)

model24—a variant of Fattebert and Gygi’s model—by recasting the generalized Poisson

equation in terms of a polarization charge density and solving this self-consistently (see sec-

tion 2.1). More recently, Fisicaro et al.25 extended this work, presenting efficient solvers

for the generalized Poisson and Poisson-Boltzmann equations based upon preconditioned

conjugate gradient and self-consistent methods for use in the SCCS and similar models.

In this paper, we introduce DL MG, a flexible, scalable and accurate Poisson solver li-

brary based upon a high-order defect-corrected multigrid approach. The solver was designed

specifically to tackle the challenges inherent in modern large-scale electronic structure cal-

culations. In particular, the library was developed to provide a means of accounting for

environmental effects in electronic structure calculations by efficient solution of the general-

ized Poisson and Poisson-Boltzmann equations.

In the following, we present the theoretical context for the development of DL MG (sec-

tion 2) and an overview of the implementation of the library (section 3), focusing particularly

on the defect correction component (section 3.1.2). Through careful testing of the solver

for chemically relevant model systems (section 4.1) and in large-scale electronic structure

calculations (section 4.2) with ONETEP,1 we demonstrate that the solver is able to scale ef-

ficiently to 100s of processors and ∼ 109 grid points and deliver close agreement with known

analytic results and established FFT-based Poisson solvers. In addition, since DL MG is

freely available under a permissive open source license, we provide some brief information

for developers in appendix B to aid interested readers who may want to test and possibly

integrate the library in their own codes.

5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


2 Theory

2.1 Poisson and Poisson-Boltzmann equation

The electrostatic potential, φ0(r), resulting from a given charge density, n(r), in vacuum can

be obtained by solving the Poisson equation:

∇2φ0(r) = −4πn(r). (1)

The solution of this equation is relevant in the context of electronic structure calculations,

where the potentials due to electronic and ionic densities, nelec(r) and nionic(r), are required.

In open boundary conditions (OBCs), where the potential goes to zero as r goes to

infinity, the non-periodic potential can be expressed in terms of the corresponding Green’s

function for the Laplacian, ∇2 (see ch. 10 of Ref. 26):

G(r− r′) = −
1

4π

1

|r− r′|
. (2)

This yields the well-known form for Coulomb potential in OBCs:

φ0(r) =

∫
dr′

n(r′)

|r− r′|
, (3)

where the integration is over all space.

Under periodic boundary conditions (PBCs), the potential corresponding to a given pe-

riodic charge density can be obtained directly by solving the equation in reciprocal space,

i.e.

φ̃0(G) = 4π
ñ(G)

|G|2
, (4)

where φ̃0(G) and ñ(G) are the Fourier transforms of the real-space potential and charge

density, respectively. This simple expression is of great utility in electronic structure calcu-

lations using periodic basis functions, where FFTs can be employed to efficiently transform
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quantities between real- and reciprocal-space.

While the form of Eq. 4 is convenient, it also illustrates a particular difficulty encoun-

tered when solving the Poisson equation with PBCs, namely that the charge density must

be neutral (i.e. ñ(0) = 0). Non-neutral charge densities result in a singularity in the poten-

tial at G = 0. In practice, this issue is typically avoided by introducing a compensating

homogeneous background charge which ensures that the overall charge in the periodic unit

cell is neutral, equivalent to solving

∇2φ0(r) = −4π {n(r)− 〈n〉} , (5)

where 〈n〉 is the average charge density over the volume of the unit cell, V , i.e.

〈n〉 =
1

V

∫

V

drn(r). (6)

The subtraction of 〈n〉 from the real-space charge density, n(r), in Eq. 5 is equivalent

to setting ñ(0) = 0, thus avoiding singularities in Eq. 4. While this is a useful method

for obtaining a solution from the Poisson equation when dealing with a non-neutral periodic

density, it necessarily changes the nature of the problem—the potential obtained corresponds

to the periodic density and the artificial neutralizing background charge.

In electronic structure calculations, it is convenient to deal with the interactions of the

electronic and ionic components of the overall charge density separately. Since the electronic

and ionic densities are independently non-neutral, neutralizing background charges must be

used for each component when solving the Poisson equation in PBCs. This has no impact

on the energy of a neutral system, since the contributions due to the background charges in

each term cancel out.

The generalized Poisson equation (GPE) ,

∇ · (ε(r)∇φ(r)) = −4πn(r), (7)
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is a generalization of Eq. 1 in which the dielectric permittivity, ε(r), can vary with position—

Eq. 1 (which we will call the “standard” Poisson equation, or SPE) corresponds to the

situation where ε(r) = 1 over all space.27

While analytic solutions for the GPE can be obtained for specific cases (see, for example,

section II.C of Ref. 25 and section 4.1.1 of this work), Eq. 7 is typically solved using numerical

methods (such as the multigrid approach, section 2.3). Such techniques allow the equation

to be solved for complicated forms of n(r) and ε(r). An important application of these

techniques is in electronic structure calculations (section 2.2), in which a quantum mechanical

charge density is embedded in a polarizable dielectric medium, implicitly representing the

environment (e.g. a solvent).

Eq. 7 may also be recast in a non-linear form which resembles the SPE (Eq. 1),

∇2φ(r) = −4π(n(r) + npol[φ](r)), (8)

where the polarization charge density, npol[φ](r), depends upon the potential. This form

allows techniques for solving the simpler SPE to be employed (e.g. via Eq. 4), though the

dependence of npol(r) on the potential means the solution must be obtained via a self-

consistent procedure. For further details, see Ref. 24—this describes the SCCS implicit

solvent model (mentioned in section 1), which is based upon the self-consistent solution of

Eq. 8 for a smoothly varying dielectric permittivity (see section 2.2).

The GPE may be further extended by introducing a potential-dependent density of mobile

ions in the dielectric medium, nions[φ](r), i.e.

∇ · (ε(r)∇φ(r)) = −4π(n(r) + nions[φ](r)). (9)

This mobile ion density at a given r may be generally written as

nions[φ](r) = λ(r)
m∑

i=1

qici[φ](r), (10)
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where ci[φ](r) and qi are, respectively, the local concentration and charge of ionic species

i; m is the total number of ionic species present; and λ(r) is a function which describes

the accessibility of r to the mobile ions. When ci[φ](r) takes the form of a Boltzmann

distribution,

ci[φ](r) = c∞i exp

(
−
qiφ(r)

kBT

)
(11)

with bulk concentration c∞i , Boltzmann constant kB, and temperature T , Eq. 9 becomes the

Poisson-Boltzmann equation (P-BE):

∇ · (ε(r)∇φ(r)) = −4πn(r)− 4πλ(r)
m∑

i=1

c∞i qi exp (−βqiφ(r)) , (12)

where we have used β = 1/kBT .

For a given charge density n(r), dielectric permittivity ε(r), accessibility function λ(r),

and the charges and bulk concentration of mobile charges {qi} and {c∞i }, the P-BE (Eq. 12)

can be solved to yield an overall electrostatic potential, φ(r). The equation may therefore

be applied in situations where a static charge density is embedded in a dielectric medium

and surrounded by mobile charges.

An important application of the P-BE is in classical modelling of the electrostatics of

biomolecules in ionic solutions, where the atoms constituting the biomolecule are typically

represented by point charges, the solvent as a dielectric medium, and the concentrations of

species of mobile ions in solution are represented by a Boltzmann distribution (Eq. 11). The

use of Eq. 12 in biomolecular contexts has been reviewed in Refs. 28,29. The P-BE may

be similarly applied in electronic structure calculations (section 2.2), but with the quantum

mechanical electron charge density represented as a smooth function, rather than a collection

of atom-centered point-charges. This allows the effect of a saline solution on the electronic

structure of a solute to be modeled implicitly, without the need for atomistic modelling of

either the solvent or dissolved ions.

The non-linear P-BE (NLP-BE) may be approximated by a simpler linearized form when
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the electrostatic potential, φ(r), is small. In this case, the Boltzmann term in Eq. 12 is

approximated as the first two terms in a Maclaurin series:

exp (−βqiφ(r)) ≈ 1− βqiφ(r). (13)

Inserting this approximation into Eq. 12 yields the linearized Poisson-Boltzmann equation

(LP-BE):

∇ · (ε(r)∇φ(r)) = −4πn(r) + 4πλ(r)β
m∑

i=1

c∞i q
2
i φ(r). (14)

Note that for a neutral solution of mobile ions

4πλ(r)
m∑

i

c∞i qi = 0 (15)

and thus this term does not appear in Eq. 14.

In the standard Poisson-Boltzmann model outlined in this section, the mobile charges are

point-like particles with a statistical distribution based on the overall electrostatic potential

of the system (Eq. 11). As a consequence, the model neglects finite size effects, which can

lead to unphysical accumulation of ions where the static charge density is large. This issue

can be addressed by employing a size-modified Poisson-Boltzmann (SMPB) model. See Ref.

30 for a review of models of this type and Refs. 31,32 for recent work implementing and

parameterizing an SMPB-based implicit solvent model for use in DFT calculations.

2.2 Electronic structure calculations

The classical electrostatic energy of a charge density interacting with itself is given by

Ees[n] =
1

2

∫
drn(r)φ0[n](r), (16)
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where the potential, φ0[n](r), is the solution of the SPE (Eq. 1). If the charge density repre-

sents the total charge of a collection of atoms, then this can be decomposed into contributions

from the electrons and ionic cores, i.e.

Ees[nelec, nion] = EHartree[nelec] + Eelec-ion[nelec, nion] + Eion-ion[nion]. (17)

The Hartree energy EHartree, and ion-ion energy Eion-ion, are defined analogously to Eq. 16

for each density, though in practice they differ in how they address self-interaction. For the

ion-ion term, the self-interaction is typically explicitly subtracted within Eion-ion, while the

electronic self-interaction is not considered in the classical electrostatic energy—in electronic

structure methods, this is part of the exchange contribution to the total energy. The electron-

ion interaction, where no self-interaction correction is necessary, is given by

Eelec-ion[nelec, nion] =

∫
drnelec(r)φ0[nion](r) =

∫
drnion(r)φ0[nelec](r). (18)

The overall classical electrostatic energy typically represents a significant fraction of the total

energy computed in an electronic structure calculation.

Electronic structure calculations are generally concerned with the behavior of electrons

in the presence of nuclei at a set of fixed positions. In this situation, it is convenient to

separate the total charge density into electronic and nuclear components, as in Eq. 17. The

electron density, nelec(r), can then be treated as a continuous function, while the nuclear

density, nnuc(r), is represented as a sum of point charges,

nnuc(r) =
∑

I

ZIδ(r−RI), (19)

with positions {RI} and charges {ZI}. This allows the potentials corresponding to the two

densities to be solved for independently, using methods appropriate to their form.

In self-consistent field (SCF) methods, such as DFT and Hartree-Fock theory, the electron
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density is constructed as a sum over products of one-electron orbitals, ψi(r), weighted by

their occupancies, fi, i.e.

nelec(r) =
∑

i

fiψi(r)ψ
∗

i (r). (20)

The orbitals, and hence the electron density, are obtained by solving one-electron Schrödinger

equations of the general form

(
−
1

2
∇2 + V̂eff

)
ψi(r) = εiψi(r), (21)

where the electrostatic potentials associated with the nuclei and electrons are components

of the effective potential V̂eff. These equations must be solved self-consistently, since the

effective potential is dependent on the orbitals, in part due to the relationship between the

electrostatic potential and electron density (Eq. 1).

While the nuclear charge density is generally fixed during an SCF calculation, the orbitals,

and hence electron density, are updated as part of the iterative process. As a consequence,

the electrostatic potential due to the electron density—the Hartree potential—must be re-

peatedly solved for during the SCF procedure. Efficient methods for solving the SPE for

a given electron density are therefore of great importance in the implementation of SCF

approaches.

For SCF calculations in vacuum, the SPE (Eq. 1) can be solved using the analytic so-

lutions described in section 2.1. The approach used in a particular calculation is generally

determined by the nature of the underlying basis set—for periodic plane wave basis sets,

the reciprocal space solution is convenient (Eq. 4) while for local, non-periodic basis sets,

the OBC solution derived using a Green’s function method (Eq. 3) is typically used. In the

case of periodic plane wave basis sets, FFTs allow the solution of the Poisson equation with

computational effort scaling as O(n log n), where n is the number of grid points.33

While there are efficient methods for obtaining the Hartree potential using analytic solu-

tions to the SPE, numerical approaches have some utility under certain circumstances. One
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such situation is the case where a periodic basis set is used to represent a finite system. To

reduce the extent of spurious interactions between periodic images of the finite system, it

is typical to use the “supercell” approximation,34 in which the finite system is surrounded

by a large volume of vacuum “padding”. The additional padding required for this approach

can be computationally expensive for basis sets which grow with cell size (for example,

plane waves). Real-space numerical approaches can be employed to efficiently solve for the

electrostatic potential, while imposing open BCs. This completely eliminates electrostatic

interactions between periodic images, while allowing the use of a periodic basis set—see Ref.

35, for example.

It is often useful to study the electronic structure of systems embedded in a medium with

a nonhomogeneous dielectric permittivity, ε(r). In this case, the total electrostatic potential

can be obtained by solving the GPE (Eq. 7) and comprises two terms:

φ(r) = φ0(r) + φr(r), (22)

where φ0(r) is the usual electrostatic potential associated with the charge distribution of the

system and φr(r) is a reaction potential due to the polarization of the dielectric medium,

ε(r). A key application of this model is in modelling solvent effects on electronic structure,

using a polarizable dielectric medium to implicitly represent the solvent environment.

As mentioned in section 2.1, the dearth of widely applicable analytic solutions for the GPE

means that the equation is typically tackled using numerical approaches or recast as a non-

linear form of the SPE and solved self-consistently (as described in Refs. 24,25). Some of the

most widely used implicit solvent models employ an additional simplifying assumption that

the system is separated into two regions in which the dielectric permittivity is homogeneous,

i.e.

ε(r) =





1, solute cavity

ε∞, bulk solvent.

(23)
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The solute cavity is defined in such a way that it incorporates the solute charge and the

boundary between the two regions is discontinuous. In this model, it is possible to reformulate

the problem of solving the GPE purely in terms of a polarization charge on the surface of

the cavity. This apparent surface charge (ASC) defines the reaction potential, and so solving

the GPE becomes a question of determining the ASC over the 2-D surface of the cavity—see

Ref. 36 for an overview of ASC-type approaches.

In this work, we are concerned with the numerical solution of the full GPE in 3-D for

an arbitrary nonhomogeneous dielectric permittivity. This provides a flexible foundation for

the development of implicit solvent models in which the form of the dielectric permittivity

is not restricted to the discontinuous piecewise form used in ASC approaches. In particular,

solving the full GPE in 3-D allows the dielectric permittivity to smoothly transition between

the bulk values within the solute cavity and solvent.

An advantage of solving the full GPE in 3-D with a smooth dielectric function is that

this yields a continuous potential, thus evading the difficulties associated with discontinuous

gradients which can arise in ASC approaches.37 This was a motivating factor for Fattebert

and Gygi in developing an electrostatic implicit solvent model based upon a smooth dielectric

function for use in molecular dynamics, where accurate energy gradients are critical.12,22 In

Fattebert and Gygi’s model ε(r) is a functional of the solute electron density,

ε(r) = 1 +
ε∞ − 1

2

(
1 +

1− (nelec(r)/n0)
2β

1 + (nelec(r)/n0)2β

)
, (24)

and is defined in terms of the electron density at r, nelec(r), the bulk permittivity of the

solvent, ε∞, and two parameters: β and n0.

The use of the electron density to construct the solute cavity has the advantage that a

good representation of the solute shape can be obtained using very few fitted parameters.

Fattebert and Gygi’s cavity is defined by only two fitted parameters—significantly fewer

than the number required when employing the widely adopted method of constructing the

14

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


cavity from atom-centered spheres. This model has since been elaborated and extended in

a number of respects, including: inclusion of non-electrostatic cavitation and dispersion-

repulsion effects;15,23,24 alternative dielectric functions based on the electron density24 and

defined based on atom-centered functions;14,38 use of open (Dirichlet) BCs and their efficient

computation using coarse-graining;16 and, extension of the model to the P-BE and size-

modified variants.25,31

A variant of Fattebert and Gygi’s model—the minimal parameter implicit solvent model,

or MPSM15,16—was implemented in ONETEP,1 an electronic structure package capable of

performing calculations with a cost that scales linearly with the number of atoms, N . Using

efficient parallel implementations of algorithms with formal O(N) scaling, ONETEP is able

to perform full DFT calculations on systems consisting of thousands of atoms.39–41 In this

context, it was vital to ensure that the implementation of the solvent model was compatible

with overall O(N) scaling of ONETEP and was able to operate efficiently in parallel.

The need for an efficient parallel GPE solver for use in large-scale MPSM calculations in

ONETEP was the key motivation for the development of DL MG. The multigrid approach

was a natural choice for this application, for two key reasons. First, the multigrid method is

well-suited to implementation in parallel and exhibits excellent computational scaling with

respect to the grid size.10 Second, the representation of the charge density and electrostatic

potential on a regular grid in ONETEP is ideal for use with a multigrid solver, allowing well-

established and understood variants of the method to be used, as described in the following

sections.

2.3 Multigrid

To solve the Poisson equation in situations where exact reciprocal space solutions are not

available, real-space numerical approaches can be employed. In numerical approaches, a

discretized version of the Poisson equation is required. In the context of electronic structure

methods with periodic plane-wave-type basis sets, it is natural to discretize the problem on
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the regular real-space grid used to represent the electronic charge density, i.e.

Âhuh = fh, (25)

where uh and fh are, respectively, the potential we are solving for and source term (the charge

density multiplied by a factor of −4π for Eqs. 1 and 7), both discretized on a regular grid

with spacing h. Âh is a linear operator, the form of which depends on which of the variant

of the Poisson equation we are considering: Â ≡ ∇2 for the SPE (Eq. 1) and Â ≡ ∇ · ε(r)∇

for the generalized Poisson equation (Eq. 7).

The discretized Poisson equation forms a system of linear equations which are amenable

to solution by stationary iterative methods, such as the Jacobi and Gauss-Seidel methods

(see ch. 2 and ch. 19 of Refs. 9 and 33, respectively, for introductions to these and similar

techniques). It is well known that stationary iterative methods can very effectively smooth

high-frequency components of the error. However, the overall convergence of these methods

towards the solution is limited by low-frequency components in the error, which are less

effectively removed and become increasingly prevalent when using finer grids.9

Multigrid methods8–10 simultaneously take advantage of the smoothing property of iter-

ative solvers while addressing their slow rate of convergence. This is achieved by applying a

hierarchy of progressively coarsening grids to the problem. Since low-frequency components

of the error represented on a given grid appear as higher-frequency components on a rela-

tively coarser grid, iterative methods can be applied on the coarser grid to rapidly attenuate

the low-frequency components, avoiding the problematic slow convergence that arises with

a single-grid approach.

Consider the general linear equation

Âu = f, (26)
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with the corresponding defect (or residual)

r = f − Âu′, (27)

and defect equation

Âe = r, (28)

where f is the source term; u and u′ are exact and approximate solutions to Eq. 26, respec-

tively; and the error in the approximate solution is e = u − u′. We can define three basic

operations:

Smoothing Apply an iterative method to remove higher frequency components of the error

on a given grid, i.e. solve

Âhuh = fh (29)

starting with some initial guess, uh, to obtain a smoothed result, uh, on a grid with

spacing h.

Restriction Transfer the defect computed on a finer grid to a coarser grid:

Î2hh rh = r2h, (30)

where ÎHh is the restriction operator which maps functions on the grid with spacing h

to the coarser grid with spacing, H (in this example, the spacing is doubled).

Prolongation Transfer the error computed on a coarser grid to a finer grid:

Îh2he2h = eh, (31)

where ÎhH is the prolongation operator which maps functions on the coarse grid with

spacing H to the finer grid with spacing, h (in this example, the spacing is halved).
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When these operations are combined in an appropriate order, the resulting multigrid ap-

proach can significantly improve convergence compared to applying an iterative solver on a

single grid.

A simple two-grid multigrid iteration, starting with the initial approximation, u
(m)
h , and

producing an improved approximation, u
(m+1)
h , can be summarized as follows:

1 Smooth approximation Âhu
(m)
h = fh

2 Compute defect r
(m)
h = fh − Âhu

(m)
h

3 Restrict defect Î2hh r
(m)
h = r

(m)
2h

4 Solve for error Â2he
(m)
2h = r

(m)
2h

5 Prolong error Îh2he
(m)
2h = e

(m)
h

6 Apply correction u
(m+1)
h = u

(m)
h + e

(m)
h

This cycle (u
(m)
h → u

(m+1)
h ) can be repeated until a convergence criterion is satisfied. Since

the computation of the error in step 4 is of the same form as the linear equation (Eq. 26)

we wish to solve, the two-grid cycle can be applied recursively, leading to multigrid scheme

involving a hierarchy of progressively coarser grids.

With multiple levels of coarse grids, the basic smoothing (Eq. 29), restriction (Eq. 30)

and prolongation (Eq. 31) steps can be combined to produce a variety of recursive schemes.

One such scheme is the “V-cycle”, illustrated in Fig. 1, in which a single two-grid iteration

is employed at each multigrid level. As described in section 3.1.1, V-cycle-type multigrid

iterations are employed in DL MG. Other schemes are possible, such the W-cycle and F-cycle

which differ from the V-cycle in the arrangement of steps between grid levels—see Ref. 10

for further details.

2.4 Defect correction

The representation of a continuous problem on a grid results in a “discretization error”. In

a finite difference method, this discretization error can be expressed as the remainder from
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Figure 1: Illustration of a three-grid multigrid V-cycle

truncating a Taylor series expansion of the function being discretized, e.g. for the forward

difference derivative of f(x) with grid spacing h:

f(x+ h)− f(x)

h
− f ′(x) =

∞∑

n=2

f (n)(x)

n!
hn−1 = O(h). (32)

For small h, the leading term in the error in the discretized derivative in Eq. 32 is a first

order polynomial in h. More generally, the discretization error is the difference between the

exact solution to the continuous problem and the exact solution to the discretized problem,

e.g. for the general linear problem of Eqs. 26 and 29, the discretization error is |u− uh|.

The accuracy of a solution to a discretized problem is limited by the discretization er-

ror. To reduce this error, high-order finite difference approximations, in which the error

asymptotically scales with higher powers of the grid spacing, h, can be employed. Such

higher-order approximations have the advantage that relatively coarser grids can be used

while maintaining the same level of accuracy compared to lower-order approximations.

Higher-order finite difference approximations are necessarily more complicated than lower-

order approximations, generally involving a greater number of terms. This corresponds to

larger and/or more densely populated operator stencils (see appendix A), which can be chal-

lenging to implement in a manner which is computationally efficient. This is a particular
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issue for parallel implementations, where the application of larger stencil on coarse grids may

result in the need to exchange halos which extend across multiple parallel processes.

It is possible to devise compact stencils (containing only points immediately adjacent to

the central point) representing higher-order approximations than the usual 5-point 2-D or 7-

point 3-D stencils. For example, using Mehrstellen discretization,10,42 fourth-order accuracy

is possible using compact 9-point 2-D and 19-point 3-D stencils—this compares favorably

to the second-order accuracy obtained with the compact 5-point 2-D and 7-point 3-D dis-

cretizations of the Laplacian given in appendix A. However, these more complex stencils

present additional challenges when implemented in a parallel solver. For example, the in-

volvement of grid points at the corners of the stencil complicates halo exchange between

parallel processes.

The high-order defect correction approach10,43 provides a means by which approxima-

tions to high-order solutions can be obtained from a multigrid solver while avoiding the

complexities of implementing a high-order multigrid scheme. This is achieved by iteratively

correcting the solution obtained using a lower-order multigrid scheme using a higher-order

discretization of the operator. The higher-order discretization of the operator is applied

only on the fine grid on which the multigrid solver deposits the solution, thus avoiding the

difficulties associated with applying large, complicated, stencils in parallel on coarse grids.

The high-order defect correction procedure resembles the multigrid cycle described in

section 2.3, in that an approximate error, e, is obtained by solving the defect equation,

Â (u− u′) = f − Âu′

Âe = r,

(33)

and is used to correct the approximate solution, u′, i.e.

u = u′ + e. (34)
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The multigrid and defect correction procedures differ in how the defect equation is solved.

In a multigrid cycle the defect equation is solved on a coarser grid with a defect computed

on a finer grid. In contrast, the high-order defect correction involves solving the defect

equation with a lower-order discretization of the operator, using a defect computed using

a higher-order discretization of the operator. In both cases, we solve the defect equation

approximately (on a coarser grid, or with a lower-order operator discretization) so Eq. 34

yields an improved approximation, rather than the exact result.

Consider the high-order defect for an approximate solution, u(i), obtained via a multigrid

scheme using a second-order-accurate operator, Â2:

r
(i)
d = f − Âdu

(i). (35)

The subscripts now refer to the order of accuracy of the operator, d, rather than grid spacing

(in contrast to section 2.3) and the high-order operator Âd has d > 2. The defect equation

may be approximately solved to second-order using the same second-order multigrid scheme,

Â2e
(i)
2,d = r

(i)
d , (36)

to yield an approximation to the higher-order error e
(i)
2,d. The approximate error can then be

used to correct the original approximation:

u(i+1) = u(i) + e
(i)
2,d. (37)

This scheme can be applied iteratively, using the updated approximate solution u(i+1) to

construct a new defect (Eq. 35), and repeating the process until a convergence criterion is

satisfied—the specific criteria available in DL MG are described in section 3.1.2.

The iterative defect correction method outlined above is an effective method for reducing

the discretization error in the solution obtained from a lower-order method. The scheme
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converges toward the solution for the higher-order problem,

Âdu = f, (38)

provided that

ρ(I − (Â)−1
d′ Âd) < 1 (39)

is satisfied, where ρ(M) is the spectral radius (i.e. largest eigenvalue) of a matrix M , I is

the identity matrix and Âd′ is the lower-order discretization of Â (d′ < d).10

For further details on the high-order defect correction, see Refs. 10 (ch.5), 43, and 16

(appendix B).

3 Implementation

3.1 The solver

3.1.1 Second order solver

The implementation of the second-order solver in DL MG is based upon the “geometric

multigrid” approach,44 whereby the problem to be solved is expressed on a fixed hierarchy of

coarsening grids, as described in section 2.3. This is distinct from the “algebraic multigrid”

approach, which works directly with algebraic equations, rather than grids.45

The algorithms for DL MG’s geometric multigrid solver were selected following the stan-

dard recommendations for the Poisson and Poisson-Boltzmann equations (section 2.1) given

in Refs. 10,46:

• Grid coarsening is achieved by doubling the grid-point separation in all dimensions at

each multigrid level—this corresponds to the use of grids with spacing 2nh with h the

spacing of the finest grid (n ∈ Z and n ≥ 0).

• The grid stencils used to apply the differential operator ∇ · ε∇ on all grids are 3-D,
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7-point second-order finite differences discretizations (see appendix A).

• Inter-grid transfers are performed with half-weight restriction and bilinear interpola-

tion.

• Smoothing is performed using the Gauss-Seidel red-black (GS-RB) method (see, for

example, Ref. 47).

Under the GS-RB scheme the grid is divided into two sets of points (red and black), with

the points in each set depending only on the points in the other set. This has the advantage

that the smoothing procedure can be applied to all the points in each set simultaneously,

making the GS-RB smoother highly parallelizable.

The solver components described above can be used to construct an efficient solver for

the Poisson and Poisson-Boltzmann equations with close to optimal computational scaling

with respect to grid size, provided that the models used for the permittivity and charge

density are smooth and without strong anisotropies.10

DL MG was developed for use in large scale electronic structure calculations, the feasi-

bility of which depends on the efficient use of parallel computing resources. The library was

therefore designed to ensure good parallel performance on modern hardware, using widely

adopted parallel frameworks (MPI and OpenMP) to ensure broad compatibility with existing

electronic structure packages. In particular:

• Multigrid iterations are performed using the V-cycle (Fig. 1), as this generally recom-

mended for parallel computations.10,46

• The distribution of global grid data among MPI processes is based upon a 3D Cartesian

topology provided to DL MG as an argument, allowing the solver to adopt the parallel

data decomposition of the calling program.

• Since grid coarsening is achieved by removing even index points in all directions, MPI

communication is only necessary during grid transfer steps when dealing with points
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on the boundaries of the grid held on each MPI process.

The use of a sequence of progressively coarsening grids can be challenging for parallel im-

plementations of multigrid. In particular, the number of active MPI ranks at each multigrid

level can vary because, as the grids become coarser, there are fewer points to share among

parallel processes. Below a certain coarsening level, some MPI ranks may be assigned zero

grid points. To deal with this variation in parallel data distribution, a separate MPI commu-

nicator, which includes only the active MPI ranks, is used to perform MPI communication

at each multigrid level.

The communication of domain halos between MPI ranks—required in smoothing, prolon-

gation and restriction steps—is done using non-blocking MPI sends and receives, allowing

communication to be interleaved with useful computation. Since the 3-D differential op-

erator is discretized as a 7-point stencil (appendix A), smoothing steps only require data

exchange between MPI processes with local domains that share a face. For the inter-grid

transfer steps (prolongation and restriction), data exchange between MPI processes which

hold local grids that share edges or corners is also necessary. The edge and corner points

are efficiently communicated by means of ordered communication along axes between near-

est neighbors10—this amounts to extending the size of the halos exchanged between MPI

ranks with local domains which share faces so that the required edge and corner points are

transferred along with the usual points along the shared face.

To take full advantage of modern multicore CPUs, DL MG employs shared-memory

parallelism within each MPI process via OpenMP threads. This is implemented as a single

OpenMP parallel region, covering the V-cycle loop and the subroutine which builds the

stencil coefficients.

The local grid held on each MPI process is decomposed into thread blocks and distributed

to ensure equal work for all threads. The sizes of these blocks can be tuned to optimize cache

utilization, and “first touch policy” (see, for example, Ref. 48) is used to ensure optimal

memory access by OpenMP threads on NUMA architectures.
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Communication between multi-threaded MPI processes is handled by the master thread,

i.e. the so-called “funneled” mode.49 This mode of communication was adopted to en-

sure portability between MPI implementations with differing support for multi-threaded

communication—funneled mode is the simplest hybrid MPI/OpenMP mode which allows

overlapping of computation and communication.50 Data transfers between MPI buffers and

halos are parallelized using OpenMP threads, employing “single” directives to assign one

thread per local grid side to allow halos along each direction to be copied asynchronously.

Although DL MG has been designed to take full advantage of hybrid MPI/OpenMP par-

allelism, support for MPI and OpenMP is not a requirement. When running calculations on

a single workstation, it might be desirable to use only shared-memory parallelism. Alter-

natively, a distributed-memory-parallelism-only approach might be preferred when DL MG

is called from an application which is designed to spawn one MPI process per CPU core.

DL MG is flexible in this respect—the library can be compiled with or without MPI or

OpenMP, and can therefore be applied in contexts where only one type of parallelism is

desired (or none at all).

The algorithm used by DL MG to solve the NLP-BE (Eq. 12) is based on a specialized

inexact-Newton method.51 In short, the linear multigrid solver is used to find an approx-

imate solution of the linearized system of equations which correspond to a Newton itera-

tion. A damping factor for the linear correction is also computed in order to ensure global

convergence. See Ref. 51 for a detailed description of this approach (referred to as the

“Damped-Inexact-Newton method”).

For the SPE, GPE and P-BE, DL MG uses the same general convergence test, based

upon the norm of the residual:

|r(i)| < max(τ abs, τ rel|f |), (40)

where r(i) is the residual at iteration i, f is the source term and τ abs, τ rel, are user-configurable
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absolute and relative convergence thresholds, respectively. The definition of the residual de-

pends on the equation being employed—for linear equations (SPE, GPE, linearized Poisson-

Boltzmann), the general form is Eq. 27, while for non-linear equations an extra non-linear

term, N(u′), is added, i.e.

r = f − Âu′ −N(u′). (41)

Using the maximum of the absolute and relative thresholds allows flexible control of conver-

gence and can help avoid numerical issues when the source term is small.

The behavior of the second order solver is largely independent of the type of BCs being

used, with the same solver components being employed in all cases. There are a few aspects

of the operation of the solver which depend on BCs:

• For calculations with open BCs along one or more Cartesian direction, fixed values for

these BCs at the grid boundaries must be provided when calling the solver (via the

initial value of the potential, see appendix B).

• Under fully periodic BCs, DL MG will subtract the average of the source term to

satisfy the condition of charge neutrality (section 2.1, see also e.g. ch. 5 of Ref. 10).

• Under fully periodic BCs the solution is determined only up to an arbitrary constant—

this is chosen in DL MG by subtraction of the average of the solution so that the

solution sums to zero over the grid.

• The number of grid points along each Cartesian direction should be odd or even for

open or periodic directions, respectively (as described in section 3.2).

For the SPE, GPE and LP-BE, DL MG supports fully open, fully periodic, and mixed

open/periodic BCs. For the NLP-BE, these are currently all supported, with the exception

of fully periodic BCs where the non-linear dependence of the mobile ion density on the

potential (Eqs. 10 and 11) complicates the satisfaction of the charge neutrality condition.
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Algorithm 1 High-order defect correction

1: i = 0
2: Solve Â2u

(0) = f
3: while not converged do

4: Compute r
(i)
d = f − Âdu

(i)

5: Solve Â2e
(i)
2,d = r

(i)
d

6: Correct u(i+1) = u(i) + e
(i)
2,d

7: i = i+ 1
8: end while

The software library was developed in Fortran 95, using modules and derived data types

for information encapsulation and to maintain a hierarchical structure. See appendix B for an

introduction to the application programming interface (API) (or the online documentation52

for a more detailed account).

3.1.2 Defect correction

As described in section 2.4, the high-order defect correction10,43 in DL MG is applied on

the fine grid, i.e. the grid on which input data is provided from the calling program. The

second-order multigrid solver described in section 3.1.1 is used to approximately solve the

defect equation (Eq. 36) for the residual computed using a high-order discretization of the

differential operator. In practice, this is implemented as a loop, with the second-order

solver repeatedly called to approximately solve the defect equation. In each iteration, the

approximate potential is corrected using the second-order solution to the defect equation

(Algorithm 1).

The defect correction procedure is considered to have converged when the following cri-

teria are satisfied:

|u(i) − u(i−1)| < max(τ absu , τ relu |u(i−1)|), (42)

|r
(i)
d | < max(τ absrd

, τ relrd
|r

(0)
d |), (43)
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where the most-recently updated potential and defect are u(i) and r
(i)
d , the initial (uncor-

rected) defect is r
(0)
d , and where the absolute, τ abs, and relative, τ rel, convergence thresholds

are user configurable. The combination of these two conditions ensures that the iterative

process does not stop too early due to temporary satisfaction of either condition—a truly

converged solution will be converged with respect to both the residual and the error in the

potential.

The use of absolute thresholds, τ abs, ensures that convergence can be achieved in cases

where the relative threshold is problematic, for example where |u(i−1)| or |r
(0)
d | are small and

it may be difficult to converge with respect to the relative threshold due to accumulated

round-off errors in the procedure.

The convergence thresholds and maximum number of iterations can be tuned for the

accuracy and performance requirements of specific problems via optional arguments passed

to DL MG’s solver routines (see appendix B). The default values for these parameters were

selected to be suitable for applications in large-scale electronic structure calculations such

as those described in section 4.2.

The differential operator Âd = [∇ · (ε∇)]d used to compute the defect in Algorithm 1 is

applied using 1-D finite difference representations of the first and second derivative operators.

The overall operator can be trivially expressed in terms of these “bare” derivative operators

by applying the product rule, yielding a high-order defect with the following form:

r
(i)
d (r) = αn(r)− (∇dε(r)) · (∇dφ

(i)(r))− ε(r)(∇2
dφ

(i)(r)), (44)

where αn(r) is the source term with α a constant which depends on the unit system (in atomic

units it is −4π); φ(i) is the approximate potential from the ith defect correction iteration; and

∇d, ∇
2
d are dth order finite difference discretizations the gradient and Laplacian operators.

In the case of the P-BE, a further term is subtracted from the defect, the form of which

depends on whether the linear or non-linear form of the equation is being solved.
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The 3-D gradient and Laplacian operators (Eq. 44) used in the defect correction are

expressed in terms of 1-D finite difference approximations to the first and second derivatives,

i.e.

∇d =
3∑

i=1

(
∂

∂xi

)

d

êi (45)

∇2
d =

3∑

i=1

(
∂2

∂x2i

)

d

, (46)

where êi is a unit vector along Cartesian direction i. The stencils for these 1-D operators

were derived automatically, using a computer algebra system53 to perform the following

procedure:

1. For a generic function f(x) sampled at n+1 points xi with equal spacing h, construct

the unique nth order interpolating polynomial, P (x).

2. Compute the symbolic kth order derivative of the polynomial, P (k)(x) = ∂kP (x)/∂xk.

3. Evaluate P (k)(xj) where xj is one of the interpolation points, {xi}, and simplify the

expression.

This procedure yields general expressions of the form

P (k)(xj) =
1

hk

n+1∑

i=1

sif(xi), (47)

where h is the grid point spacing, {si} are a set of constants and {f(xi)} are the values of

the function at the interpolation points {xi}, which include the point at which the derivative

is taken, xj.

These expressions describe “nth-order” 1-D finite difference stencils, for taking the deriva-

tive at a given interpolation point, with coefficients, si, i.e.

1

hk

[
sj−n · · · sj

]

h

f(x) =
1

hk

j∑

i=j−n

sif(x0 + ih), (48)
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where we have re-numbered the summation to make x0 the point at which the derivative is

taken (j takes values between 0 and n, yielding (n+1)-point stencils). Using this scheme, ar-

bitrarily large stencils can be constructed for taking the derivative at any of the interpolation

points used to construct the polynomial.

1-D stencils for the first and second derivatives of orders 4, 6, 8, 10 and 12 are available

in DL MG. For each available stencil, the derivative can be taken at any of the grid points

involved, i.e. the stencils for all possible forward, central and backwards differences are

available. In periodic BCs, central differences stencils are always used, while under open

BCs, forward and backward differences stencils are employed at the grid boundaries.

A note on the nomenclature: in this work, where we describe the 1-D stencils used

in the defect correction (Eq. 48) as “nth-order”, we are referring to the order of the in-

terpolating polynomial used to construct the stencil. We refer to all forward-, backward-

and central-differences stencils derived from an interpolating polynomial of order-n as “nth-

order”, regardless of the order of derivative being discretized. This is not the same as the

order of the discretization error which we have previously referred to (e.g. Eq. 32), since this

depends on the order of the derivative and also whether a given discretization benefits from

the cancellation of terms when expanded in Taylor series.

The high-order 1-D discretizations of differential operators used in the defect correction

have large stencils, which increase in size with the order of discretization—an nth-order stencil

will, in general, include contributions from n+ 1 points. This poses a challenge when using

distributed-memory parallelism, since applying these operator stencils at the boundary of

the local domain requires the exchange of large halos between MPI processes. Where the

local domain is narrow, halos may extend over the local grids on more than one MPI rank,

increasing the complexity of communication. Handling these extended halos efficiently is the

main difficulty in computing derivatives with higher order discretization over a distributed

domain.

To enable efficient exchange of extended halos during the defect correction procedure,
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DL MG builds two maps on each MPI process which describe the data which must be sent

to and received from other MPI processes. Each of these maps is essentially a list of data

blocks, containing the MPI rank and the relevant global index coordinates of the block of

halo data to be sent or received. The halo exchanges are done with non-blocking send-receive

MPI communication, allowing data to be dynamically copied to halo arrays as it is received.

The implementation of the high-order defect correction in DL MG supports fully open

(Dirichlet), fully periodic and mixed open/periodic BCs. As with the second-order multigrid

solver the high-order defect correction is accelerated using hybrid MPI/OpenMP parallelism,

employing the same 3-D Cartesian topology for decomposition of the global grid among

MPI processes. Within each MPI process, the local computation of the derivatives used to

construct the defect (Eq. 44) is parallelized using OpenMP threads.

Algorithm 1 describes the implementation of the defect correction procedure in DL MG

for the simplest case—correcting the second-order solution to the linear forms of the Poisson

equation (e.g. SPE and GPE, Eqs. 1 and 7). In more complicated cases, the algorithm is

modified. For example, for difficult-to-converge problems, the algorithm can be augmented

with an error damping procedure. This is achieved by damping the correction of the potential

(Algorithm 1, line 6)

u(i+1) = u(i) + s e
(i)
2,d (49)

with s ∈ (0, 1], such that

|Adu
(i+1) − f | < |Adu

(i) − f | , (50)

i.e. the defect for the corrected potential, u(i+1) is smaller than the defect for the uncorrected

potential u(i).

In practice, the damping factor, s, is systematically reduced (starting from s = 1) by

a fraction, q < 1, until Eq. 50 is satisfied—see Algorithm 2. If s becomes smaller than a

prescribed value the entire defect correction process is halted with an error. This procedure

can be enabled with an optional argument of the solver subroutine, but should be used only
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Algorithm 2 High-order defect correction with error damping (q < 1)

1: i = 0
2: Solve Â2u

(0) = f
3: while not converged do

4: Compute r
(i)
d = f − Âdu

(i)

5: Solve Â2e
(i)
2,d = r

(i)
d

6: s = 1
7: repeat

8: Correct udamp = u(i) + s e
(i)
2,d

9: Compute rdamp
d = f − Âdu

damp

10: s = q s
11: until |rdamp

d | < |r
(i)
d |

12: u(i+1) = udamp

13: i = i+ 1
14: end while

when the standard defect correction procedure does not converge, since it involves costly

repeated evaluations of the high-order defect.

Algorithm 1 is also modified when solving the P-BE. While the LP-BE (Eq. 14) may be

solved using Algorithm 1 or Algorithm 2, with a modified linear operator Âd, the NLP-BE

requires further modification of the scheme.

In Algorithms 1 and 2, the linear defect equation (Eq. 36) is solved approximately using

the second-order multigrid solver. However, the defect for the NLP-BE (Eq. 12) includes a

non-linear term (see Eq. 41), and thus cannot satisfy this linear equation. To overcome this

difficulty, the defect equation is solved for the P-BE linearized at the current approximation

to the potential, i.e.

Â2e
(i)
2,d +N ′(u(i))e

(i)
2,d = r

(i)
d , (51)

where N ′(u(i)) is the first derivative of the non-linear Boltzmann term with respect to the

potential, u, evaluated at the current approximation to the potential, u(i). Note that this

linearization of the Poisson-Boltzmann equation is distinct from the linearization in Eq. 14,

which is linearized for potentials close to zero, rather than close to the current approximation
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of the potential.

3.2 Electronic structure software

DL MG exposes an API (appendix B) which allows an external program to call solver rou-

tines from the library in the context of a larger procedure, for example an electronic structure

calculation. The changes required to use the solver in an external program are small. First,

the build procedure for the program should be modified so that the library is appropriately

linked. Second, calls to DL MG initialization and solver procedures, with appropriate argu-

ments, should be inserted into the main program where required (see appendix B). Other

modifications may be necessary to transform the quantities used by DL MG to a suitable

form, if they are not stored in a compatible representation in the external program. For

example, if the charge density is stored in a form other than a regular grid, then it must be

converted to this format before being provided to DL MG.

Since the creation of DL MG,54 the library has been interfaced with several electronic

structure codes, notably ONETEP,1 CASTEP55 and PSI4.56 In this work, we present results

from ONETEP calculations employing DL MG (see section 4.2). For results obtained with

DL MG in CASTEP and PSI4, see Refs. 57 and 58, respectively.

When called from an external program, DL MG will typically need to operate within

additional constraints imposed by the program. For example, the nature of the overall

implementation of the external program may require that specific grid sizes, numbers of par-

allel processes/threads or MPI topologies are employed. This is in contrast to the synthetic

tests considered in sections 4.1.1 and 4.1.2, where the problem size and number of parallel

processes could be varied flexibly.

In the specific case of ONETEP, the size of the fine grid passed to the solver is related to

the kinetic energy cutoff used to construct the underlying psinc basis.59,60 The MPI topology

over which this global grid is distributed is 1-D, with the grid divided into “slabs” along one

coordinate direction.39 The total number of MPI processes is also restricted—this cannot
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exceed the number of atoms used in the calculation.

The additional constraints associated with a ONETEP calculation pose little difficulty

for DL MG. The 1-D MPI topology can simply be provided to DL MG via an appropriately

set-up MPI communicator. The sizing of the grid requires a little more care, since DL MG

has specific requirements in this respect. For each Cartesian direction i the grid passed to

DL MG should satisfy the condition

Ni = qi2
ni + δi, (52)

where Ni is the number of grid points; ni and qi are positive integers (qi ≤ 20); and δi is 1

or 0 for open or periodic BCs, respectively. Roughly speaking, qi determines the size of the

coarsest grid level, while ni determines the number of multigrid levels. For the typical grid

sizes encountered in ONETEP (Ni = 102 to 103), these conditions can be satisfied by passing

to DL MG a slightly truncated grid (for open BCs) or by slightly increasing the scale factor

used to produce the fine grid (for periodic BCs).

The implementation of an implicit solvent model in an electronic structure code involves

more than simply interfacing the code with an efficient solver for the GPE or P-BE. The

details of this implementation will depend upon the solvent model and the underlying the-

oretical formalism employed in the electronic structure package. For example, the dielectric

permittivity ε(r) and ion accessibility functions λ(r) are model-dependent and must be con-

structed by the electronic structure code. Similarly, any method of accounting for the non-

electrostatic components of solvation (e.g. cavitation, dispersion-repulsion) must be done

outside of the Poisson solver, which deals only with the electrostatic terms. For an account

of the implementation of an implicit solvent model in ONETEP which includes electrostatic

and non-electrostatic components (based on Fattebert and Gygi’s electrostatic model12,22

described in section 2.2), see Refs. 15,16.
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4 Results

4.1 Solver testing

4.1.1 Numerical validation

DL MG includes a comprehensive suite of self-tests which allows results computed using the

solver to be validated against known analytic solutions to the SPE, GPE and P-BE. The

test suite is intended to prevent regressions during code development, but can also be used

to rigorously study the accuracy and convergence of the solver.

To examine the numerical behavior of DL MG, two tests which model physical systems

relevant to chemical physics were selected from the test suite and run with varying grid sizes

and orders of finite differences used in the defect correction.

All calculations presented in this section were run in parallel (8 MPI processes, 4 OpenMP

threads per process) on a single workstation, using a development version of DL MG version

2.0 compiled using gfortran 5.3.161 and linked to the Intel MPI library 2017.62

The first test represents the type of problem encountered in electronic structure calcu-

lations where an implicit solvent is represented using a smoothly varying dielectric function

(as in Fattebert and Gygi’s electrostatic solvent model and variants,12,22 described in sec-

tion 2.2). Since the dielectric function is general and non-homogeneous, this requires the

solution of the GPE (Eq. 7). We shall refer to this test case as “erf eps”, as in DL MG’s

test suite.

The second test models the interaction of an ionic solution with a charged surface, for

example an electrode immersed in an electrolyte. This situation may be studied by solution

of the P-BE (Eq. 12), representing the solvent via a homogeneous dielectric permittivity and

using Boltzmann distributions to describe the concentrations of mobile ions in solution. This

test will be referred to as “pbez”, following the name used in DL MG’s test suite.

The erf eps test is based upon the model system proposed by Fisicaro et al. in Ref. 25

to represent an isolated solute embedded in implicit solvent. In this situation, the overall

35

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


electrostatic potential due to the solute charge and polarization of the dielectric medium is

obtained by solving the GPE for the solute charge n(r), and the dielectric permittivity ε(r),

which switches smoothly between a bulk value ε(r) = ε∞ far from the solute and vacuum

value ε(r) = 1 close to the solute.

Defining the electrostatic potential as a normalized Gaussian function,

φ(r) =

(
1

2πσ2

)3/2

exp

(
−
|r−R|2

2σ2

)
(53)

and using a dielectric permittivity constructed using an error function,

ε(r) = 1 +
(ε∞ − 1)

2

[
1 + erf

(
|r−R| − d0

∆

)]
(54)

the corresponding charge density can be derived analytically, i.e.

n(r) =−
1

4π

φ(r)

σ2

[
ε(r)

(
|r−R|2

σ2
− 3

)

−
(ε∞ − 1)|r−R|

π1/2∆
exp

(
−

(
|r−R| − d0

∆

)2
)]

.

(55)

The Gaussian potential, error-function-based permittivity and corresponding density used in

the erf eps model are defined by a set of parameters: the center of the Gaussian potential

and dielectric cavity R; the permittivity in the bulk solvent ε∞; the distance of the center

of the transition region of the permittivity (where ε(r) = (ε∞ + 1)/2) from the center of the

Gaussian potential, d0; and parameters controlling the widths of the Gaussian potential, σ,

and the transition region of the permittivity, ∆.

We examined the accuracy of the solutions produced by DL MG for the erf eps model,

using the parameters suggested in Ref. 25 (σ = 0.5 a0, d0 = 1.7 a0, ∆ = 0.3 a0, ε∞ = 78.36)

with a cubic simulation cell with side length 10 a0, the potential and cavity centered in the

cell (i.e. R = (5 a0, 5 a0, 5 a0)), and for three grid sizes: 2093, 3053 and 4013. Dirichlet BCs

were used in all directions, with φ(r) set to zero at the boundaries. The accuracy of the
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Figure 2: Maximum error in the numerical solution for the erf eps test, measured against
the analytic solution (Eq. 53), for increasing orders of finite differences used in the high-order
defect correction. The error is plotted for three grid sizes: 2093 (blue circles), 3053 (red
triangles) and 4013 (green squares). A finite difference order of 2 implies that no high-order
defect correction was performed, i.e. the error is for the uncorrected second-order multigrid
solution. The functional forms and parameters used to construct the erf eps model for
these calculations are described in section 4.1.1.

solution, defined as the maximum difference between the analytic and numerical solutions

over all grid points, with increasing finite difference order in the high-order defect correction

is plotted in Fig. 2.63

Fig. 2 clearly demonstrates that the maximum error in the solution for the erf eps

rapidly decreases as the order of finite differences used in the high-order defect correction

procedure is increased. The magnitude of the error for a given finite difference order generally

decreases as the grid size is increased, in line with expectations since increasing the number

of grid points for fixed simulation cell dimensions implies a finer grid. For the 3053 and 4013

grids, the maximum error appears to plateau above 8th-order finite differences, while the 2093

grid does not exhibit this effect—for 12th-order finite differences, the error from the 2093 grid

is slightly smaller than the error for the 3053 grid. This difference in behavior is likely to

be related to the number of defect correction iterations required to achieve convergence

(based on the tests described in Eqs. 42 and 43). All the calculations run with 2093 grid
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points required 3 defect correction iterations to converge, while the larger grids required 2

defect correction iterations. As a consequence, the final defect and error norms (|r
(i)
d | and

|u(i) − u(i−1)| in Eqs. 42 and 43) for 2093 are smaller than the corresponding norms for 3053.

The difference in convergence behavior observed for different grid sizes at high finite

difference orders is interesting, however the key result illustrated by Fig. 2 is that the ap-

plication of the high-order defect correction can reduce the maximum error in the solution

by several orders of magnitude. For the grids tested here, the maximum error for 12th-order

finite differences was at least a factor of ∼ 10−6 smaller than the maximum error for the

second-order multigrid solver alone.

The model system used in the pbez test is a 1:1 salt solution (e.g. NaCl in H2O) in

contact with an infinite planar surface of homogeneous charge. Assuming that the ionic

concentrations are described by Boltzmann distributions (Eq. 11), the electrostatic potential

for the system can be found by solving the P-BE. The problem considered in the pbez

test is further simplified by assuming a homogeneous dielectric permittivity, singly charged

ionic species, and that the accessibility function λ(r) = 1 everywhere. In this case, the

electrostatic potential can be found by solving a simplified P-BE in 1-D,

∂2φ(z)

∂z2
= −

4πc0
ε∞

[exp (−βφ(z))− exp (βφ(z))] , (56)

where c0 is the bulk concentration of the salt, ε∞ is the homogeneous permittivity of the

solvent, β = 1/(kBT ) and the z coordinate direction is normal to the plane of the charged

surface. The potential due to the charged surface enters into the equation via boundary

conditions, i.e.

φ(z) =





φsurf, z = 0

0 z → ∞,

(57)

where φsurf is the value of the potential at the planar surface.

The 1-D P-BE in Eq. 56 can be solved analytically for the BCs of Eq. 57. For the general
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Figure 3: Maximum error in the numerical solution for the pbez test, measured against the
analytic solution (Eq. 58), for increasing orders of finite differences used in the high-order
defect correction. The error is plotted for three grid sizes: 208 × 208 × 209 (blue circles),
304 × 304 × 305 (red triangles) and 400 × 400 × 401 (green squares). A finite difference
order of 2 implies that no high-order defect correction was performed, i.e. the error is for the
uncorrected second-order multigrid solution. The functional forms and parameters used to
construct the pbez model for these calculations are described in section 4.1.1.

non-linear case, the electrostatic potential is

φ(z) = 2β−1 ln

(
exp (βφsurf/2) + 1 + (exp (βφsurf/2)− 1) exp (−κz)

exp (βφsurf/2) + 1− (exp (βφsurf/2)− 1) exp (−κz)

)
(58)

with the inverse Debye length for singly-charged 1:1 ionic solutions

κ =

(
8πc0
ε∞kBT

)1/2

. (59)

See Ref. 64 for details of the derivation of Eq. 58.65

We used the pbez test to examine the accuracy of DL MG when solving the non-linear

P-BE. The test was performed in a cubic simulation cell with side length 10 a0, with ε∞ = 80,

c0 = 0.1mol dm−3, T = 300K, and φsurf = 200mV. Three grid sizes were used: 208× 208×

209, 304× 304× 305 and 400× 400× 401.66 The accuracy of the numerical solution (defined
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as for the erf eps test case) with increasing finite difference order in the high-order defect

correction is plotted in Fig. 3.

The general trend for rapid reduction in the maximum error for increasing orders of

finite differences seen for the erf eps test (Fig. 2) is reproduced in Fig. 3. Similarly, as

observed for the erf eps test, the absolute magnitude of the error for a given order of

finite differences decreases as the number of grid points is increased. This effect is more

consistent for pbez than erf eps, with smaller grids yielding larger errors for all orders of

finite difference. Again, this can be attributed to the number of defect correction iterations

required to achieve convergence—for erf eps this was different for 2093 versus the other

grid sizes, while for pbez this is the same for all grid sizes. Unlike for erf eps, the norms of

the final defect |r
(i)
d |, and error |u(i) − u(i−1)|, at each order of finite differences consistently

decrease for increasing grid sizes.

As noted for the erf eps test, the key result of interest is overall reduction in this error

achieved by applying the defect correction. The results for the pbez test indicate that, as

with erf eps, the error in the solution may be very significantly decreased by application

of the defect correction. For the grid sizes used in Fig. 3, the maximum error is at least

∼ 10−5 times smaller with 12th-order finite differences than for the second-order multigrid

solver without defect correction.

4.1.2 Performance tests

DL MG was originally conceived for use in large-scale electronic structure calculations on

massively parallel computers. For the solver to fulfill this purpose, it must be able to scale

efficiently with problem size and number of parallel processors. To examine the scaling of

computational cost in these two circumstances for problems of the type which would be

encountered in electronic structure calculations, we used the erf eps and pbez test cases

described in section 4.1.1. Using these synthetic test cases the number of processors and

size of the problem could be varied systematically and the performance of DL MG studied
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Figure 4: Execution time to reach solution for the erf eps test for increasing problem size.
The total time (blue circles) is plotted alongside time spent in the second-order multigrid
solver (green diamonds) and computing high-order derivatives (red triangles). The portion of
the time for high-order derivative computation spent preparing and communicating halo data
between MPI processes is also plotted (yellow squares). The plotted values are minimum
times taken over 5 repetitions, where the time recorded for each repetition is the maximum
over all MPI processes. The functional forms and parameters used to construct the erf eps

model for these calculations are as for Fig. 2 (see section 4.1.1). The computational details
of these calculations are described in section 4.1.2.

in isolation.

Figs. 4 and 5 plot the scaling of execution time with respect to problem size, for cubic

grids with between 5773 (∼ 108) and 13453 (∼ 109) grid points (the grids used for pbez are

less one grid point in the x and y directions, for the reasons explained in section 4.1.1). These

calculations were run across 6 nodes on the EPSRC MMM Hub “Thomas” supercomputer67

with 64 MPI processes and 2 OpenMP threads per process, using a development version

of DL MG version 2.0 compiled with gfortran 4.9.261 and linked to the Intel MPI library

2017.62 The defect correction was performed with 12th-order finite differences for all grid

sizes and the parameters used to construct the models were as described in section 4.1.1.

For erf eps (Fig. 4), the total computational cost and the cost attributed to the multigrid

solver and high-order derivative computation increases linearly with respect to the number
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Figure 5: Execution time to reach solution for the pbez test for increasing problem size. The
quantities plotted are as in Fig. 4, with the addition of a least-squares linear fit to the total
execution times for the five smallest grid sizes (dashed gray line). The functional forms and
parameters used to construct the pbez model for these calculations are as for Fig. 3 (see
section 4.1.1). The computational details of these calculations are described in section 4.1.2.

of grid points, Ngrid, for the grid sizes used. In addition, for each of the components of the

total cost plotted (second-order multigrid solver, computing high-order derivatives and the

communication of high-order derivative halo data), the cost is seen to increase linearly with

respect to grid size. The cost of the second-order multigrid solver dominates the overall

computational cost, suggesting that future work to optimize the performance of DL MG

should focus upon the core multigrid solver, rather than the high-order defect correction.

The scaling of the computational cost per V-cycle for geometric multigrid is known to

be O(Ngrid) (see Ref. 10 for a derivation of this). The overall cost of obtaining a high-order

defect-corrected solution to the Poisson equation from DL MG would be expected to exhibit

O(Ngrid) scaling, as observed in Fig. 4, only if the number of defect correction and multigrid

V-cycles is constant and independent of Ngrid. For the grid sizes considered in Fig. 4, this

was generally the case—2 defect correction iterations were required for all grid sizes, while

the number of multigrid V-cycles for each of these defect iterations was constant across all

grid sizes (6 and 3).
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A detailed theoretical convergence analysis of the algorithms employed in DL MG is

beyond the scope of this work. Nevertheless, it is clear from Fig. 4 that the cost to obtain a

defect-corrected solution to the GPE for the erf eps test scales linearly with respect to grid

size, within the range of grid sizes tested. Given that the erf eps test is designed to mimic

the situation of an isolated molecule in implicit solvent, and the grid sizes used in electronic

structure calculations are typically in the range of grids tested here, it is likely that O(Ngrid)

scaling would also apply in practical implicit solvent calculations.

In Fig. 5, the overall execution time for pbez test is ∼ 5 to 6 times larger than for erf eps

for a given grid size.68 In this case close-to-linear scaling of computational cost with respect

to Ngrid is observed, though the overall scaling is less clear than for erf eps.

As described in section 3.1.2, DL MG obtains defect-corrected solutions to the NLP-BE

by linearizing the defect equation for the NLP-BE at the current approximation to the poten-

tial (Eq. 51). In this scheme, the initial second-order solution to the NLP-BE is obtained by

the inexact-Newton method outlined in section 3.1.1. Consequently, there are three iterative

procedures to consider in the pbez test—the second-order multigrid solution of linearized

versions of the P-BE, the inexact-Newton procedure, and the high-order defect correction.

As for erf eps, the number of defect correction iterations required to satisfy the con-

vergence tests in pbez (Eqs. 42 and 43) is independent of grid size—this is 1 iteration for

all grid sizes tested. Similarly, the number of iterations required to converge the inexact-

Newton procedure was 6 for all grid sizes. Interestingly, the number of V-cycle iterations

required to obtain a second-order multigrid solution increased with grid size. For the initial

second-order solution (within the inexact-Newton method), 4 iterations are required for the

4 smallest grids, but for larger grids, this increases with grid size, rising to 8 for the largest

grid. Similarly, for the approximate second-order solution of the high-order defect equation,

7 iterations are required for all grids except the two largest, which require 8 and 10 V-cycle

iterations. This explains why total execution times for the largest grids in Fig. 5 are some-

what greater than would be expected for a linear fit to the first 5 points. This is illustrated
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Figure 6: Parallel speedup for the erf eps test on a 10893 grid for increasing numbers of
MPI processes. Speedup is plotted for 1 (blue circles), 2 (red triangles) and 4 (green squares)
OpenMP processes per MPI process, and is with respect to the calculation performed with 8
MPI processes (and the corresponding number of OpenMP threads per process). The plotted
speedup values are calculated using the minimum total calculation time over 5 repetitions,
where the time recorded for each repetition is the maximum over all MPI processes. The
ideal speedup (i.e. NMPI/8) is plotted as a gray dashed line. The functional forms and
parameters used to construct the erf eps model for these calculations are as for Fig. 2 (see
section 4.1.1). The computational details of these calculations are described in section 4.1.2.

in the figure by the inclusion of a least-squares linear fit to the total execution times for all

but the two largest grids.

The scaling of computational cost for the erf eps and pbez tests with respect to number

of parallel processes for a fixed problem size (i.e. strong scaling) is plotted in Figs. 6 and 7.

These calculations were performed on grids with 10893 and 1088× 1088× 1089 grid points

for erf eps and pbez, respectively, and were run on the EPSRC MMM Hub “Thomas”

supercomputer with between 8 and 216 MPI processes and 1, 2, or 4 OpenMP threads

per process. The global grid data was divided equally along each coordinate direction for

distribution to MPI processes, so each process held an equal (or near-equal) cuboid portion

of the grid. For all calculations, 12th-order finite differences were used and the parameters

for constructing the model systems were as described in section 4.1.1.
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Figure 7: Parallel speedup for the pbez test on a 1088 × 1088 × 1089 grid for increasing
numbers of MPI processes. Speedup with respect to 8 MPI processes for 1 (blue circles), 2
(red triangles) and 4 (green squares) OpenMP threads per process is plotted, with the values
calculated as for Fig. 6. The functional forms and parameters used to construct the pbez

model for these calculations are as for Fig. 3 (see section 4.1.1). The computational details
of these calculations are described in section 4.1.2.

The parallel speedup data presented in Figs. 6 and 7 indicates that significant speedups

can be achieved by increasing the number of processes. For erf eps (Fig. 6), the speedup

with respect to number of MPI processes is near-linear for all NMPI, NOMP combinations

(where NMPI and NOMP are the total number of MPI processes and number of OpenMP

threads per process, respectively). The prefactor for the scaling is less than one, which

implies that in this regime, the addition of each MPI process offers a constant, but less-

than-ideal speedup. The difference in speedup obtained using different number of OpenMP

threads per MPI process is small, though for higher-core counts, it appears that 2 OpenMP

threads offers the best speedup per additional MPI process.

The strong-scaling behavior of the pbez test is more complicated than for erf eps. Fig. 7

shows that the speedup achieved for a given number of MPI processes, S(NMPI), is strongly

dependent on the number of OpenMP threads per process. With 2 and 4 threads per process,

the scaling behavior is very good. Near-ideal speedup is observed for 2 and 4 OpenMP
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Figure 8: Parallel speedup for the pbez test on a 1088 × 1088 × 1089 grid for increasing
numbers of MPI processes. The ideal speedup with respect to 8 MPI processes (gray dashed
line) and measured speedup with for 2 OpenMP processes per MPI process (red triangles)
are plotted, as in Fig. 7. Additionally a least-squares fit of the 2 OpenMP thread data to
Amdahl’s law (Eq. 60) is plotted (red dotted line, with p = 0.98367).

threads per process for up to 125 MPI processes. The overall trend in this case is for a

slow decrease in the performance improvement offered per additional parallel process (i.e.

decreasing parallel efficiency, S(NMPI)/NMPI), in line with Amdahl’s law.69,70 To illustrate

this, Fig. 8 presents a least-squares fit to Amdahl’s law,

SAmdahl(S, p) =
1

(1− p) + p/Sideal

, (60)

for 2 OpenMP threads per MPI process, under the assumption that the fraction of the

execution time amenable to parallelization, p, experiences ideal speedup, Sideal. This fit

yielded a value of p = 0.98367.

While the parallel speedup for the pbez test with 2 and 4 OpenMP threads per MPI

process follows the expected trend, with 1 OpenMP thread per MPI process the behavior

is more erratic, with the speedup for 64 and 125 MPI processes substantially lower than

would be expected. For 64 MPI processes with 1 OpenMP thread per process, the speedup
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is actually lower than for 27 MPI processes. This appears to be a consequence of contention

for hardware resources.

For the pbez test, the number of compute nodes allocated for the problem was

max(2, roundup(NMPI ×NOMP, 24)/24), (61)

i.e. the next nearest multiple of 24 to the number of cores required, with a minimum of 2

nodes (roundup(x, y) rounds x up to the next multiple of y). Multiples of 24 were used since

each node on the EPSRC MMM Hub “Thomas” machine on which these calculations were

performed had 24 physical cores, while a minimum of 2 compute nodes was necessary because

the memory requirements to run pbez on a 1088 × 1088 × 1089 grid exceeded the memory

available on a single node. While this represents a realistic allocation of resources, it results

in discrepancies in the amount of resources available per MPI process for different numbers

of OpenMP threads. For example, with 64 MPI processes, the amount of nodes requested is

3 (72 cores), 6 (144 cores) and 11 (264 cores) with 1, 2 and 4 OpenMP threads per process,

respectively. The hardware resources available per MPI process are substantially less for 1

OpenMP thread and thus these resources will be more contested for operations which occur

on a per-process (not per-thread) basis (e.g. MPI communication).

To verify that the unusual speedup behavior for 1 OpenMP thread was due to more

contested resources, we repeated the calculations presented in Fig. 7, but artificially allocated

identical numbers of compute nodes for tests with 1, 2 and 4 OpenMP threads per process.

In this case, the poor speedup for 1 OpenMP thread per process vanished, yielding instead

the expected trend resembling the 2 and 4 OpenMP thread lines plotted in Fig. 7.

Overall, Figs. 6 and 7 demonstrate that DL MG efficiently scales from 10s to 100s of

processor cores, yielding significant performance improvements at typical core counts used

in parallel electronic structure calculations. 2 OpenMP threads per process offers the best

speedup in these particular tests, and use of > 1 OpenMP thread per MPI process is recom-
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Figure 9: Absolute error in the Hartree energy for a 448 atom graphene sheet computed
using DL MG to solve the SPE in ONETEP. The total error and error per atom are plotted
as a function of order of finite differences used in the defect correction procedure. The error
is calculated with respect to the Hartree energy obtained from a reciprocal space solution to
the SPE (Eq. 4).

mended to avoid issues with contention for hardware resources, as seen in Fig. 7.

4.2 Electronic structure calculations

In this section, we consider the numerical accuracy and computational performance of

DL MG when used as a Poisson solver in ONETEP,1 an electronic structure package de-

signed to perform calculation with a cost that scales linearly with the number of atoms,

N .

All DFT results presented in this section were computed using the PBE exchange-

correlation functional71,72 and norm-conserving pseudopotentials from the Rappe-Bennett

pseudopotential library73 (GGA-optimized).74

To evaluate the numerical accuracy of DL MG in ONETEP, we performed single point

DFT energy calculations for a periodic 448 atom graphene sheet in vacuum, using DL MG to

solve the SPE. These calculations were performed on the ARCHER UK national supercom-

puter75 with 48 MPI processes and 4 OpenMP threads per process, using a binary compiled
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using gfortran 5.161 and linked to FFTW76,77 and the Cray MPI libraries.78

The 448 atom graphene sheet was generated with a C-C bond length of 1.43 Å and made

periodic in the xy plane of a 34.31 Å × 34.67 Å × 31.75 Å cell. All DFT calculations were

fully self-consistent and the SPE was solved (for multigrid and in reciprocal space) on a

256× 264× 240 grid.

Fig. 9 shows the error in the electrostatic energy due to the electron density (the Hartree

energy) computed for increasing order of finite differences used in the defect correction for

the 448 atom graphene sheet. The error is with respect to the electrostatic energy computed

when the SPE is solved in reciprocal space (Eq. 4). As seen in the earlier results for the

erf eps and pbez tests (Figs. 2 and 3), the error decreases rapidly as the order of finite

differences is increased. Since the reference Hartree energy is 21323.190421Eh, the relative

error in this energy for 12th-order finite differences is ∼ 10−9.

The superficial similarity between Fig. 9 and Figs. 2 and 3 belies the significant differences

in the calculations performed and the nature of the errors being computed. In the case of

the erf eps and pbez synthetic tests, the error was computed as the maximum difference

(over all grid points) between the numerical solution of the GPE or P-BE from DL MG and

an analytic solution (Eqs. 53 and 53). In contrast, the error plotted in Fig. 9 represents

the error in the electrostatic energy. This is the result of a self-consistent DFT calculation

in which the electrostatic potential is re-evaluated multiple times, forming part of the one-

electron Hamiltonian (see Eq. 21). The small error incurred from using DL MG to solve the

SPE is thus a very strong validation of the accuracy of the electrostatic potential produced

by DL MG—any significant error in the potential would be compounded during the SCF

procedure.

The behavior of DL MG when solving the Poisson equation for a large biological system

was examined by performing single point DFT energy calculations in ONETEP on a 2615

atom T4 lysozyme-catechol complex. The solvation of this complex was previously studied

in Ref. 15 using the MPSM, a variant of the Fattebert-Gygi electrostatic solvation model
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Table 1: Summary of results obtained for single-point DFT calculations on a T4 lysozyme-
catechol complex, performed using ONETEP, where the SPE is solved in reciprocal space
(RS) or using DL MG (MG). For the ONETEP calculations performed with the RS and MG
approaches, energies E (total and Hartree), timings t (total and for SPE solution) and SCF
iterations are reported. “SCF iterations” refers to the number of outer loop iterations in
which ONETEP’s strictly localized orbitals are optimized (see Ref. 39). The percentage of
the total time spent solving the SPE and the absolute and relative differences in the energies
and execution times for the two SPE solution methods are also included. All MG calculations
were performed using 12th-order finite differences in the defect correction. Timing data was
taken from the repetition with minimum total time, ttotal, for three identical repetitions of
the calculation.

MG RS |ERS − EMG|
∣∣∣ERS−EMG

ERS

∣∣∣
Etotal / Eh −11632.5015 −11632.5026 1.04× 10−3 8.96× 10−8

EHartree / Eh 331669.7612 331669.7628 1.55× 10−3 4.66× 10−9

SCF iterations 13 13

MG RS |tRS − tMG|
∣∣∣ tRS−tMG

tRS

∣∣∣
ttotal / s 10213 8546 1668 1.95× 10−1

tSPE / s 1642 34 1608 4.68× 101

% ttotal for SPE 16.08 0.40

described in section 2.2.

To evaluate the numerical accuracy of the results produced by ONETEP with DL MG,

the complex was first studied in vacuum with periodic BCs. This allowed the results obtained

with DL MG to be directly compared to the results obtained when solving the SPE using

the standard reciprocal space approach (Eq. 4) employed in ONETEP. Table 1 shows the

results of these calculations, which were run on the EPSRC MMM Hub “Thomas” machine,

using a ONETEP binary (linked to DL MG), compiled using the Intel Fortran compiler

17.0.1 and Intel MPI 2017. The calculations were run on 120 cores (40 MPI processes with

3 OpenMP threads per process), which represents a typical resource allocation for a job of

this size. A 129.5 a0 × 129.5 a0 × 129.5 a0 simulation cell was used and the SPE was solved

(for both methods) on a 5123 grid, corresponding to a grid point spacing of 0.253 a0.

The excellent numerical agreement in energies computed using DL MG and the reciprocal

space approach to solve the SPE seen in Fig. 9 is evident in Table 1. The total energy

and Hartree component (Eqs. 16 and 17) computed using these two approaches agree to
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within ∼ 10−3Eh. Considering the large magnitude of the energies, this represents very

good agreement, corresponding to relative errors of ∼ 10−8 and ∼ 10−9 for the total and

Hartree energies, respectively.

The execution times reported in Table 1 indicate that the defect-corrected multigrid

approach is considerably more costly than the reciprocal space method. The time spent

solving the SPE with DL MG is nearly 50× the time spent solving this in reciprocal space.

This is not surprising, given the well-known superior performance of FFT-based solutions to

the SPE on uniform grids (see, for example, Ref.79).

While DL MG is substantially outperformed by the reciprocal space method when solving

the SPE, the strength of DL MG is in its flexibility. Eq. 4 is only applicable to the SPE

in periodic BCs, while DL MG can be applied to solve more complicated variants of the

Poisson equation (e.g. GPE, Eq. 7; and P-BE, Eq. 12) with fully open, fully periodic and

mixed open/periodic BCs. As described in section 2.2, the solution of these variants of the

Poisson equation enables electronic structure calculations to be performed in the presence

of implicit solvent.

Table 2 summarizes the results of a free energy of solvation calculation performed on the

same 2615 atom T4 lysozyme-catechol complex considered in Table 1. In these calculations,

DL MG was used to solve the SPE and GPE with fully open BCs, allowing the free energy

of solvation to be computed using the MPSM.15,16 As before, the calculations were run on

the EPSRC MMM Hub “Thomas” machine, using the same ONETEP binary used in the

vacuum PBC calculations and 120 cores (40 MPI processes with 3 OpenMP threads per

process).

The physical parameters used in the solvent model were for solvation in H2O (bulk

permittivity, ε∞ = 78.54, and surface tension, γ = 4.7624× 10−5Eha0
−2), and default values

were used for the empirically determined model parameters. The SPE and GPE were solved

on a 5053 grid, which represented a slightly truncated version of the cubic simulation cell

used in the PBC calculations (128.2304 a0 × 128.2304 a0 × 128.2304 a0)—this was necessary
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Table 2: Summary of results obtained for free energy of solvation calculations on a T4
lysozyme-catechol complex, performed with ONETEP using DL MG to solve the SPE (vac-
uum) and GPE (solvent). The results are for an “auto-solvation” calculation, where the
vacuum and solvent energies required to evaluate the free energy of solvation, ∆Gsolv, are
computed in a single job. The total and electrostatic energies, Etotal and Ees, in vacuum and
solvent are reported. Ees is the energy due to the total charge density (electrons and ionic
cores) of the complex interacting with the total electrostatic potential obtained by solving the
SPE (vacuum) or GPE (solvent), subject to the approximation of smeared ionic core charges
(described in Ref. 16). The number of SCF iterations for each calculation component is as
defined for Table 1. The timings are for the full auto-solvation calculation: ttotal is the total
time, tPE is time spent solving the SPE/GPE in DL MG (with 12th-order finite differences),
and tBC is the time spent computing coarse-grained boundary conditions in ONETEP (see
Ref. 16). Timing data was taken from the repetition with minimum total time, ttotal, for
three identical repetitions of the calculation.

Vacuum Solvent

Etotal / Eh −11632.0051 −11635.8353
Ees / Eh 1306.7135 1303.8631
∆Gsolv / Eh -3.8303
SCF iterations 19 5

Auto-solvation

ttotal / s 29259
tSPE / s 5037
tBC / s 7412
% ttotal for SPE/GPE 17.2
% ttotal for BCs 25.3

to satisfy DL MG’s grid size constraints for OBCs (Eq. 52).

The free energy of solvation computed for the T4 lysozyme-catechol complex in this work

differs from the value presented in Ref. 15 by ∼ 10−2Eh. This is < 1% of the magnitude of

the value and represents very good agreement considering that the calculation settings used

in this work were not tuned for numerical agreement with Ref. 15.

The total execution time for the free energy of solvation calculation reported in Table 2

is ∼ 3× the time taken for the vacuum PBC calculation on the same system (MG column

in Table 1). Given that the calculation of the free energy of solvation involves separate

calculations in vacuum and solvent and the use of open BCs requires the costly computation

of Dirichlet BCs, it is not surprising that the execution time is substantially greater. The

time spent computing the BCs in ONETEP (using the coarse-graining technique described in
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Ref. 16) is actually greater than the time spent solving the SPE and GPE for this particular

calculation.

The time spent solving the SPE and GPE in the solvation calculation is also ∼ 3×, the

time spent solving the SPE in the vacuum PBC calculation, while the fraction of overall

calculation time occupied by the solver is approximately the same at 16 to 17%.

It is tempting to compare the solver times in the vacuum PBC (Table 1) and solvation

OBC (Table 2) calculations in light of number of SCF iterations in each calculation (26 for

both parts of the solvation calculation and 13 for the vacuum PBC calculation). However,

the discrepancies in the calculations prevent us from drawing meaningful insights from the

apparent discrepancy between the 2× increase in SCF iterations vs. 3× increase in solver

time. In particular, the different sizes of grids used in these calculations changes the number

of multigrid levels available: the vacuum PBC calculations (5123 grid) used 9 levels, while

the solvation calculations (5053 grid) used 4.

Overall, the execution times presented in Table 2 demonstrate that, using DL MG to

solve the SPE and GPE, large-scale electronic structure calculations in implicit solvent are

accessible with modest computational resources and with execution times which are not

substantially different to calculations in vacuum. Even when compared to the vacuum PBC

calculation where the SPE is solved in reciprocal space, the total execution time for the

solvation calculation is only 3.4× larger.

5 Conclusions

We have described the implementation of DL MG, a general-purpose Poisson solver library,

and examined its numerical accuracy and computational performance when applied to chem-

ically relevant model systems and in large scale electronic structure calculations.

In section 4.1.1, we demonstrated that DL MG’s defect-corrected multigrid approach

could accurately solve the generalized and Poisson-Boltzmann variants of the Poisson equa-
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tion for two model systems involving implicit solvent. These results (Figs. 2 and 3) demon-

strated the critical importance of the high-order defect correction (sections 2.4 and 3.1.2) in

obtaining accurate solutions—with the second-order multigrid solver alone, the error in the

solutions obtained was several orders of magnitude larger for both model systems.

The scaling of computational cost with respect to problem size was examined in sec-

tion 4.1.2, where the solver library was seen to scale efficiently to problems with billions

of unknowns for the two model systems (Figs. 4 and 5). Linear, or near-linear scaling was

observed in both model systems for the range of grid sizes tested, which was selected to

represent typical grid sizes used in electronic structure calculations (∼ 1003 to ∼ 10003). We

also demonstrated the capability of DL MG to scale efficiently to 100s of cores, typical of

the parallel resources used in medium to large scale electronic structure calculations (Figs. 6

and 7).

We reported the results of electronic structure calculations in vacuum and solution per-

formed with ONETEP, using DL MG to solve the standard and generalized variants of the

Poisson equation (section 4.2). Since the SPE (with fully periodic BCs, Eq. 1) is amenable

to solution using FFT-based techniques already available in ONETEP (Eq. 4), we were able

to compare numerical results obtained using multigrid and FFT-based solvers. The electro-

static energies obtained using potentials returned by DL MG were in excellent agreement

with energies yielded by a reciprocal space solution to the SPE (Fig. 9 and Table 1). The

error in the energies calculated using DL MG (with respect to the energy computed using the

reciprocal space solution) improved with the order of finite differences used in the high-order

defect correction, demonstrating similar behavior to the model systems (section 4.1.1).

The differences in the energies computed using DL MG and the reciprocal space approach

plotted in Fig. 9 emphasize the importance of the defect correction for obtaining chemically

meaningful results. The 448 atom graphene sheet used in these calculations is typical of

the types of surface that may be used in studying the interaction of large systems with a

support (see for example Ref. 80 for a recent study of the interaction of Pt nanoparticles with
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a graphene monolayer using ONETEP). In such studies, small energy differences of∼ 10−3Eh

or less are chemically relevant. Our results for this particular graphene sheet suggest that

≥8th-order finite differences are necessary to obtain this level of accuracy in electrostatic

energies computed with DL MG. Note that, for energy differences, error cancellation may

allow this level of accuracy to be achieved with lower order finite differences, as described in

Ref. 16.

Fully self-consistent DFT calculations were performed on a 2615 atom T4 lysozyme-

catechol complex, representative of the kinds of systems studied in modern large-scale elec-

tronic structure calculations. These calculations were performed on 120 cores on a tier 2

supercomputer in order to produce timings representative of the typical usage of modern

electronic structure packages, such as ONETEP. Using DL MG to solve the GPE with open

BCs, we measured the execution time required to compute the free energy of solvation for

the entire complex, and found this to be only ∼ 3.4× the time taken to compute a single-

point energy for the system in vacuum using a reciprocal space SPE solver and periodic

BCs. This is a small increase in total cost when it is considered that computing the free

energy of solvation requires single-point calculations in both vacuum and solvent and that

computation of open BCs involves significant additional computational work (see Table 2).

To assess the performance of DL MG against an alternative solver, we examined the

relative performance of DL MG and the reciprocal space approach for solving the SPE in

periodic BCs. For the specific case of the T4 lysozyme-catechol complex on 120 cores, we

found that the reciprocal space approach far outperformed DL MG, with DL MG occupying

∼ 50× more of the total execution time. Despite this large difference in time spent in the

solver, the overall execution time for the calculation using DL MG was only ∼ 20% larger,

indicative of the larger fixed costs of other parts of the calculation.

As discussed in section 4.2, the superior performance of the reciprocal space approach

for solving the SPE in periodic BCs is well-known.79 For this reason, we recommend that

DL MG is made available alongside established FFT-based Poisson solvers in electronic
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structure codes. Under the specific circumstances where the reciprocal space solution (Eq. 4)

is applicable, users can benefit from the great efficiency of this method. Where non-periodic

BCs or more complicated variants of the Poisson equation are required, DL MG may be

used. This approach has been successfully adopted in ONETEP, where the Poisson solver is

selected based on the nature of the calculation being performed.

DL MG is a well-tested and stable library suitable for use in production calculations,

as attested by the results presented in this work. Nevertheless, as always with scientific

software, there is plenty of scope for improvement and extension.

In terms of code optimization, it is clear that future work in this area should focus on

the second-order multigrid solver, rather than the defect correction, since the fraction of

time spent evaluating high-order derivatives is negligible compared to the time spent in the

multigrid solver (Figs. 4 and 5).

A key practical aspect of the code which would benefit from further development is the

grid size constraint. In order for DL MG to operate with a sufficient number of multigrid

levels, the external program must provide data on grids that satisfy specific size constraints

(Eq. 52). We are currently investigating methods by which this constraint may be eliminated,

for example by having DL MG interpolate input data onto an optimally sized grid internally.

Finally, the results we have presented in this work demonstrate that DL MG is a flexible,

scalable and accurate Poisson solver library. We therefore hope that interested readers

will consider downloading the code and evaluating it for their own purposes—the library is

released under a permissive open source license and is currently available to download.52
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A Stencils

When considering the discrete representation of differential operators, such as those featuring

in the standard and generalized Poisson equations (Eqs. 1 and 7), it is often convenient to

think in terms of stencils. This concept and associated notation is clearly defined in Ref. 10.

We provide a brief summary here for the convenience of interested readers.

The stencil for an operator discretized on a regular grid describes the set of grid points

in the locality of a point of interest which are involved in the application of the operator.

It is common to refer to a stencil in terms of the number of points involved. For example,

the forward difference approximation to the derivative in Eq. 32 corresponds to a two-point

stencil on a 1-D grid, with the point of interest x and adjacent point x+h. For multidimen-

sional grids, and higher-order finite difference approximations, larger numbers of grid points

are involved.

The utility of the stencil concept is in the compact expression of the “shape” of a dis-

cretized operator on a grid. In particular, the geometric arrangement of the points involved

in a discretized operator can easily be discerned using “stencil notation”. As an example,
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consider the SPE discretized on a 2-D grid,

L̂hφh(x, y) = −4πnh(x, y), (62)

with discretized Laplacian L̂h, potential φh(x, y), and density n(x, y). A 5-point stencil (with

discretization error O(h2)) has the following form

L̂hφh(x, y) =
1

h2
[−4φh(x, y) + φh(x− h, y) + φh(x+ h, y) + φh(x, y − h) + φh(x, y + h)]

=
1

h2




1

1 −4 1

1




h

φh(x, y).

(63)

The second line of Eq. 63 uses the compact stencil notation described in Ref. 10, where the

geometric relationship between the grid points involved in the stencil is clearly illustrated.

A general expression of the action of an operator discretized on a 2-D grid on a function

on that grid is, in stencil notation:




. . .
...

...
... . .

.

· · · s−1,1 s0,1 s1,1 · · ·

· · · s−1,0 s0,0 s1,0 · · ·

· · · s−1,−1 s0,−1 s1,−1 · · ·

. .
. ...

...
...

. . .



h

fh(x, y) =
∑

i,j

si,jfh(x+ ih, y + jh). (64)

This is trivially extended to 3-D grids by combining layers of 2-D stencils. For example, a
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3-D 7-point stencil (with discretization error O(h2)) for the Laplacian can be written:

1

h2







0 0 0

0 1 0

0 0 0







0 1 0

1 −6 1

0 1 0







0 0 0

0 1 0

0 0 0






h

. (65)

B Information for developers

The DL MG library has been designed to be simple to interface with existing electronic

structure packages.

The current version of the library (v2.0) is written in Fortran 95 and packaged with a

GNU Makefile which automatically compiles the source code into a single static library. The

library has no substantial external dependencies and can be compiled with modern Fortran

compilers from Cray, Intel and GNU. Compilation with MPI and OpenMP is typically as

simple as using the an MPI compiler wrapper (e.g. mpif90) and adding the vendor-specific

flag to compile with OpenMP support (e.g. -fopenmp for gfortran).

The typical procedure for calling DL MG from within an existing electronic structure

code is very simple:

• Initialize the solver using dl mg init.

• Call dl mg solver with appropriate arguments.

The arguments that must be passed to the initialization and solver routines depend on

the nature of the problem being solved (e.g. equation type), the type of parallelism employed

(if any), and whether default parameters (e.g. convergence tolerances) are being overridden.

For a typical use case, where DL MG is used to solve the GPE across several MPI

processes and the default convergence tolerances are used, the calls to dl mg init and

dl mg solver might take the following forms:

call dl_mg_init(nx , ny , nz , dx , dy , dz , bc , gstart , gend , &

mg_comm , report_unit , report_file , ierror)
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call dl_mg_solver(eps , eps_mid , alpha , rho , &

pot , fd_order , ierror)

In these subroutine calls, the global grid has dimensions (nx, ny, nz) and dx, dy, dz,

grid point spacing along x, y and z. The boundary conditions are determined by the integer

constant bc—for Dirichlet BCs, bc = DL MG BC DIRICHLET.

The MPI processes which will be used to solve the GPE and their Cartesian topology

are described by the MPI communicator mg comm. For each MPI process the start and end

points of the locally held grid within the global grid are given by the integer vectors gstart

and gend.

DL MG outputs detailed information to a log file while running, which is useful when

debugging issues or tuning parameters. The log file has the name report file and associated

Fortran IO unit report unit.

The type of equation to solve is inferred from the arguments provided when calling the

overloaded dl mg solver routine. For the GPE (Eq. 7), we need to provide the dielectric

permittivity eps, and charge density rho as input, and the corresponding electrostatic poten-

tial pot for output, all with the dimensions of the local grid held on this rank (i.e. gend(:)

- gstart(:) + 1). In addition, we require the values of the dielectric permittivity at the

points located halfway between the points of the global grid in each Cartesian direction,

eps mid.

The order of finite difference stencil (Eq. 48) used in the high-order defect correction is

determined by fd order (4, 6, 8, 10 or 12) and alpha is a multiplicative constant defined

by the unit system (in the atomic units used throughout this paper, alpha is −4π). Finally,

DL MG may return integer-valued error codes through ierror.

This interface is designed to be simple and clean, but also offers a large amount of

configuration options behind optional arguments. For example, it is possible to finely tune

the absolute and relative convergence parameters for the multigrid V-cycle, inexact-Newton

method and high-order defect correction (Eqs. 40, 42 and 43) via optional arguments to
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dl mg solver. For further details, see the developer documentation provided with the source

code.52

C erf eps test

The erf eps synthetic test (described in section 4.1.1) is a useful analytic model which

imitates the situation where a small molecule is solvated in an implicit solvent which is

represented by a smoothly varying dielectric function (e.g. Eq. 24). The test implemented

in DL MG is based on the model described by Fisicaro et al. in Ref. 25, for which we

have reproduced the analytic forms of the electrostatic potential (Eq. 53) and dielectric

permittivity (Eq. 54). We have also provided the corresponding form of the charge density

(Eq. 55), in order that developers of other Poisson solvers may make use of this model.

For interested readers, we include here some of the intermediate steps in the derivation

of Eq. 55 from Eqs. 53 and 54.

We start by rearranging the GPE to obtain an expression in terms of the charge density

and expanding the divergence in terms of the product rule, i.e.

n(r) = −
1

4π

[
ε(r)∇2φ(r) + (∇ε(r)) · (∇φ(r)))

]
. (66)

The derivatives∇ε(r), ∇φ(r) and∇2φ(r) (using the definitions of ε(r) and φ(r) in Eqs. 53

and 54) are

∇ε(r) =
(ε∞ − 1)

∆|r−R|

(r−R)

π1/2
exp

(
−

(
|r−R|2 − d0

∆

)2
)
, (67)

∇φ(r) = −
φ(r)

σ2
(r−R), (68)

∇2φ(r) =
φ(r)

σ2

(
|r−R|2

σ2
− 3

)
. (69)

Substituting Eqs. 67 to 69 into Eq. 66 leads directly to the form of the charge density in
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the erf eps test (Eq. 55).
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(45) Stüben, K. A review of algebraic multigrid. Journal of Computational and Applied

Mathematics 2001, 128, 281–309.

(46) Chow, E.; Falgout, R. D.; Hu, J. J.; Tuminaro, R. S.; Yang, U. M. In Parallel Processing

for Scientific Computing ; Heroux, M. A., Raghavan, P., Simon, H. D., Eds.; SIAM series

on Software, Environments and Tools; SIAM, 2006.

(47) Zhang, J. Acceleration of five-point red-black Gauss-Seidel in multigrid for Poisson

equation. Appl. Math. Comput. 1996, 80, 73–93.

(48) Terboven, C.; an Mey, D.; Schmidl, D.; Jin, H.; Reichstein, T. Data and Thread Affinity

in OpenMP Programs. Proceedings of the 2008 Workshop on Memory Access on Future

Processors: A Solved Problem? New York, NY, USA, 2008; pp 377–384.

(49) Gropp, W.; Torsten, H.; Thakur, R.; Lusk, E. Using Advanced MPI: Modern Features

of the Message-Passing Interface; MIT Press, 2014.

(50) Chapman, B.; Jost, G.; van der Pas, R. Using OpenMP: Portable Shared Memory

Parallel Programming ; 2014.

(51) Holst, M. J.; Saied, F. Numerical solution of the nonlinear Poisson–Boltzmann equation:

Developing more robust and efficient methods. J. Comput. Chem. 1995, 16, 337–364.

(52) Anton, L.; Womack, J. C.; Dziedzic, J. DL MG multigrid solver. 2017; https:

//ccpforge.cse.rl.ac.uk/gf/project/dl-mg/.

(53) Wolfram Research Inc, Mathematica, Version 11.2 ; 2017.

67

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


(54) Anton, L.; Dziedzic, J.; Skylaris, C.-K.; Probert, M. Multi-

grid solver module for ONETEP, CASTEP and other codes ; 2013;

http://www.hector.ac.uk/cse/distributedcse/reports/onetep/.

(55) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.;

Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–

570.

(56) Parrish, R. M.; Burns, L. A.; Smith, D. G. A.; Simmonett, A. C.; DePrince, A. E.;

Hohenstein, E. G.; Bozkaya, U.; Sokolov, A. Y.; Di Remigio, R.; Richard, R. M.;

Gonthier, J. F.; James, A. M.; McAlexander, H. R.; Kumar, A.; Saitow, M.; Wang, X.;

Pritchard, B. P.; Verma, P.; Schaefer, H. F.; Patkowski, K.; King, R. A.; Valeev, E. F.;

Evangelista, F. A.; Turney, J. M.; Crawford, T. D.; Sherrill, C. D. Psi4 1.1: An Open-

Source Electronic Structure Program Emphasizing Automation, Advanced Libraries,

and Interoperability. J. Chem. Theory Comput. 2017, 13, 3185–3197.

(57) Womack, J. C.; Anton, L.; Dziedzic, J.; Hasnip, P. J.; Probert, M. I. J.; Skylaris, C.-

K. Implementation and optimisation of advanced solvent modelling functionality in

CASTEP and ONETEP ; 2017; http://www.archer.ac.uk/community/eCSE/eCSE07-

06/eCSE07-06.php.

(58) Howard, J. C.; Womack, J. C.; Dziedzic, J.; Skylaris, C.-K.; Pritchard, B. P.; Craw-

ford, T. D. Electronically Excited States in Solution via a Smooth Dielectric Model

Combined with Equation-of-Motion Coupled Cluster Theory. J. Chem. Theory Com-

put. 2017, 13, 5572–5581.

(59) Skylaris, C.-K.; Mostofi, A. A.; Haynes, P. D.; Diéguez, O.; Payne, M. C. Nonorthogonal

generalized Wannier function pseudopotential plane-wave method. Phys. Rev. B 2002,

66, 035119.

(60) Mostofi, A. A.; Haynes, P. D.; Skylaris, C.-K.; Payne, M. C. Preconditioned iterative

68

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


minimization for linear-scaling electronic structure calculations. J. Chem. Phys. 2003,

119, 8842–8848.

(61) The gfortran team, Using GNU Fortran; 2017; https://gcc.gnu.org/onlinedocs/.

(62) Intel Corporation, Intel R© MPI Library Developer Reference for Linux* OS ; 2017;

https://software.intel.com/en-us/intel-fortran-compiler-17.0-user-and-reference-guide.

(63) For completeness, we note that the definition of the Gaussian potential used in DL MG’s

test suite differs from Eq. 53 by a factor of π3/2, i.e. φDL MG(r) = π3/2φ(r). The values

of potential (and the error in this) used in plots and quoted in the text for erf eps

correspond to the definition used in DL MG.

(64) Butt, H.-J.; Graf, K.; Kappl, M. Physics and Chemistry of Interfaces, 3rd ed.; John

Wiley & Sons, 2013.

(65) To be consistent with the other equations in this paper, Eqs. 56 to 59 are expressed

in atomic units. When expressed in SI units (as in Ref. 64) these equations necessarily

feature additional constants.

(66) The grid dimensions differ slightly from those used in the erf eps test, since in the

pbez test the boundary conditions are periodic in x and y, while the erf eps test uses

fully open BCs in all directions. DL MG requires an even number of grid points along

periodic directions and odd numbers of grid points along open directions (see Eq. 52).

(67) The EPSRC MMM Hub “Thomas” supercomputer is a UK national tier 2 supercom-

puter facility for materials and molecular modelling (MMM). At the time of writing,

the supercomputer consists of 720 compute nodes, connected with Intel Omni-Path in-

terconnect. Each node consists of 2×12 core Intel Broadwell processors sharing 128GiB

of RAM. For more details, see https://mmmhub.ac.uk/.

69

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


(68) Although the grid dimensions used for pbez and erf eps differ by a single grid point in

the x and y directions (section 4.1.1), the resulting difference in overall number of grid

points is negligible, allowing direct comparison of the timings for the grid sizes used in

each test case.

(69) Amdahl, G. M. Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities. Proceedings of the April 18-20, 1967, Spring Joint Computer

Conference. New York, NY, USA, 1967; pp 483–485.

(70) Hill, M. D.; Marty, M. R. Amdahl’s Law in the Multicore Era. Computer 2008, 41,

33–38.

(71) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made

Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

(72) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made

Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396–1396.

(73) Bennett, J. W. Discovery and Design of Functional Materials: Integration of Database

Searching and First Principles Calculations. Physics Procedia 2012, 34, 14–23.

(74) A sulfur pseudopotential from a suite of pseudopotentials generated by K. Refson to

supplement the Rappe-Bennett library was also used in calculations on the T4 lysozyme

complex reported in section 4.2. ONETEP- and CASTEP-compatible versions of the

Rappe-Bennett library and K. Refson’s supplementary set of pseudopotentials are avail-

able to download from the CASTEP project page on CCPForge.82

(75) ARCHER is the UK’s national supercomputing service, based on a Cray XC30 super-

computer. At the time of writing, ARCHER consists of 4920 nodes connected with an

Aries interconnect. Each node contains 2 × 12 core Intel Ivy Bridge processors, with

standard nodes sharing 64GiB between the two processors. For further information,

see https://www.archer.ac.uk/.

70

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


(76) FFTW version 3.3.4.10. http://www.fftw.org/.

(77) Frigo, M.; Johnson, S. G. The Design and Implementation of FFTW3. Proc. IEEE

2005, 93, 216–231.

(78) Cray Inc., XCTM Series Programming Environment User Guide, s-2529-17.05

ed.; 2017; https://pubs.cray.com/content/S-2529/17.05/xctm-series-programming-

environment-user-guide-1705-s-2529.

(79) Gholami, A.; Malhotra, D.; Sundar, H.; Biros, G. FFT, FMM, or Multigrid? A com-

parative Study of State-Of-the-Art Poisson Solvers for Uniform and Nonuniform Grids

in the Unit Cube. SIAM J. Sci. Comput. 2016, 38, C280–C306.

(80) Verga, L. G.; Aarons, J.; Sarwar, M.; Thompsett, D.; Russell, A. E.; Skylaris, C.-K.

Effect of graphene support on large Pt nanoparticles. Phys. Chem. Chem. Phys. 2016,

18, 32713–32722.

(81) Nagel, J. R. Numerical Solutions to Poisson Equations Using the Finite-Difference

Method [Education Column]. IEEE Antenn. Propag. M. 2014, 56, 209–224.

(82) CASTEP project page on CCPForge. https://ccpforge.cse.rl.ac.uk/gf/

project/castep/.

71

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Graphical TOC Entry

72

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl



