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Abstract—We consider a generic model of Client-Server in-

teractions in the presence of Sender and Relay, conceptual 

agents acting on behalf of Client and Server, respectively, and 

modeling cloud service providers in the envisaged "QoS as a 

Service paradigm". Client generates objects which Sender tags 

with demanded QoS level, whereas Relay assigns the QoS level 

to be provided at Server. To verify an object's right to a QoS 

level, Relay detects its signature that neither Client nor Sender 

can modify. Since signature detection is costly Relay tends to 

occasionally skip it and trust an object; this prompts Sender to 

occasionally launch a Fake VIP attack, i.e., demand undue QoS 

level. In a Stackelberg game setting, Relay employs a trust 

strategy in the form of a double-blind reputation scheme so as 

to minimize the signature detection cost and undue QoS provi-

sion, anticipating a best-response Fake VIP attack strategy on 

the part of Sender. The paper addresses the question whether 

the double-blind reputation scheme, previously proved resil-

ient to a probabilistic Fake VIP attack strategy, is equally resil-

ient to more intelligent Sender behavior. Two intelligent attack 

strategies are proposed and analyzed using two-dimensional 

Markov chains. 

Keywords—QoS, cloud computing, Fake VIP attack, reputa-

tion, trust, Stackelberg game 

I. INTRODUCTION 

Many computer communication scenarios can be mod-
eled as Client-Server interactions: Client generates a se-
quence of objects (e.g., data files, queries, or transactions), 
each of some intrinsic class entitling the object to a specific 
quality of service (QoS) level at Server. For simplicity as-
sume that only L (low) and H (high) classes are distin-
guished. Each object is passed to Server with a demanded 
class tag. Server decides the assigned class (i.e., determines 
the QoS level) based on the object's demanded class and de-
tected signature. The latter refers to a set of intrinsic class-
dependent features that Client cannot modify. Signature de-
tection is costly (e.g., may involve computationally intensive 
pattern matching or context analysis), therefore Server gladly 
outsources this functionality to her local cloud, a third agent 
called Relay. Likewise, clever class demanding may bring 
Client undue benefits (while depleting Server's resources) 
and requires a separate functionality, which Client gladly 
outsources to her local cloud, a fourth agent called Sender. 
Thus we envisage a QoS as a Service paradigm analogous to 
Security as a Service [1]. In this paradigm, Client and Server 
outsource their QoS-related decision-making functionalities 
to local clouds, respectively Sender and Relay, and any stra-
tegic considerations are restricted to the latter two agents 
(Fig. 1). 
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Fig.1. Cloud-assisted Client-Server interactions. 

As signature detection is costly, Relay may occasionally 
skip it for an arrived object. Aware of this, Sender is tempted 
to occasionally launch a Fake VIP attack upon (demand class 
H for) an object bearing class L signature according to some 
Fake VIP attack strategy. Relay assigns class L or H accord-
ing to some trust strategy. Following [2], the trust strategy 
employs a double-blind reputation scheme that neither can 
observe an object's intrinsic class nor reveals to Sender the 
assigned class or current reputation state. If an object finds 
on arrival a high enough reputation state, it is trusted, i.e., 
Relay skips signature detection. Thus a noncooperative game 
arises between Sender and Relay (acting on behalf of Client 
and Server, respectively). In a Stackelberg game setting, 
Sender seeks a best response to Relay's trust strategy and 
selects her Fake VIP attack strategy so as to maximize her 
expected utility related to a long-term perception of received 
QoS; anticipating this, Relay selects her trust strategy so as 
to minimize a utility reflecting the expected combined cost 
of signature detection and high QoS provision by Server. At 
the resulting Stackelberg equilibrium (SE) both players' ex-
pected utilities can be compared to reputation-free (RF) play 
where Relay always trusts an object if the signature detection 
cost is high enough and never trusts otherwise. 

The following postulates [2] reflect some practical as-
pects of the above scenario and make it nontrivial to analyze: 
(i) a Fake VIP attack is costless (e.g., Sender is not charged 
merely for demanding class H), (ii) Relay never gets to know 
an object's intrinsic class, (iii) signature detection cannot be 
conditioned upon the demanded class (which may be part of 
the signature), (iv) high QoS provision is costly for Server, 
(v) Sender cannot observe individual objects' assigned 
classes, and (vi) Relay may not cheat, i.e., assign class L 
upon detection of class H signature. These postulates consti-
tute an information-separation framework  in which informa-
tion accessible by both parties is kept  to a minimum; we 
believe such philosophy should underlie cautious design of 
any security relationship. 

Usurpation attacks similar to Fake VIP, called traffic re-
mapping attacks, were studied in [3] and shown to threaten 
wireless networks employing the Enhanced Distributed 
Channel Access mode of the IEEE 802.11 MAC protocol. 
Various protocol-specific defense measures have been pro-
posed in security frameworks quite different from ours, typi-
cally violating postulates (ii), (iii), (v), or (vi). Complex con-
text analysis-based measures such as [4] are environment 
specific too, and typically violate postulate (ii)  Against the 
proposed double-blind reputation scheme, Sender might at-
tempt to learn the present reputation state via online predic-
tion [5], repeated games [6] or some form of reinforcement 
learning. However, such approaches are inapplicable or 
highly ineffective in an information-separation framework, 
especially due to postulate (v). Game-theoretic Intrusion 
Detection System models such as [7] capitalize on Sender's 
fear of attack detection; however, due to postulate (vi), a 
Fake VIP attack cannot be directly punished. 

Work funded by the National Science Center, Poland, under Grant UMO-
2016/21/B/ST6/03146. 
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In a previous paper [2] we studied a probabilistic Fake 
VIP attack strategy called pFVIP, whereby an object bearing 
class L signature is attacked with a fixed intrinsic class-
dependent probability. We found that surprisingly, SE play 
against pFVIP brings Relay utility gains compared to RF 
play regardless of the signature detection cost, even if the 
object generation process is memoryless. This may indicate 
that the proposed double-blind reputation scheme is a power-
ful defenseor that pFVIP is not sophisticated enough and 
the question is whether Relay's defense would be resilient to 
more intelligent Fake VIP attack strategies. In this paper we 
study two such strategies to find that while they may im-
prove Sender's utility, Relay's utility is not visibly worsened. 

II. MODEL 

Object generation at Client follows a binary stationary 
memoryless random process (c(k))k=1,2,…, where c(k) ∈ {L, H} 
denotes the intrinsic class of the kth generated object. Let ρ = 
Pr[c(k) = H]. Each generated object bears a signature s

(k) ∈ 
{L, H}, i.e., a set of intrinsic class-dependent features that 
Relay recognizes as relevant to the class to be assigned. As 
explained in the introduction, an object of a given intrinsic 
class may accidentally bear a "wrong" signature. Let εL = 
Pr[s(k) = H | c(k) = L] and εH = Pr[s(k) = L | c(k) = H], be the 
stationary signature error rates. Note that the signature 
detection scheme Relay employs to decide assigned class for 
an object may not be known to Sender (moreover, signatures 
may incur non-deterministic corruption in the 
communication channel between Sender and Relay). Thus 
Sender is unaware of objects' signatures and employs a 
signature prediction scheme. Denote the stationary 
prediction error rates by ςL = Pr[p(k) = H | s(k) = L] and ςH = 
Pr[p(k) = L | s

(k) = H]. Let us introduce two auxiliary 
quantities: ω = Pr[s(k) = L] = (1 − ρ)(1 − εL) + ρεH and Ω = 
Pr[p(k) = L] = ω(1 − ςL) + (1 − ω)ςH. We will also use a 
common superscript notation for vectors of attributes of the 
same object, e.g., (s,d)(k) = (s(k),d(k)). 

A. Fake VIP Attack and Trust Strategies 

Sender sets the kth object's demanded class d
(k) based on 

its predicted class p
(k), i.e., predicted outcome of the 

signature detection at Relay: 
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where σ(k) is defined by Sender's Fake VIP attack strategy 

σ(⋅). 

Relay decides the assigned class a
(k) for the kth object 

based on signature detection and current reputation state r(k) 
∈ {1,…,R}, where R ≥ 2. (Recall that d(k) may not be known 
at decision time, cf. postulate (iii).) The reputation state re-
flects Relay's perception of Sender's recent behavior. In the 
trust state R, Relay trusts the object and passes it to Server as 
is, implying a(k) = d(k) being set by Server; in such a case we 

conservatively assume that Relay does not observe d(k) or a(k), 
i.e., gets no feedback from Sever. In the non-trust states 
1,…,R − 1, Relay performs signature detection and decides 
a

(k) = s
(k). According to postulate (v), Sender does not ob-

serve a
(k) and only has a (possibly imperfect) perception of 

the long-term frequency of a
(k) = H, i.e., of the probability 

Pr[a(k) = H]. 

If r(k) < R and (s,d)(k) = (L,H), i.e., a Fake VIP attack is 
suspected (though not certain because of a possible signature 
error), then Sender's reputation state is lowered, whereas a 
perceived honest demand, i.e., (s,d)(k) = (L,L), raises the 
reputation state. In the trust state R, where neither s(k) nor d(k) 
is observed, a cautionary action is to lower the reputation 
state with stationary probability Pr[d(k) = H] estimated from 
objects arrived in non-trust states. In other situations the 
reputation state remains unchanged. The reputation scheme 
defines a parameter δ ∈ [0, 1] that measures the tendency to 
lower the current reputation state. The pair (R,δ) is Relay's 
private information and fully characterizes her trust strategy 
τ(⋅). Formally, let Φ = (1 < r(k) < R ∧ (s,d)(k) = (L,H)), Θ = r(k) 
< R ∧ (s,d)(k) = (L,L), Ψ = (r(k) = R ∧ rand(Pr[d(k) = H])), 
rand(⋅) be a random event occurring with the specified 
probability, and 1(⋅) be the indicator function; then 

 r
(k+1) = r

(k) − 1(Φ∧ rand(δ))∨Ψ + 1Θ∧ ¬rand(δ).          
(2) 

(Note the information separation: only d
k) is observed by 

both Sender and Relay, and only if rk) < R.) 

B. Utilities 

Sender's expected utility, calculated across a long 
sequence of generated objects, equals Pr[(c,a)(k) = (L,H)] − 
Pr[(c,a)(k) = (H,L)] (i.e., the kth object produces a unit benefit 
in the case of a successful Fake VIP attack, and a unit loss if 
Relay has wrongly assigned class L). For convenience, it is 
rescaled using two baseline scenarios: never-trust (a(k) ≡ s

(k)) 
and always-trust, (a(k) ≡ d

(k) ≡ H), which yield Sender 
expected utilities 1 − ρ − ω  and 1 − ρ, respectively: 

 EuSender = 
trust-neverSender,trust-alwaysSender,

trust-neverSender,repSender,

uu

uu

EE

EE

−

−
,             

(4) 

A little algebra yields Pr[a(k) = H] = 1 − ω(1 − EuSender) [2], 
hence the perception of the long-term frequency of a(k) = H 
permits Sender to observe (4). Relay's expected utility is 

 EuRelay = β(1 − πR) + Pr[a(k)
 = H],            

(5) 
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where πR = Pr[r(k) = R] and β > 0 is the relative signature 
detection cost. This cost-type utility reflects the fact that the 
kth object costs Relay a single signature detection when r(k) 
< R, whereas a(k)

 = H implies high QoS provision effort at 
Server. 

It is useful to compare (4) and (5) to reputation-free (RF) 
play, where Relay chooses the never-trust or always-trust 
scenario, whichever produces a smaller cost (5), i.e., the 
former when β < ω (to which Sender responds with any Fake 
VIP attack strategy), and the latter when β ≥ ω (to which 
Sender responds with σ(k) ≡ TRUE). The modified utilities are 
defined as the differences between (4) and (5), and the corre-
sponding RF utilities, thus represent gains and losses com-
pared to RF play. 

C. Stackelberg Equilibrium 

In a non-cooperative game between Sender and Relay, let 
SSender and SRelay be Sender's and Relay's strategy spaces 
whose generic elements are respectively σ(⋅) and τ(⋅) ≡ (R, 
δ), and EuSender(σ(⋅),τ(⋅)) and EuRelay(σ(⋅),τ(⋅)) given by (4) 
and (5) be the two players' utility functions. Since R has little 
impact upon the expected utilities [2], we assume τ(⋅) ≡ δ. In 
a Stackelberg game framework [8], Relay (playing Leader) 
sets her optimum trust strategy anticipating a best-response 
Fake VIP strategy of a selfish Sender (playing Follower); in 
this way the players reach a Stackelberg equilibrium (SE): 

                    σ*(⋅)|δ = )),((maxarg
Sender

)( Sender

δσ
σ

⋅
∈⋅

u
S

E  ∀δ ∈[0, 1],

      
          (6) 

                     δ* ∈ ),|)(*(minarg
Relay

]1,0[

δσ δ
δ

⋅
∈

uE .  

III. INTELLIGENT FAKE VIP ATTACKS 

In a probabilistic Fake VIP attack strategy, denoted 
pFVIP [2], fixed probabilities σL and σH are defined with 
which intrinsic class L or H objects are attacked, i.e., 

)( )(

)(
kc

k rand σσ ≡  in (1) and so σ(⋅) ≡ (σL, σH). The proposed 

double-blind reputation scheme is then invariably beneficial 
for Relay (regardless of β) and produces a win-win at β < ω; 
at β > ω Sender incurs losses compared to always-trust. Thus 
Relay's defense is effective against pFVIP, however, it needs 
to be tested against more intelligent Fake VIP attack strate-
gies whereby Sender has some rudimentary idea of the work-
ings of Relay's reputation scheme. We will refer to such a 
strategy intelligent, and denote it iFVIP. 

iFVIP is assumed to be unaware of R, δ, current reputa-
tion state, or assigned class; however, it is aware of the rules 
(2). It launches an attack when currently suspecting the trust 
state, while refraining from attack when suspecting a non-
trust state. We will say that Sender perceives herself as 
trustworthy in the former case, and as untrustworthy in the 
latter case. Sender's trustworthy and untrustworthy self-
perception states will be denoted TSP and USP, respectively. 
Let s-p

(k) be the self-perception state at the time of passing 

the kth object to Relay, then the Fake VIP attack strategy 
defines σ(k) ≡ (s-p

(k) = TSP) in (1). Uncertain about Relay's 
signature detection and reputation scheme details, Sender can 
use the following heuristic to develop a self-perception. For a 
given object, Sender looks at the predicted class p(k) and de-
manded class d

(k) as dictated by (1). If p
(k) = H, the self-

perception remains unchanged, since Sender then hopes s(k) = 
H is true, in which case, regardless of d

(k), Relay does not 
lower the reputation state (except perhaps at the trust state). 
Therefore, demanding d

(k) = H is subjectively neutral to 
Sender. If p

(k) = L and the current self-perception is TSP, 
Sender demands d

(k) = H, which is subjectively dishonest 
(since s(k) = L can be surmised and a lowering of the reputa-
tion state can be anticipated) and prescribes that Sender 
downgrade her self-perception to USP. Conversely, a predic-
tion p(k) = L under USP implies d(k) = L, a subjectively honest 
behavior (since a raising of the reputation state can be antici-
pated) that prescribes that Sender upgrade her self-perception 
to TSP. Note that Sender cannot know if the lowering or rais-
ing of the reputation state indeed has taken place (being un-
aware of s(k) and because of the randomization controlled by 
the parameter δ of the reputation scheme). To reflect this 
lack of knowledge, whenever an upgrade or downgrade of 
self-perception is prescribed, the former is effected with 
probability ϕ and the latter with probability 1 − ϕ, where the 
parameter ϕ is part of Sender's attack strategy (a large ϕ 
marks a strong drift toward TSP and fosters more frequent 
attacks). 

A. Two-Dimensional Markov Chain under iFVIP 

In this section we use a two-dimensional Markov chain to 
calculate Sender's and Relay's expected utilities for iFVIP 
and to compare the resulting characteristics with pFVIP de-
scribed earlier. Fig. 3 depicts transitions between TSP and 
USP, and between Relay's reputation states i = 1,…,R (self-
loops are omitted); specified are also the events triggering 
these transitions. While the transitions at Relay are triggered 
as before, those at Sender are governed by rand(ϕ) and p(k) = 
L according to the above description. To analyze the players' 
expected utilities, we combine both graphs in Fig. 3 into a 
two-dimensional Markov chain over the state space 
{TSP,USP} × {1,…,R}, whose generic states have the form 

(j, i), with j ∈ {TSP,USP}. That is, if evjj' and iiev ′  are the 
events triggering transitions from state j to state j' in the 
lower graph and from state i to state i' in the upper graph, 

respectively, then evii' ∧ jjev ′  triggers the transition from 

state (j, i) to state (j', i') in the combined graph (note that in 
general  these two events are not independent). Of the two 
components of each state, the first is only known to Sender 
and the second to Relay. 

Fig. 4 depicts the underlying state transition graph and 
transition probabilities; for clarity, self-loops are not drawn, 
and states (TSP, i) and (USP, i) are respectively labeled i and 
i'. Consider first transitions out of state i, which lead to states 
i − 1, i' and (i − 1)'; transition to i + 1 is impossible, since d(k) 
= L is impossible at TSP. The event (s,p)(k) = (L,H) causes 
d

(k) = H, a subjectively neutral behavior to Sender, hence not 
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prescribing a downgrade of self-perception. Yet at i < R, 
Relay detects a Fake VIP attack and is inclined to lower the 
reputation state (which happens if rand(δ) occurs). The event 
(s,p)(k) = (L,L) moreover prescribes a downgrade of self-
perception (which happens if ¬rand(ϕ) occurs), since d(k) = 
H is then subjectively dishonest. Transitions out of state i' 
lead to states (i − 1)', i and i + 1. The first transition is analo-
gous to the one out of state i. The other two are triggered by 
p

(k) = L, since the demand d(k) = L that follows is subjectively 
honest and prescribes that Sender upgrade her self-
perception if rand(ϕ) occurs, while (at i < R) it inclines Re-
lay to raise the reputation state if ¬rand(δ) occurs. Transition 
to (i + 1)' is impossible, since d(k) = L and p(k) = L coincide at 
USP, hence raising the reputation state must be accompanied 
by raising the self-perception. 

Analysis of the combined events in Fig. 3a and 3b yields 
the transition probabilities labeled (a) through (f) in Fig. 4. 
For example, transition (a) is triggered by ¬(¬rand(ϕ) ∧ p(k) 
= L) ∧ rand(δ) ∧ (s,d)(k) = (L,H); since d(k) = H is certain, this 
is equivalent of rand(δ) ∧ ((s(k) = L ∧ rand(ϕ)) ∨ (s,p)(k) = 
(L,H)), hence the transition probability is δ(ϕPr[s(k) = L] + (1 
− ϕ)Pr[(s,p)(k) = (L,H)]). Transition (e) is triggered by 
rand(ϕ) ∧ p

(k) = L ∧ ¬((rand(δ) ∧ (s,d)(k) = (L,H)) ∨ 
(¬rand(δ) ∧ d

(k) = L)); since d(k) = H and p(k) = H coincide, 
this simplifies to rand(δ) ∧ rand(ϕ) ∧ p(k) = L and gives the 
transition probability δϕPr[p(k) = L]. The other transition 
probabilities are obtained similarly. Based on these prob-
abilities, arranged into a matrix T = [tij]i,j∈{TSP,USP}×{1,…,R}, a 
stationary probability distribution π over the state space can 
be derived in the usual way. 

a)

¬ rand(ϕ) ∧ p = L

TSP TSP 

USP USP 

rand(ϕ) ∧ p = L

d ≡ H

d ≡ p

R R R – 1R – 1i i i – 1 i – 1 11 …

rand(δ⋅Pr[d = H])rand(δ) ∧ (s,d) = (L,H) 

¬ rand(δ) ∧ d = L 

b)

a ≡ da ≡ s

…

a)

¬ rand(ϕ) ∧ p = L

TSP TSP 

USP USP 

rand(ϕ) ∧ p = L

d ≡ H

d ≡ p

R R R – 1R – 1i i i – 1 i – 1 11 …

rand(δ⋅Pr[d = H])rand(δ) ∧ (s,d) = (L,H) 

¬ rand(δ) ∧ d = L 

b)

a ≡ da ≡ s

… R R R – 1R – 1i i i – 1 i – 1 11 …

rand(δ⋅Pr[d = H])rand(δ) ∧ (s,d) = (L,H) 

¬ rand(δ) ∧ d = L 

b)

a ≡ da ≡ s

…

 

Fig. 3. Transitions of (a) Sender’s self-perception, (b) reputation states. 

Transition probabilities:

a:  δ(ϕPr[s(k)=L] + (1–ϕ)Pr[(s,p)(k)=(L,H)])

a': δPr[d(k)=H](Pr[p(k)=H] + ϕPr[p(k)=L])

b:  δ(1–ϕ)Pr[(s,p)(k)=(L,L)])

b': δ(1–ϕ)Pr[d(k)=H]Pr[p(k)=L]

c:  (1–δ)ϕPr[p(k)=L]

d:  (1–ϕ)((1–δ)Pr[p(k)=L] + δPr[(s,p)(k)=(H,L)])

d': (1–ϕ)Pr[p(k)=L]

d'': (1–ϕ)Pr[p(k)=L](1 – δPr[d(k)=H])

e:  δϕPr[p(k)=L] 

e': ϕPr[p(k)=L](1 – δPr[d(k)=H])

f:  δPr[(s,p)(k)=(L,H)]

f'': δPr[d(k)=H](Pr[p(k)=H] + (1–ϕ)Pr[p(k)=L])
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Fig. 4. Two-dimensional Markov chain for iFVIP. 

Using our previous notation, we express the relevant 
probabilities in Fig. 4 as follows: Pr[s(k) = L] = ω, Pr[p(k) = L] 
= 1 − Pr[p(k) = H] = Ω, Pr[(s,p)(k) = (L,H)] = ωςL, Pr[(s,p) = 
(L,L)] = ω(1 − ςL), Pr[(s,p)(k) = (H,L)] = (1 − ω)ςH. The prob-
ability Pr[d(k) = H], used by Relay to trigger transitions out of 
the trust states R and R', is estimated based on demanded 
classes of objects arrived so far in non-trust states; this prob-
ability can be analytically calculated as 1 − Pr[p(k) = L]⋅ΠUSP, 

where 
−

=

′

−

=′

′ +=Π
1

1

1

1

)(
R

i

ii

R

i

iUSP
πππ . Thus T depends on π, 

and π can be obtained by numerically solving  π = πT(π) 

subject to 1)(
1

=+
=

′

R

i

ii
ππ . From the viewpoint of both play-

ers' expected utilities, of interest are the stationary trust state 
probabilities, πR and πR', which quantify the vulnerability to 
Fake VIP attacks. Note that some values of δ and ϕ (notably 
δ, ϕ = 0 or 1) yield nonergodic Markov chains, for which πR 
and πR' should be stated separately depending on the initial 
state of the Markov chain; we omit the full analysis for lack 
of space. 

B. Sender's and Relay's Expected Utilities 

Under the reputation scheme, Sender's utility is 

reputSender,
uE  = Pr[(c,a)(k) = (L,H)] − Pr[(c,a)(k) = (L,H)] 

     





=

=

=−

==

Lor  H'X',X'X,

)(

Lor  H'X',X'X,

)(

)].L,'X',X'X,H,(),,,,Pr[( 

)]H,'X',X'X,L,(),,,,Pr[(

k

k

adpsc

adpsc

                 

(7) 

The calculation of the probabilities in (7) is straightforward, 
e.g., Pr[(c,s,p,d,a)(k) = (L,L,H,H,H)] = (1 − ρ)(1 − εL)ςL(πR + 

πR'), Pr[(c,s,p,d,a)(k) = (H,L,L,H,L)] = 
−

=

−
1

1

LH
)1(

R

i

i
πςρε , and 

so on. After some algebra, the utility (4) becomes 
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      EuSender = 
RR ′







 Ω
−+ π

ω
π 1 .            

(8) 

Sender can deduce her utility (8) by observing Pr[a(k) = H] = 
1 − ω (1 − EuSender). This also yields 

 EuRelay = β(1 − πR − πR') + 1 − ω (1 − EuSender).       
(9) 

Regarding postulate (vi), note that (s,a)(k) = (H,L) 
requires a coincidence of USP at Sender, the trust state at 
Relay, and (s,p)(k) = (H,L); hence, Pr[(s,a)(k) = (H,L)] = (1 − 
ω)ςHπR'. E.g., assuming SE play, ω = 0.8, R = 5, ςL = ςH = 
0.3, and β = 0.3, this probability is 0 (since (6) then yields δ* 
= 1 and so πR' = 0). 

Fig. 5 compares the modified utilities (gains and losses 
with respect to RF play) under pFVIP and iFVIP for R = 5. 
iFVIP improves Sender's gains for a range of β < ω and re-
duces her losses for a range of β > ω, to an extent dependent 
on ςL and ςH, while uniformly reducing Relay's gains for β < 
ω and a range of β > ω. Hence, the little intelligence at 
Sender helps iFVIP to outperform pFVIP at times. 

Compared to ςL = ςH = 0, the presence of ςL > 0 is 
slightly beneficial for Sender and damaging for Relay, since 
Sender is more inclined to demand class H, whereas the 
presence of ςH > 0 is not (cf. plots B and C vs. A and D). 
Raising R to 10 improves Relay's gains, but very slightly 
(within a few percent). 

IV.  KNOWLEDGEABLE FAKE VIP ATTACKS 

iFVIP leverages some rudimentary knowledge about the 
events triggering reputation state transitions, though the pa-
rameters (R,δ) remain unknown to her. Would the knowledge 
of them help? Suppose that Sender is able to correctly esti-
mate ω, ςL and ςH. Suppose also that she has used iFVIP for a 
while estimating her expected utility based on observed  
Pr[a(k) = H]. Having discovered the functional dependence of 
πR and πR' on (R,δ) through the Markovian analysis, as well 
as the fact that these two probabilities are very weakly sensi-
tive to R, she can infer δ and then fit R so that the calculated 
and observed Pr[a(k) = H] match. This is a serious, but not 
unthinkable departure from the information-separation 
framework (the relevant parameters can also be obtained by 
hacking into Relay's private data). From Relay's perspective, 
it presents a worst case. 
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Fig. 5. Expected utility gains and losses under piFVIP and iFVIP; A: ςL = 

ςH = 0; B: ςL = 0.3, ςH = 0;  C: ςL = ςH = 0.3; D: ςL = 0, ςH = 0.3. 

In light of the above, the assumption underlying our 
worst-case analysis is that Sender can recreate Relay's repu-
tation state transition graph in Fig. 3a. Hence, she can run the 
corresponding Markov chain in parallel with Relay, building 
a multilevel self-perception (rather than binary USP vs. TSP 
in iFVIP), and only attempting Fake VIP attacks when a trust 
state is perceived. We will call such a Fake VIP attack strat-
egy knowledgeable and denote kFVIP. In what follows we 
use again a two-dimensional Markov chain to analyze kFVIP 
and compare the resulting utilities with iFVIP. 

A. Two-Dimensional Markov Chain under kFVIP 

We combine two one-dimensional Markov chains each 
with reputation state transitions depicted in Fig. 3a into a 
two-dimensional Markov chain over the state space {1,…,R} 
× {1,…,R}. A generic state has the form (j, i), where j 
represents Sender's self-perception and i represents the 
current reputation state as viewed by Relay. Again, if evjj' 

and iiev ′  are the (in general not independent) events 
triggering transitions from state j to state j' in one graph and 
from state i to state i' in the other graph, respectively, then 

evii' ∧ jjev ′  triggers the transition from state (j, i) to state (j', 

i') in the combined graph. Since rand(δ) represents an 
independent random draw with probability δ, we take 

)()()( 2δδδ randrandrand =∧ . As before, the first 

component of each state is only known to Sender and the 
second to Relay. Applying kFVIP to the kth generated object 
whose predicted class is p

(k), Sender sets d
(k) = p

(k) if her 
current self-perception j(k) is non-trust and d(k) = H otherwise. 
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That is, σ(k) ≡ (j(k) = R) in (1). At the trust state, Relay 
estimates the probability Pr[d(k) = H] based on demanded 
classes of objects arrived so far in non-trust states: Pr[d(k)  = 

H] = 
=

−

=

−

=

−

=

⋅=−
R

j

R

i

ij

R

j

R

i

ij

k
Lp

1

1

1

,

1

1

1

1

,

)( ]Pr[1 ππ . 

Fig. 6 depicts the state transition graph and transition 
probabilities; for clarity, self-loops are not drawn. The prob-
abilities Pr[s(k) = L], Pr[p(k) = L] and Pr[(s,p)(k) = (L,H)] can 
be calculated as before. For 0 < δ < 1, the two-dimensional 
Markov chain is ergodic and the derivation of the stationary 
state probabilities πj,i follows in the same way as for iFVIP. 

B. Sender's and Relay's Expected Utilities 

Under the reputation scheme, Sender's and Relay’s utilities 
can be found analogously to (8) and (9), yielding 

    EuSender = 
−

=








 Ω
−+

1

1

,,
1

R

j

RjRR
π

ω
π ,          

(11) 

 EuRelay = β(1 − πR,R) + 1 − ω (1 − EuSender).         
(12) 

(note that in the no-uncertainty model, EuSender = 
RR ,

π ). Fur-

ther calculation Sender's and Relay's modified utilities 
(gains and losses compared to RF play). They are depicted 
in Fig. 7. It is assumed that Relay uses the equilibrium δ* 
defined by (6) that she has configured against iFVIP. 

Our previous findings remain valid, i.e., prediction er-
rors can be beneficial for Sender and damaging for Relay if 

they induce more frequent Fake VIP attacks (ζL > 0 and ζH 
= 0), and increasing R does not affect the plots visibly. 
Comparison of iFVIP and kFVIP reveals that the knowledge 
of the reputation scheme parameters does not help Sender to 
improve her utility or reduce Relay's; in fact, the opposite is 
true. Owing to the randomization induced by the parameter 

δ, as well as her uncertainty as to the occurrence of s(k) = L 
and (s,p)(k) = (L,H), Sender's self-perception has only statis-
tical chances to keep up with the current reputation state at 
Relay. Therefore kFVIP cannot properly coordinate Fake 
VIP attacks with the occurrences of the trust state. Here, 
iFVIP is more successful.  
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Fig. 6. Two-dimensional Markov chain for kFVIP. 
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Fig. 7. Expected utility gains and losses under iFVIP and kFVIP; A: ςL = ςH 

= 0; B: ςL = 0.3, ςH = 0;  C: ςL = ςH = 0.3; D: ςL = 0, ςH = 0.3. 

V. CONCLUSION 

Regarding the central question of this paper, whether a 
double-blind reputation scheme makes an adequate defense 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


against more intelligent Fake VIP attack strategies than 
pFVIP, we offer the following findings: 

• For a range of β, Sender may increase her SE utility 
beyond what she can achieve using pFVIP by adopting 
a more intelligent Fake VIP attack strategy. The con-
ceived strategy we call iFVIP exploits some rudimen-
tary idea of the workings of Relay's reputation scheme. 
Sender can then develop a self-perception of her trust-
worthiness to better choose an object on which to 
launch a Fake VIP attack. However, Sender's increased 
intelligence only very slightly diminishes Relay's util-
ity. 

• Sender's knowledge of the reputation scheme parame-
ters at Relay, whether acquired by learning, by chance 
or illegally, seemingly gives her even more edge on Re-
lay. However, a resulting strategy we call kFVIP turns 
out not to visibly improve Sender's utility or worsen 
Relay's. This is because the randomization of reputation 
state transitions prevents Sender from accurate coordi-
nating her self-perception with the trust or non-trust 
states at Relay. 

 
These findings naturally do not yield an ultimate answer to 
the above question. Rather, they stimulate further research 
into even more intelligent Fake VIP attack strategies and the 
resiliency of the double-blind reputation scheme to them. 
The reputation scheme should be systematically designed so 
that at SE it minimizes Relay's expected cost against an ar-
bitrarily intelligent Sender's attack strategy (perhaps devel-
oped using advanced AI learning algorithms based on the 
observed sequence of (c,p,d)(k) and the Pr[a(k) = H] feedback 
from Relay). How far such a strategy is from the presented 
heuristic ones remains an open question. On the modeling 
side, the model needs to be extended to correlated object 
generation processes, such as TCP, streamlined video, or 
online gaming traffic. Convergence to SE in dynamic game 
scenarios also needs to be studied. These issues are left for 
future work. 
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