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A B S T R A C T   

The prime motive of this disquisition is to deal with mathematical analysis of natural convection energy transport 
driven by combined buoyancy effects of thermal and solutal diffusion in a trapezoidal enclosure. Casson fluid 
rheological constitutive model depicting attributes of viscoelastic liquids is envisioned. The influence of the 
inclined magnetic field governed by Lorentz field law is also considered. To raise the essence of the presently 
used computational and physical domain, an innovative structural design called fillet is capitalized at the edges 
of the cavity. A numerical solution of the leading formulation is sought through Galerkin finite element dis-
cretization. Momentum, temperature, and concentration equations are interpolated by quadratic polynomials, 
whereas pressure distribution is approximated by a linear interpolating function. Domain discretized version is 
evaluated in view of triangular and rectangular elements. Newton’s scheme is employed to resolve the non- 
linearly discretized system and a matrix factorization-based non-linear solver renowned as PARADISO is used. 
Validation of results is ascertained by forming an agreement with existing studies. Streamlines, isothermal and 
iso concentration contours patterns are portrayed to evaluate variation inflow distributions. Kinetic energy, local 
heat, and mass fluxes are also divulged in graphical and tabular formats.   

1. Introduction 

Concurrent heat and mass transfer have a common manifestation in 
nature and yet many industrial settings. Double-diffusive convection 
refers to fluid flows that are created because of a combination of tem-
perature and concentration gradients. Double-Diffusion convection (D. 
D⋅C.) can be found in various scientific domains, including astrophysics, 
astrophysics and biology, as well as many technical applications, natural 
gas storage tanks, including many technical applications solar ponds, 
crystal fabrication, and food processing. Some significant foundational 
literature, such as Turner et al. [1–3], can help you better to understand 

this phenomenon. Industrial and geophysical uses of double-diffusive 
natural convection in enclosures include pollutant dispersions in soil 
and subsurface water, petrochemical processes, heat exchanger design, 
fuel cells, thermo-protection systems, and channel type solar energy 
collectors. As a result, natural convection heat and mass transfer prop-
erties are critical. 

A lot of experimental, analytical, and numerical research has been 
conducted in recent years to investigate such remarkable phenomena in 
distinct insertions. Ostrach et al. [4,5] reported comprehensive analyses 
on the topic. Gebhart et al. [6] was one of the first to use numerical 
methods to investigate D.D.C for the vertical flow of laminar fluid in 
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plumes or over surfaces. This research concentrated on the effects of 
non-dimensional factors on procedures of double-diffusion on heat and 
mass transport, as well as the turbulence transition. Scale analysis of 
heat and mass movement inside the cavities subjected to horizontal 
temperature and concentration gradients was key research by Bejan [7]. 
Fundamentally thermal convection, merely solutal convection, heat 
transfer induced flows, and mass transport induced flows have all been 
taken into consideration. In partially heated cavities, Mobedi et al. 
investigated in [8,9] double-diffusive convection. The flow, heat, and 
mass transfer are numerically investigated by Nikbakhti and Rahimi 
[10], considering a rectangular-shaped cavity with walls that are 
partially heated. They discovered that when the heated area is at the 
bottom, and the cool section is at the top, the transfer of heat and mass is 
at its highest. [11] Studied the mass and heat transport of Non- 
Newtonian nanofluid through a porous media. According to their find-
ings, the thickness of the boundary layer decreases as the heat factor and 
slip parameter increase. [12] Performed the comparative study of 
different nanoparticles over an exponentially accelerated Riga plate 
surface. They found that the density of cupric nanofluid is increased by 
increasing the volume fraction of nanoparticles over Al2O3 nanofluid 
through a decline in velocity distribution. Numerical calculations were 
performed by [13] to examine the mixed convection in an open trape-
zoidal cavity. They studied the impact of Reynolds number and 
Richardson number on various lid-driven sidewall cases. [14] Numeri-
cally investigated thermal transport and buoyant convection of Cu −
H2O Nano fluid in an annulus through a thin baffle. The results for 
different ranges of baffle positions and length was calculated. They 
discovered when the baffle length is 20% of annular width placed at 
80% of the annular height yielded higher thermal transport rates as 
compared to other length and positions of the baffle. Due to its effect on 
the electrical conductivity of fluids [15], a magnetic field has been 
utilized to increase the heat transfer rate in various investigations. A 
body force known as the Lorentz force [16–21], also known as magneto- 
hydrodynamic convection heat transfer, influenced flow and heat 
transfer in this state (MHD). MHD research has become increasingly 
popular among scholars in recent years [22,23]. Mansour et al. [24] 
examined natural convection in a cavity with localized energy sources. 
Concluded that increasing the Rayleigh number and the number of 
copper oxide nanoparticles increased the Nusselt number, regardless of 
the cavity’s AR. Using the lattice-Boltzmann approach, Mliki et al. [25] 
studied the natural convective heat transmission nanofluid inside an L- 
shaped cavity numerically (LBM). They discovered that boosting the 
Rayleigh number resulted in a rise in the average Nusselt number. 

Melt spinning, solar panelling drying, coating innovations, hydraulic 
pumps, chips used in computers, molten metals, heat dissipation fins, 
filtration processes, hydrothermal reservoirs, nuclear waste storage, 
liquefaction gases, casting solidification, and development of biofilm are 
all examples of natural convection. Researchers have carried out ana-
lyses due to their high practical importance. Turan et al. [26] used the 

power-law model to create natural convection using sidewalls heated 
partially of an inclusion filled entirely with a non-linear fluid. Ternik 
and Rudolf [27] used the finite volume approach to simulate thermal 
and hydrodynamic forces for a power-law model along with a Boussi-
nesq approximation. Sajoudi et al. [28], in a container of trapezoidal 
shape flooded with passive power-law fluid, defined convection by 
maintaining the surface adiabatically. Turan et al. [29] investigated the 
effect of heaters positioned just on the boundaries of an enclosure of 
rectangular shape on laminar, time-independent, and natural convec-
tion flow. The evaluation for heat transfer variance against the Prandtl 
number is done by Ternik and Buchmiester [30]. They discovered the 
buoyantly generated flow in a square shaped enclosure with Dirichlet 
heat flux circumstances of power-law fluid. Alloui and Vesseur [31] 
studied convective heat transport in a non-linear fluid contained in a 
container in the vertical direction by using. 

Materials with differing viscosities react differently to stressors. The 
contrasts in behavior between Newtonian and non-Newtonian liquids 
separate them. Non-Newtonian fluids have non-linear properties, while 
Newtonian fluids have linear strains vs. stress factors. Non-Newtonian 
liquid applications include cooling systems, oil-pipeline friction, flow 
traces, surfactants, lubrication, mining, slurries, and biomedical flows. 
Non-Newtonian liquids are separated into two groups: shear thickening 
and thinning liquids, for a complete analysis. Non-Newtonian fluids 
have become increasingly significant in modern processes such as oil 
refining, food manufacturing, cooling, and heating systems, polymeri-
zation, nuclear power plants, flow tracing, reduction of friction, and so 
on. Numerous models have been proposed by rheological experts to 
portray the categorization in this regard. Many non-Newtonian fluid 
models have been proposed to define these difficult natural phenomena 
considering the above explanation and industrial application of non- 
Newtonian materials. Casson (1995) introduced the Casson fluid 
model, which he observed does not follow Newton’s viscosity law. Blood 
and chocolate flows, for example, are found to become less effective for 
interpreting rheological facts than the aforesaid model. The full inves-
tigation of Casson fluid through various impacts has been considered, 
including references in [32–36]. 

According to a review of the aforementioned scientific research, the 
diffusion phenomenon in non-Newtonian liquid caused by thermal and 
solutal buoyancy driven forces has not yet been investigated. Further-
more, despite the overwhelming rise of magnetic fields in various 
modern engineering systems, such features are seldom examined 
together. As a result, the focus of this endeavor is on filling this gap by 
inserting Casson non-Newtonian liquid with isothermal and iso-
concentration limitations on the cavity’s right wall. To do this, the 
mathematical definition of the problem is modelled as a partial differ-
ential expression, and then similarity variables are employed to convert 
PDEs to ODEs. Simulation with a finite element methodology is used to 
carry out the numerical solution of the formulated problem. Finally, the 
effects of important parameters on related distributions are depicted in a 

Fig. 1. Diagrammatic representation of the problem.  
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graphical and tabular format. 
The present work is systematized in the following manner: The 

geometrical and mathematical description of investigation are presented 
in Section 2. The adopted computational scheme is presented in section 
3. The obtained results are explained and discussed by plotting various 
graphs in Section 4. Some engineering based quantities are discussed in 
Section 5. The work is finally concluded in last section. 

2. Mathematical model 

2.1. Problem description 

Let us consider a 2-dimensional, steady-state, uniform, incompress-
ible and laminar flow of Casson fluid enclosed in a trapezoidal fillet 
cavity. The right cavity wall is heated at a fixed temperature (Th) with a 
high concentration (Ch), whereas the left cavity wall is under the in-
fluence of cooling temperature (Tc) with low concentration (Cl), where 
(Th > Tc) and (Ch > Cl). The remaining parts of the cavity are supposed to 
be adiabatic. The magnetic field at an angle of γ to the horizontal di-
rection with a strength of B was applied. The unstructured mesh is used 
to discrete the equations all over the cavity. The flow problem and un-
structured mesh schematic geometry are shown in Fig. 1a and Fig. 1b, 
respectively. 

2.2. Governing equations 

The continuity, momentum, energy, and concentration equations are 
presented as follows, predicated on the assumption indicated above: 

∂u*

∂x* +
∂v*

∂y* = 0, (1)  

ρ
(

u*∂u*

∂x* + v*∂u*

∂y*

)

= −
∂p*

∂x* + μ
(

1+
1
β

)(
∂2u*

∂x*2 +
∂2u*

∂y*2

)

+Λx* , (2)  

ρ
(

u*∂v*

∂x* + v*∂v*

∂y*

)

= −
∂p*

∂x* + μ
(

1+
1
β

)(
∂2v*

∂x*2 +
∂2v*

∂y*2

)

+Λy* , (3)  

u* ∂T
∂x* + v* ∂T

∂y* = αe

(
∂2T
∂x*2 +

∂2T
∂y*2

)

(4)  

u* ∂c
∂x* + v* ∂c

∂y* = D
(

∂2c
∂x*2 +

∂2c
∂x*2

)

(5)  

where ρ, μ, β, αe, D are fluid density, kinematic viscosity, Casson 
parameter, thermal diffusivity, diffusion coefficient and Λ = (Λx*, Λy*) are 

the force index owing to magnetic field and the Boussinesq approximation defined as follows, 

Λx* = σB2
0

(
v*sinγcosγ − u*sin2γ

)
(6)  

Λy* = σB2
0

(
u*sinγcosγ − v*cos2γ

)
+ ρg[βT(T − Tc)+ βc(c − cc) ] (7)  

where βc and βT show the solutal and the thermal expansions, 
respectively. 

2.3. Boundary conditions 

u* = 0, v* = 0, T = Th, c = ch, (for hot side)

u* = 0, v* = 0, T = Tc, c = cc, (for cold side)

u* = 0, v* = 0,
∂T
∂n

=
∂c
∂n

= 0.(rest of the wall) (8) 

where n indicates the normal vector on the boundary. 
The dimensionless parameters are used to convert the dimensional 

Eqs. (1 − 7) and the boundary condition (8) to non-dimensional form. 

(X*,Y*) =
(x*, y*)

L
, (U*,V*) =

(u*, v*)L
α ,P* =

p*L2

ρα2 , θ* =
T − Tc

Th − Tc
,C*

=
c − cc

ch − cc
(9)  

αe =
ke(

ρcp
)

f

,Ra =
ρ2βT gL3ΔTPr

υ2 ,Le =
αe

D
,Ha = BL

̅̅̅σ
μ

√

,Pr =
ν
α. (10) 

The non-dimensional system with boundary conditions is con-
structed by substituting Eqs. (9 − 10) in (1 − 5) and (7 − 8) is as follows: 

∂U*

∂X* +
∂V*

∂Y* = 0 (11)  

(

U*∂U*

∂X* +V*∂U*

∂Y*

)

= −
∂P*

∂X* +Pr
(

1+
1
β

)(
∂U*

∂X* +
∂U*

∂Y*

)

+ΛX* (12)  

(

U*∂V*

∂X* +V*∂V*

∂Y*

)

= −
∂P*

∂Y* +Pr
(

1+
1
β

)(
∂V*

∂X* +
∂V*

∂Y*

)

+ΛY* (13)  

U* ∂θ*

∂X* +V* ∂θ*

∂Y* =
∂2θ*

∂X*2 +
∂2θ*

∂Y*2 (14)  

U*∂C*

∂X* +V*∂C*

∂Y* =
1
Le

(
∂2C*

∂X*2 +
∂2C*

∂Y*2

)

(15)  

where 

ΛX* = PrHa2( V*sinγcosγ − U*sin2γ
)
, (16)  

ΛY* = PrHa2( U*sinγcosγ − V*cos2γ
)
+RaPr(θ* +NC*). (17) 

Here are dimensionless boundary conditions: 

U* = 0,V* = 0, θ* = 1,C* = 1.(for hot side) (18)  

U* = 0,V* = 0, θ* = 0,C* = 0.(for cold side) (19)  

U* = 0,V* = 0,
∂θ*

∂n
=

∂C*

∂n
= 0.(for rest of the walls) (20) 

On the hot wall, the local and mean Nusselt number, local and mean 

Table 1 
Grid convergence study for the mean Nusselt, Sherwood number, and kinetic 
energy for β = 1, Ha = 25, Le = 2.5, Pr  = 6.8, and Ra = 105.  

Grid NEL DOFs Nuavg Shavg K.E. 

L1 258 1795 0.19038 1.3207 106.11 
L2 432 2950 0.15949 1.2643 104.50 
L3 668 4361 0.14190 1.2374 101.93 
L4 1156 7394 0.12585 1.2193 100.29 
L5 1758 10,991 0.10647 1.1934 99.614 
L6 2876 17,459 0.094493 1.1768 98.738 
L7 7288 43,529 0.066337 1.1389 97.899 
L8 18,206 106,801 0.047210 1.1125 97.518 
L9 29,164 167,070 0.047164 1.1125 97.408  

Table 2 
Comparison of the average Nusselt number at the bottom wall between the 
present solution and that of Shafqat et al. [39] for Ha = 25, Le, 2.5,  Pr  = 6.8, 
Ra = 105 and different values of β.  

β [39] Present 

0.1 2.38986 2.39023 
1 3.81194 3.81168 
5 4.27587 4.27511 
10 4.35556 4.35470  
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Sherwood number, are calculated by, 

Nu =

(

−
∂θ*

∂X*

)

X*=0
(21)  

Sh =

(

−
∂C*

∂X*

)

X*=0
(22)  

Nuavg =

∫ 1

0
Nu dY* (23)  

Shavg =

∫ 1

0
Sh dY* (24) 

Additionally, the quantities above, the computation and examination 
of a global quantity is also interesting, named total kinetic energy and is 
defined as, 

K.E =
1
2

∫

Ω
‖U‖2 dΩ (25)  

where U = (U*,V*) is the velocity vector. 

3. Solution methodology 

Lots of computational methodologies were used for studying fluid 
flow and heat transfer inside enclosures and cavities [37]. The dis-
cretization is done by the finite element method FEM used for solving 
the governing Eqs. (11 − 15) with the boundary conditions Eqs. (18 −
20) using the finite-element methodology [38]. The Newtons method is 
used to linearize the resulting discrete system of nonlinear equations. 
After guaranteeing a particular threshold factor of tolerance, the itera-
tive method for nonlinearity is terminated. 

3.1. Grid convergence 

To demonstrate the efficacy of the attained outcomes, multiple grids 
have been employed when Ha = 25, Ra = 105, Pr  = 6.8, Le = 2.5 and β 
= 1 and are shown in Table 1. As a result, the number of degrees of 
freedom (DOFs) and the Inumber of elements (NEL) range from 1795 to 
167,070 and 258 to 29,164, respectively. For the last two grids (L8 and 
L9), the difference between the Nusselt and Sherwood numbers is 
negligible. Hence, DOFs of 106,801 and NEL of 18,206 can provide gird 
independence, and using them the numerical results are presented. The 

Fig. 2. Variation in velocity, temperature, and concentration profile against Casson parameter (β).  
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size of mesh for the present study is revealed in the following Fig. 1b. 

3.2. Code validation 

Once grid independence is established, the validation of code is 
presented iagainst the results of Shafqat et al. [39] for the average 
Nusselt number by fixing Ha = 25, Le, 2.5,  Pr  = 6.8, Ra = 105 and 
different values of β shown in Table 2. The comparison demonstrated the 
accuracy of our results, and a good agreement among the respective 
results is obtained, which ensures that the results obtained for the pre-
sent study are reliable for accuracy check. 

4. Result and discussion 

This portion is presented to interpret attained results in the form of 
streamlines, isotherms and isoconcentration distributions against a wide 
range of involved physical parameters like Casson parameter (β), Hart-
mann number (Ha), Rayleigh number (Ra), and Lewis number (Le). 
Subsequently, global, and local quantities of interest like mass flux co-
efficient (Sherwood number), heat flux coefficient (Nusselt number), 
and kinetic energy are computed.. 

The impression of Casson parameter (β) on velocity, temperature, 
and concentration fields is exhibited in Fig. 2. Here, (β) is varied from 
0.1 to 10, and other parameters like Pr = 6.8, Ha = 25, Ra = 105, Le =
2.5, N = 1, γ = 30

◦

are fixed. The fluid rotates clockwise due to the high 
temperature of the right wall and the low temperature of the left wall. 
The double-diffusive conventional heat transfer of the enclosure are 
responsible for the isotherms and isoconcentration patterns. Variation in 
temperature distribution against Casson fluid parameter (β) is also 
evaluated in Fig. 2. It is seen from the sketches that at (β) = 10 mag-
nitudes of isotherms attained greater values because at a higher 
magnitude of β, velocity of fluid increases. Thus, as an outcome, average 
kinetic energy elevates, and the temperature profile shows incrementing 
trend. The isoconcentration pattern do not change significantly as the 
Casson parameters increase.. 

Fig. 3 illustrates the change in magnitude of streamlines, isotherms, 
Isoconcentration against (Ra), ranging from Ra = 105 − 107 and by 
fixing Pr = 6.8, Ha = 25, β = 1, Le = 2.5, N = 1, γ =30

◦

. The streamlines 
move closer to the walls as the Rayleigh number increases, and the 
horizontal and parallel isotherms and isoconcentration. 

In Fig. 4 we investigated the effect of Le = 0.1 − 10 on momentum, 
temperature, and concentration distributions. No significant changes in 

Fig. 3. Variation in velocity, temperature and concentration profile against Rayleigh number (Ra).  
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momentum distribution are observed against (Le) because it has no 
direct relation with momentum diffusivity. The fluid rotates clockwise 
because of the difference between the temperature of walls at the top 
and bottom. The results showed that as the Lewis number rises, the fluid 
concentration near the heated surface rises as well. It’s because 
increasing (Le) the thermal diffusion elevates, whereas mass diffusivity 
declines.. 

Fig. 5 illustrates the change in velocity, temperature, and concen-
tration distributions versus magnetic field parameter (Ha). Since, 
Hartmann number (Ha) is involved in the present study due to the 
incorporation of the magnetic field, which has a role in reducing velocity 
profile and making the flow regime laminar. As Hartmann number (Ha) 

shows a ratio of Ha = BL
̅̅
μ
σ

√
It is observed that the viscosity of fluid 

enhances against (Ha), so temperature distribution decays as well as 
kinetic energy reduces. 

Table 4 represent numerical data regarding a change in the average 
Nusselt number Nuavg and average Sherwood number (Shavg) against 
Hartmann number (Ha) and Casson fluid parameter (β) with fixation of 
Pr = 6.8, Ra = 105, Le = 2.5, N = 1, γ = 30o. It is observed that the mean 
iNusselt number and Sherwood number occurred the highest for β = 10 

and Ha = 0 with magnitudes 2.2759 and 6.6391, respectively. At Ha =
0 there is no magnetic field thus, the resistive forces are absent. Due to 
this factor, velocity, kinetic energy, and kinetic energy are at the high 
magnitude, and temperature flux enhances. 

Table 5 demonstrates variation in average kinetic energy for the 
various value of Hartmann number (Ha) and Casson parameter (β). It is 
observed that the kinetic energy at β = 10 and Ha = 0 was increased 10.2 
times further than for β = 0.1 and Ha = 0. 

Fig. 6 shows the variation of mean Nusselt numbers in different 
values of iRayleigh and Lewis numbers. For Pr = 6.8, Ha = 25, β = 1, N 
= 1 and γ = 30

◦

. As can be seen, the highest mean iNusselt number was 
obtained at Le = 0.1 and Ra = 107, which is 19.3. Fig. 7 represents a 
change in the average Sherwood number (Shavg) against Rayleigh and 
Lewis numbers with fixation of Pr = 6.8, Ha = 25, β = 1, N = 1 and γ =
30

◦

. As observed, the average Sherwood number occurred the highest 
when Le = 10 and Ra = 107, and it is 30. 

5. Concluding remarks 

Double Diffusive Natural Convection regime in Casson fluid flow in 
the trapezoidal enclosure for uniform thermal and concentration 

Fig. 4. Variation in velocity, temperature and concentration profile against Lewis number (Le).  
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distributions is analyzed in current communication. Fillets used at the 
corners of the enclosure to remove singularity formation in the 
computational domain. A mathematical formulation of a problem by 
capitalizing on governing law is implemented in the form of a dimen-
sionless system of partial differential equations. Numerical simulations 
are performed by implementing finite element procedures. Variations in 
associated momentum, temperature, and concentration distributions in 
view of steam lines, isothermal and isoconcentration patterns are dis-
closed. Engineering quantities of interest such that kinetic energy, local 
heat, and mass flux coefficients is also measured against dimensionless 
involved physical parameters. Key findings of the current analysis are 

Fig. 5. Variation in velocity, temperature and concentration profile against Hartmann number (Ha).  

Table 4 
Variation of average Nusselt number and Sherwood numbers against Casson parameter (β) and Hartmann number (Ha).  

Nuavg Shavg 

Ha β = 0.1 β = 1 β = 5 β = 10 β = 0.1 β = 1 β = 5 β = 10 

0 1.0896 1.8810 2.2149 2.2759 3.2169 5.5786 6.4758 6.6391 
25 1.0590 1.6664 1.8852 1.9229 3.1161 5.1757 5.8766 5.9993 
50 0.99271 1.3219 1.4153 1.4302 2.8557 4.3159 4.7209 4.7872 
75 0.92899 1.0867 1.1245 1.1303 2.5309 3.4468 3.6576 3.6902 
100 0.88286 0.95744 0.97363 0.97609 2.2296 2.7676 2.8774 2.8939  

Table 5 
Variation of kinetic energy against Casson parameter (β) and Hartmann number 
(Ha).  

K. E 

Ha β = 0.1 β = 1 β = 5 β = 10 

0 21.484 129.36 198.84 213.19 
25 18.505 84.781 114.49 119.78 
50 12.668 37.370 43.668 44.596 
75 7.7221 15.904 17.027 17.163 
100 4.5102 7.1110 7.2640 7.2797  
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enlisted below  

i) By increasing Lewis number, mass distribution reduces justified 
by isoconcentration pattern.  

ii) Uplift in the magnitude of Rayleigh number (Ra) increases the 
temperature distribution whereas depreciates concentration 
profile.  

iii) The Rayleigh number is a key factor in controlling convection. 

Intensification in kinetic energy is revealed against (Ha), whereas a 
contrary attribute is observed against (β).  

iv) Heat and mass flux coefficients show diminishing aspects against 
Hartmann number (Ha).  

v) Against Casson parameter (β) heat and mass flux distribution 
show upsurging behavior. 

Nomenclature 

x & y Horizontal & vertical coordinate (dimensional) (m/s) 
u & v x & y coordinate velocity (dimensional) (m/s) 
P fluid pressure (dimensional) (Pascals) 
T Temperature (dimensional) (Kelvin) 
Le Lewis number 

Pr Prandtl number 
g Gravity (m/s) 
Ra Rayleigh number 
DOF degree of freedom 
B Magnetic field Tesla 
cp Specific heat (J. kg− 1. K− 1) 
ke Thermal conductivity (effective) (W. m− 1. K− 1) 
αe Thermal diffusivity (effective) (m2. sec− 1) 
Nu Nusselt number (local) 
c Concentration (dimensional) (Mass/Volume) 
Sh Sherwood number(local) 
NEL number of elements 

Greek symbols 

β Casson fluid parameter 
θ temperature (dimensionless) 
ρ Fluid density (kg.m− 3) 
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