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Abstract: Nowadays, LiDAR (Light Detection and Ranging) is used in many fields, such as
transportation. Thanks to the recent technological improvements, the current generation of LiDAR
mapping instruments available on the market allows to acquire up to millions of three-dimensional (3D)
points per second. On the one hand, such improvements allowed the development of LiDAR-based
systems with increased productivity, enabling the quick acquisition of detailed 3D descriptions of the
objects of interest. However, on the other hand, the extraction of the information of interest from
such huge amount of acquired data can be quite challenging and time demanding. Motivated by
such observation, this paper proposes the use of the Optimum Dataset method in order to ease and
speed up the information extraction phase by significantly reducing the size of the acquired dataset
while preserving (retain) the information of interest. This paper focuses on the data reduction of
LiDAR datasets acquired on roads, with the goal of extraction the off-road objects. Mostly motivated
by the need of mapping roads and quickly determining car position along a road, the development
of efficient methods for the extraction of such kind of information is becoming a hot topic in the
research community.

Keywords: off-road objects; OptD method; reduction; LiDAR

1. Introduction

Thanks to the high accuracy and reliability of Light Detection and Ranging (LiDAR) scanners,
the use of such instruments has become the state-of-the-art of static and mobile mapping systems during
the past decade. Given the possibility of using LiDAR sensors in both terrestrial and aerial surveys
(Terrestrial Laser Scanning (TLS), Mobile Laser Scanning (MLS), Airborne Laser Scanning (ALS)),
the number of applications exploiting such kind of technology is continuously increasing, including
nowadays several fields such as civil and structural engineering [1], forestry and environmental
protection [2], road engineering [3], and assisted/autonomous driving. Many possible applications
include, for instance, infrastructure documentation, construction of roads and highways [4], production
of digital terrain models [5], inventory mapping [6], design of streetscape [7], extraction of traffic signs
and buildings [8], safety improvements [9], and more recently, even the creation of three-dimensional
(3D) models to support visual effects in the film industry [10].
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The quest for fast and detailed 3D spatial data acquisitions led to the development of LiDAR
systems gathering information at a high data rate, up to millions of points per second in the current
generation of LiDAR scanners. Furthermore, since due to occlusions some objects are not properly
mapped by a single LiDAR mobile scanner, nowadays MLS systems are often provided with several
LiDAR instruments acquiring data simultaneously but along different directions. On the one hand,
the use of such multiple LiDAR systems ensures the collection of a spatially more complete dataset,
on the other hand, the size of the collected point cloud quickly becomes huge.

In fact, there are several projects that use LiDAR systems for infrastructure documentation at
large scales, such as transportation/power lines mapping and monitoring and inspection on large
areas, possibly up to national scale. Moreover, some recent applications, such as autonomous/assisted
driving, require the real time analysis of the acquired data in order to extract the information of interest.
Such kind of requirement, in addition to the already mentioned need of properly dealing with huge
amount of data, motivate the development of computationally efficient ways for effectively and timely
processing the collected data.

In accordance with the above observations, this work proposes the use of Optimum Dataset
(OptD) method in order to ease and speed up the process of off-road object (such as traffic signs, power
lines, light poles, roadside trees) extraction from LiDAR data collected by MLS/ALS.

Fast and automatic detection of on-road and off-road objects from LIDAR datasets is very
important for intelligent transportation infrastructure management as well as for driver assistance and
for safety warning systems [11,12]. Several approaches have been recently proposed for the automatic
detection of such objects. As LiDAR provides both geometric and radiometric information about the
measured points (the so-called intensity depends on the physicochemical properties of the scanned
surface, such as the roughness, color, and humidity [13]); hence, both of them can be employed in the
object detection process [14]. A method combining unsupervised k-means, geometric and reflectivity
characteristics to identify road points, traffic signs, and light poles has been developed in [14]. Machine
learning methods have been employed in [8] to recognize on/off-road objects in urban environments.
Laplacian smoothing, k-nearest neighbors graph, and Principal Component Analysis (PCA) have also
been used to detect off-road objects [15,16].

All the methods mentioned above were applied to the complete collected LiDAR dataset; however,
since the computational burden of the object detection algorithm is largely dependent on the dataset
size, the use of such methods on the entire LiDAR point cloud can be computationally quite inefficient,
in particular when dealing with huge datasets and quite stringent processing time requirements.
In such cases, an automatic data optimization step can be conveniently applied in order to reduce
the dataset size before applying the object detection algorithm. Such optimization phase shall clearly
be a smart data reduction step: the rationale is that of retaining most of the points related to the
objects of interest (e.g., traffic signs, light poles) while discarding most of the others (points in areas of
low interest, such as on roads and pavements). In this way, the successive off-road object detection
phase can be speeded up thanks to the dramatic data reduction, whereas the off-road object detection
performance is almost invariant.

Several methods have already been proposed in the literature in order to reduce large LIDAR
datasets, such as generation [17,18] algorithms based on the estimation of surface curvature radius [19,20],
and octree-balanced density down-sampling [21]. It is worth to notice that some of these data reduction
methods are implemented in laser scanning processing software, e.g., Leica Cyclone, CloudCompare.

The goal of this work is to investigate the effectiveness of the OptD method, applied with a properly
defined optimization criterion, in order to achieve a suitable data reduction. The obtained results are
compared with those of the random down-sampling implemented in the CloudCompare software.
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2. Methods

2.1. Review on Road Object Detection

The object detection problem refers to the computer capability of identifying and locating objects
in a scene. Traditionally, most of the object detection methods were based on the use of machine
learning methods, applied on pre-determined features, which were supposed to properly characterize
the objects of interest. Nowadays, deep learning approaches have been shown to be more effective in a
number of cases (e.g., Regional Convolutional Neural Network (RCNN)), Fast-RCNN, Faster-RCNN,
“You Only Look Once” (YOLO). Differently from classical machine learning techniques, deep learning
approaches aim at automatically determining the most suitable (typically high-level) features, which are
usually learned along with the desired classifier. A more detailed review on the object detection history
and recent developments is presented in [22].

Despite that object detection methods were originally deployed as image analysis algorithms
(e.g., they aimed to detect objects based to the visual information provided by cameras), the recent
spread of 3D acquisition and visualization technologies encourages the development of object
detection methods based on 3D information, e.g., on 3D point clouds. In particular, as long as
road object detection is concerned, the role of 3D data processing and object detection is one of
fundamental importance: indeed, several applications in this context (e.g., infrastructure mapping and
documentation, autonomous/assisted driving) are based on the use of MLS [23,24].

On-road and off-road objects are usually divided in several sub-categories, as described in the
following. On-road objects are typically classified into five categories: road surfaces, road markings,
driving lines, road cracks, and road manholes. Differently, off-road objects, which are those of interest
in this study, are usually classified into four categories [23]:

• Traffic Sign (TS)
• Light Pole (LP)
• Roadside Trees (RT)
• Power Lines (PL)

TS detection and recognition methods typically exploit both the geometric and radiometric
characteristics of each traffic sign. The geometric shape of a traffic sign is usually highly regular
(triangle, rectangle, or circle) and its position with respect to the road is quite standard: it is usually
installed on the side of a road, at a specific height, approximately perpendicular to the ground,
and parallel to other pole-like objects. Furthermore, its surface is planar, it is made with a metallic
highly reflective material and covered with reflective paint. Since an imagery acquisition system is
typically used in combination with the laser scanner, TS recognition is usually based on a three-step
procedure: (1) traffic sign detection on the 3D dataset, (2) identification of the two-dimensional
(2D) area in the camera imagery corresponding to the detected traffic sign, (3) use of image-based
recognition methods on the determined 2D area [25]. Such recognition methods are typically based on
either machine learning or deep learning approaches, where the latter have recently shown a superior
performance in many applications. Clearly, the performance of the TS recognition phase is strictly
related to the accuracy of the previous detection phase [23].

Two categories of light pole detection algorithms can be distinguished: knowledge-driven and
data-driven methods. First, knowledge-driven methods can be classified in two sub-categories:
matching-based and rule-based extraction. Matching-based extraction is based on the use of a
pre-selected pole model that is matched with the extracted object. Since it is quite time consuming,
it cannot be considered to be a viable method when dealing with large-volume data processing [26].
Differently, rule-based extraction applies several rules, typically based on the geometric and spatial
characteristics of light poles (e.g., location, radius, height), in order to remove any object different from
a light-pole. Clearly, the number of rules to be applied, as well as the spatial data distribution, exert a
significant impact on the efficiency of this kind of object extraction. In data-driven methods, a set of
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features is typically extracted from the dataset and used to characterize the objects of interest: as often
done in machine learning, a massive and properly labelled training dataset is used to train a suitable
light pole extractor [24,27].

Roadside tree detection from MLS point clouds is typically done by means of either rule-based [28]
or deep learning methods [29,30].

2.2. Optimum Dataset Method

This subsection shortly summarizes the main characteristics of the OptD method, mostly to
properly highlight the changes applied here to the implementation previously used in other works.
We refer the reader to [31–34] for a more detailed algorithmic description of the method.

The goal of the OptD method is to reduce the size of a point cloud while preserving as much
as possible the information that is necessary for the correct implementation of the task of interest
(e.g., the computation of a digital terrain model, a digital surface model, an inventory, or a thematic
map). To achieve this aim, the selection of a proper optimization criterion is fundamental in order to
guarantee the desired data reduction while retaining the information of interest.

The first stage of the OptD method begins with the question to the user to set a proper optimization
criterion (f). Different optimization criteria can be used for reduction, for example, the average error of
the dataset after the reduction exactly indicated number of points or percent of points after reduction.
In this paper, the optimization criterion in the form of a percentage of points was used. Then the
OptD method starts determining the area of interest, i.e., the minimum and maximum horizontal
coordinates. Then, the determined rectangular area is partitioned into strips. The width of the strips L
is automatically optimized in subsequent iterations of the OptD algorithm. The analysis of the points
belonging to each of the strips includes the application of the selected cartographic generalization
method [35,36], which has to be pre-selected by the user. The result of the generalization depends
on the value of the tolerance range t, which is automatically updated in subsequent iterations of the
algorithm until the condition expressed by the desired optimization criterion is met.

A change with respect to the OptD method used in previous works is applied here in the
application of the generalization method. More specifically, given the importance in this work of high
and relatively thin elements such as LPs, the generalization method is changed in order to retain a
higher number of points in correspondence of high objects.

In practice, when several points are found with different vertical coordinates, but quite similar
horizontal coordinates and intensity value, then the data reduction rate is reduced in such area by
lowering the value of the tolerance range. Moreover, the hitherto operation is modified in order to
avoid any change due to the OptD method to the nature of vertical objects (e.g., LP, the tube on which
the TS is mounted). This preserve the possibility of correctly identifying the object even after applying
the data reduction.

It is worth to notice that the only user-dependent actions in the application of the OptD method are
entering the optimization criterion and the selection of the generalization method, whereas all the rest
of the procedure is completely automatic (e.g., determining the strip width and the tolerance range).

Summarizing above, the OptD method for off-road objects extraction is carried out in the
following stages:

1. Reading the LiDAR dataset.
2. Setting the optimization criterion (f%).
3. Determination of the processing area. In this way, a rectangular processing area is created,

which is divided during the processing with OptD into strips (L).
4. Each strip is analyzed separately. In each strip there are measuring points that form a curve.

The curve is generalized with the use of generalization methods, here: Douglas-Peucker
method [35]. The generation of lines created by points in the strips is always performed
in the OXZ or OYZ plane. Thus, the changes are detected by analyzing the geometry. In this
stage, the tolerance range value (t) is determined.
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5. The end of OptD processing occurs when the generalization method is applied in all strips.
The saved dataset meets the optimization criterion set in stage 2. The values L and t are changed
during the iteration until the output dataset meets the optimization criterion.

6. The optimum LiDAR point cloud is saved. Then, the user can use the reduced and classified
dataset for visualization.

2.3. Workflow

In this work the OptD method is used for the data reduction of datasets including off-road objects.
In particular, the behavior of OptD is checked in four cases corresponding to the previously mentioned
four categories of off-road objects. In all considered cases MLS datasets have been used in the tests
done in this paper. It is worth to notice that, in the PL case, power lines were hardly noticeable in the
MLS dataset. Therefore, ALS dataset has been considered in the results shown in this work.

In all the cases, the dataset has been processed with OptD and, for comparison, with the built-in
data reduction function in CloudCompare (random cloud sub-sampling), by using the workflows
summarized in the following.

Workflow with OptD:

1. Import dataset (—input *.txt).
2. Data reduction (—OptD.bat, —data reduction according to the selected optimization criterion f%).
3. Export dataset after reduction (—output *.txt).

Workflow with CloudCompare:

1. Import dataset (open ASCII file *.txt).
2. Data reduction (cloud sub-sampling, random method with criterion r%).
3. Export dataset after reduction (save as ASCII cloud *.txt).

The scheme in Figure 1 shows the different case studies of off-road objects considered in this work.

Geosciences 2020, 10, x FOR PEER REVIEW 5 of 18 

 

2.3 Workflow 

In this work the OptD method is used for the data reduction of datasets including off-road 
objects. In particular, the behavior of OptD is checked in four cases corresponding to the previously 
mentioned four categories of off-road objects. In all considered cases MLS datasets have been used in 
the tests done in this paper. It is worth to notice that, in the PL case, power lines were hardly 
noticeable in the MLS dataset. Therefore, ALS dataset has been considered in the results shown in 
this work. 

In all the cases, the dataset has been processed with OptD and, for comparison, with the built-in 
data reduction function in CloudCompare (random cloud sub-sampling), by using the workflows 
summarized in the following. 

Workflow with OptD: 
1. Import dataset (—input *.txt). 
2. Data reduction (—OptD.bat, —data reduction according to the selected optimization 

criterion f%). 
3. Export dataset after reduction (—output *.txt). 

Workflow with CloudCompare: 
1. Import dataset (open ASCII file *.txt). 
2. Data reduction (cloud sub-sampling, random method with criterion r%). 
3. Export dataset after reduction (save as ASCII cloud *.txt). 

The scheme in Figure 1 shows the different case studies of off-road objects considered in this work. 

 
Figure 1. Scheme of the workflow. MLS: Mobile Laser Scanning; ALS: Airborne Laser Scanning. 

Given the different scanning resolution of the MLS and ALS datasets, and given the quite small 
number of PL points in any of the considered datasets (both MLS and ALS), a different reduction rate 
has been applied: MLS datasets, used in the LP and TS tests, have been reduced at 1% of the original 
size, whereas 10% of reduction rate (defined as the ratio between the reduced and the original size) 
has been used in the case of ALS. 

The comparison with the CloudCompare results has been done by considering the same 
reduction rates used for the OptD method. 

 
 

Figure 1. Scheme of the workflow. MLS: Mobile Laser Scanning; ALS: Airborne Laser Scanning.

Given the different scanning resolution of the MLS and ALS datasets, and given the quite small
number of PL points in any of the considered datasets (both MLS and ALS), a different reduction rate
has been applied: MLS datasets, used in the LP and TS tests, have been reduced at 1% of the original
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size, whereas 10% of reduction rate (defined as the ratio between the reduced and the original size) has
been used in the case of ALS.

The comparison with the CloudCompare results has been done by considering the same reduction
rates used for the OptD method.

2.4. LiDAR Datasets

2.4.1. MLS Dataset

The MLS data acquisition was carried out by GEOPARTNER (www.geopartner.gda.pl) in 2017,
which used the Topcon IP-S3 mobile mapping system. Despite being quite small, light, and easy to
handle, Topcon IP-S3 provides high density and precision point clouds combined with high resolution
panoramas. Precise positioning and attitude in a dynamic environment are done thanks to the
combination of information from IMU (Inertial Measurement Unit), GNSS (Global Navigation Satellite
System) receiver (GPS and GLObal NAvigation Satellite System (GLONASS)), and a vehicle odometer.
Furthermore, it has a six-lens digital camera system that provides 360-degree high resolution spherical
images. Concerning the laser scanner unit, the scanning rate is 700,000 pulses per second. There are
32 internal lasers covering the full 360 degrees around the system, each from a slightly different viewing
angle, which minimizes gaps in the point cloud. All post processing trajectories and georeferencing
scans and images are performed in Mobile Master Office software.

The MLS dataset considered in this paper is shown in Figure 2. The presented point cloud is not
classified, and the colors of the points result from the intensity.
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The MLS dataset has been processed by means of OptD and random reduction in CloudCompare
(CC), leading to the results shown in Table 1.

Table 1. Characteristics of the MLS dataset before and after data reduction.

100% OptD@1% CC@1%

The number of data 113,4381,023 11,343,809 11,343,810
Zmax [m] 161.613 161.613 154.516
Zmin [m] 110.075 110.075 111.024

Zmean [m] 117.382 120.125 118.256
Average point distance [m] 0.127 2.389 2.421

According to the results shown in Table 1, it can be stated that, differently from the random
reduction case, the OptD algorithm maintained the Zmin and Zmax values (Z—height of scanned points),
whereas the obtained value of the average point distance is different but the difference is not relevant
with respect to the average distance.

2.4.2. ALS Dataset

The ALS dataset has been provided by Vimap Olsztyn: the survey has been conducted on
6 July 2017, by means of a RIEGEL VUX1-UAV laser scanner (RIEGL Laser Measurement Systems,
Austria), with a helicopter flying at an altitude of approximately 100 m. The fragment of point cloud
used in this work contains 2,332,746 points and is shown in Figure 3. The presented ALS point cloud
is classified.
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above the ground: vegetation, buildings, blue—ground, red—power lines).

As already mentioned, in this case, both OptD and random sub-sampling in CloudCompare were
applied in order to reduce the point cloud size at 10% of its original size. The obtained results are
shown in Table 2.

Table 2. Characteristics of the ALS dataset before and after data reduction.

100% OptD@10% CC@10%

The number of data 2,332,746 233,275 233,274
Zmax [m] 108.600 108.600 107.440
Zmin [m] 84.620 84.620 84.980

Zmean [m] 91.634 91.706 89.608
Average point distance [m] 0.036 0.507 0.510

Similar to the MLS case, only the OptD method maintained the original values of Zmin and
Zmax, whereas the average point distance obtained after applying the two data reduction methods is
quite similar.
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3. Results

3.1. Light Pole

This subsection aims at evaluating the data reduction effect on light pole points. In this case, three
classes of areas are considered: points far from LPs (and from other objects of interest), points under
LP, and those appertaining to a LP. The goal of this distinction is analysis of the behavior of the data
reduction algorithms, and in particular of the OptD method, in these three cases.

Figure 4 presents the differences in reduction conducted by means of OptD and random
sub-sampling implemented in CloudCompare on a fragment of the scanned road. The reduction rate
was set to 1% in both cases.
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Figure 5 shows the effects of OptD data reduction on LPs and on their surrounding area. As can be
seen in Figure 5 (bottom), the behavior of the OptD in the three cases mentioned above is clearly different.
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Figure 5. Effect of the Opt data reduction on an area containing LPs: original point cloud (top) and that
sub-sampled by means of OptD at 1% of its original size (bottom).

First, OptD sub-samples points with a high data reduction rate in the geometrically regular/smooth
areas far from any LP: this is clearly in agreement with the required overall reduction rate and with
the general down-sampling behavior of the OptD method, which, roughly speaking, removes points
corresponding to redundant information, such as part of the points on planar surfaces.

The OptD behavior on points appertaining to LPs is clearly different from the previous case:
thanks to the changes to the original OptD algorithm described in Section 2.2, in this case the data
reduction rate is apparently much smaller. Furthermore, by construction, the algorithm also maintains
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a quite high density of points in the ground area close to the light poles, which can be very important
for the implementation of a proper inventory of such objects.

Figure 6 aims at clarifying the advantage of using OptD with respect to a random sub-sampling of
the areas close to a light pole: Figure 6a shows the original point cloud, whereas Figure 6b,c show the
point cloud reduced at 1% of its original size by means of OptD and random sub-sampling, respectively.Geosciences 2020, 10, x FOR PEER REVIEW 9 of 18 

 

 
Figure 6. Point cloud of LP: (a) original LP, (b) LP after OptD method, (c) LP after random reduction. 

The potential of the proposed OptD method with respect to random sub-sampling shall be 
apparent when comparing Figure 6b with Figure 6c: few points appertaining to the LP remains in 
Figure 6c, whereas most of the original ones have been preserved in Figure 6b. 

Tables 3–5 aim at numerically quantifying the previous considerations in the three classes of 
areas mentioned above (points appertaining to a LP, to the ground area close to a LP, or far from any 
of them). Three sample areas have been considered for each of such classes, those shown in Figure 6. 
Then, the following tables report the numerical results obtained after applying OptD and random 
sub-sampling on each of these nine sample areas. 

Table 3. Effect of data reduction on points appertaining to a LP. 

LP 
100% OptD@1

%
CC@1
%Number of points 

LP 5,623 2,301 51 
LP 4,087 2,202 43 
LP 3,978 2,235 36 

Table 4. Effect of data reduction on points in the surrounding area of a LP. 

LP 
100% OptD@1

%
CC@1

%Number of points 
LP 99 5657 834 
LP 57 5833 728 
LP 50 5548 698 

Table 5. Effect of data reduction on points far from LPs. 

LP 
100% OptD@1% CC@1% 

Number of points 
LP 1 295,635 198 3157 
LP 2 346,340 251 3637 
LP 3 111,141 85 1029 

Figure 6. Point cloud of LP: (a) original LP, (b) LP after OptD method, (c) LP after random reduction.

The potential of the proposed OptD method with respect to random sub-sampling shall be
apparent when comparing Figure 6b with Figure 6c: few points appertaining to the LP remains in
Figure 6c, whereas most of the original ones have been preserved in Figure 6b.

Tables 3–5 aim at numerically quantifying the previous considerations in the three classes of areas
mentioned above (points appertaining to a LP, to the ground area close to a LP, or far from any of
them). Three sample areas have been considered for each of such classes, those shown in Figure 6.
Then, the following tables report the numerical results obtained after applying OptD and random
sub-sampling on each of these nine sample areas.

Table 3. Effect of data reduction on points appertaining to a LP.

LP
100% OptD@1% CC@1%

Number of Points

LP 1 5623 2301 51
LP 2 4087 2202 43
LP 3 3978 2235 36

Table 4. Effect of data reduction on points in the surrounding area of a LP.

LP
100% OptD@1% CC@1%

Number of Points

LP 1 99,093 5657 834
LP 2 57,753 5833 728
LP 3 50,125 5548 698
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Table 5. Effect of data reduction on points far from LPs.

LP
100% OptD@1% CC@1%

Number of Points

LP 1 295,635 198 3157
LP 2 346,340 251 3637
LP 3 111,141 85 1029

The significant data reduction applied to the considered dataset is clearly visible from the results
shown in Table 3, where both considered approaches dramatically reduced the number of original
points. However, the two methods led to tremendously different results as it seen in Table 4, and quite
different as it presented in Table 5. According to the results shown above, LP detection and recognition
is probably impossible after applying random sub-sampling at 1% reduction rate. Differently, since
OptD method maintained a quite large portion of the LP points, object recognition is still possible in
this case.

3.2. Traffic Sign

This subsection considers the effects of data reduction on the traffic sign points. Figure 7 shows
the original MLS point cloud considered in this subsection (a) with those sub-sampled by using OptD
(b) and with random down-sampling in CloudCompare (c).
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Table 6. Effect of data reduction on TS points.

TS
100% OptD@1% CC@1%

Number of Points

TS round 1125 562 16
TS triangle 1334 548 9

TS rectangle 7211 1853 72

From the results shown in Table 6, it is quite apparent that the TS points maintained after applying
the random sub-sampling at 1% reduction rate are probably insufficient to apply any kind of reasonable
TS detection/recognition algorithm. Differently, OptD maintained a much larger portion of the original
TS points (50, 41, and 27% for the round, triangular, and rectangular TS case, respectively).

3.3. Power Lines

This subsection deals with the assessment of the data reduction performance in the power line
case. Differently from the previous subsections, in this case the analysis is conducted on an ALS
dataset, performing data reduction at the 10% of the original point cloud size. Figure 11 shows several
fragments of data including some power lines. The original and the sub-sampled point clouds are
shown in Figure 11a–c, whereas Table 7 reports the numerical results concerning the application of the
data reduction methods on PL points.Geosciences 2020, 10, x FOR PEER REVIEW 12 of 18 
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Figure 11 and Table 7 show that most of the PL points have been maintained by the OptD method,
whereas the few PL points remaining after random sub-sampling are hardly visible. Interestingly,
Table 7 also shows the different behavior of OptD for what concerns ground and trees/building points:
the quite high geometric regularity of ground points caused a very high reduction for such category,
whereas the data reduction for trees and buildings was less marked.
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Table 7. Effect of data reduction on PL points.

PL
100% OptD@10% CC@10%

Number of Points

PL 4839 4538 285
Terrain points 1,092,951 15,684 121,815

Trees and buildings 1,234,956 213,052 245,025

Since OptD maintained 94% of the PL points, the performance of any successive automatic data
processing tool on such points (for instance for PL inventory) is expected to provide qualitative results
similar to those on the original dataset. This consideration is also confirmed by the graphical example
of Figure 12.Geosciences 2020, 10, x FOR PEER REVIEW 13 of 18 
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Figure 12a presents the original course of power lines. In Figure 12b, we still observe the points
which represent PL, while in Figure 12c after random reduction there are only few points belonging
to PL.

3.4. Roadside Trees

The last of the extracted objects were roadside trees. In the first approach, an attempt was made
to detect roadside trees from the MLS data. The results are shown in Figure 13.

Roadside trees extraction from the MLS point cloud performed with the use of OptD method allow
to obtain satisfactory results. In the Table 8 the effect of data reduction on RT points was presented.

Table 8. Effect of data reduction on RT points.

RT
100% OptD@1% CC@1%

Number of Points

RT 644,839 414,538 366,285

Trees are often found as fragments of forests or compact complexes. Thus, it is difficult to
extract individual trees without separating the tree into the leaf-off trunk and tree crown. In addition,
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trees found in clusters have different heights and there is no clear division between the trunk and the
crown. The points representing the crowns of the lower trees coincide with the points representing the
trunks of the higher trees. Trees are also located at different distances from the road. They are not
positioned exactly along the road; therefore, part of the laser beam may be dispersed, reflected from
terrain obstacles, etc. However, in this case, it seems that random resampling to some degree enables
RT detection.
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4. Discussion

Nowadays, LiDAR technology is widely used for collecting data related to transport infrastructures,
roads, and on-road/off-road objects. Since several applications require an automatic workflow to
extract information of interest from the LiDAR, recent studies considered different approaches in order
to automatically detect objects of interest from such datasets. However, the increasing acquisition
performance of LiDAR instruments is leading to the availability of surveying systems capable of
collecting a huge amount of 3D points in a short time, and consequently, to the necessity of developing
computationally efficient strategies to process such very large dataset.

Since the direct application of object detection methods on large raw LiDAR datasets can be
computationally inefficient, this paper considered the use of the OptD method as a pre-processing step
in order to tremendously reduce the dataset size, while keeping most of the geometric information of
interest for the considered application. The rationale is that, since the OptD method is computationally
very efficient, if it properly preserves the information about the objects of interest, then it can be used
as a pre-processing step in order to significantly speed up the successive object detection phase.

To be more specific, this work focused on the application of OptD in the off-road object detection
case. The OptD method was applied on MLS and ALS datasets assessing the suitability of its data
reduction for what concerns the detection of three classes of off-road objects: light poles, traffic
signs, and power lines. According to the results obtained in the experiments shown in this paper,
and summarized in Tables 9–11, the OptD can be a suitable method to dramatically reduce the LiDAR
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dataset size while preserving most of the information needed for the identification of the considered
off-road objects, hence enabling a significant speed up of the object detection phase.

Table 9. Information about LP preserved after data reduction.

LP
Shape (e.g.,

Height,
Radius etc.)

LP Pole (Height,
Diameter, Localization

on the Ground)

Object’s
Cross

Section

Terrain
Points

Distance
between

Following Poles

OptD
√ √ √ √ √

Random
sub-sampling – – –

√ √

Table 10. Information about TS preserved after data reduction.

TS Shape and Size (Length,
Width, etc.)

TS Pole (Height,
Diameter, Localization Height Terrain Points

OptD
√ √ √ √

Random
sub-sampling – – –

√

Table 11. Information about PL preserved after data reduction.

PL Points Representing PL
(Its Course)

Possibility of Fitting
the Curve

Measurement of
Deflection

OptD
√ √ √

Random sub-sampling
√

– –

As a side effect, since the applied data reduction typically keeps much more points related to the
objects of interest than of the others, it may also ease their detection.

In fact, the proposed method might also be considered a pre-processing step in a much wider range
of cases. However, in such case, the proposed data reduction method might cause some issues when
dealing with the detection/recognition of objects characterized by very regular surfaces (e.g., planar
surfaces), which are those more affected by the OptD data reduction. The obtained results showed that
a naïve data reduction based on random sub-sampling the original point cloud typically cannot be used
to significantly reduce the dataset size: in this case, the approximately uniform data down-sampling
typically causes the loss of most of the information about the off-road objects. Differently, the OptD
method applies a non-uniform data reduction, tailored on the geometric characteristics of the dataset
and on the specific optimization strategies specified in its implementation (check Section 2.2 for the
changes applied here to the previously developed OptD method). The results on the examples reported
in Section 3 confirm that the OptD method properly preserves most of the information of interest for
off-road object detection in all the considered cases. Tables 9–11 summarize the obtained results for
what concerns the data reduction in the three considered off-road object classes.

5. Conclusions

In this paper, the OptD method was proposed for the LiDAR data reduction in the framework of
off-road object detection. The rationale of the proposed strategy is that of using OptD as a pre-processing
step aiming at significantly reducing the size of the dataset to be used as input for a successive object
detection algorithm. According to the results of the tests shown in this paper, the following conclusions
are now in order:

1. OptD method allows a significant reduction of the datasets while preserving most of the
information about the off-road objects of interest. In fact, even after a dramatic data reduction of
the LiDAR dataset, it is still possible to find enough points of the considered off-road objects in order
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to properly recognize (model) them, hence, leading to a potentially much more computationally
efficient object detection phase.

2. Since the OptD data reduction selectively maintains more points about the off-road objects of
interest, such a step may also ease/improve their identification phase.

3. A consequence of the non-uniform OptD data reduction is that regular surfaces are much more
affected by such reduction than by a random sub-sampling, i.e., the OptD method typically
maintains a small amount of terrain/ground points.
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32. Błaszczak-Bąk, W.; Sobieraj-Żłobińska, A.; Kowalik, M. The OptD-multi method in LiDAR processing.
Meas. Sci. Technol. 2017, 28, 7500–7509. [CrossRef]
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