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Abstract

Instantaneous driving force of acoustic streaming in the thermoviscous medium is the
subject of investigation. Dynamic equation of the Eulerian streaming velocity is a result of
splitting the hydrodynamic equations into acoustic and non-acoustic parts. The acoustic
force represents a sum of three parts, one is the classic one, which being averaged over the
sound period coincides with the well-known expression. The second one is connected to
the periodicity of the sound, it becomes exact zero after averaging for the strictly periodic
sound but is not zero for other acoustic wave. The last term originates from the sound
divergence. All terms are nonlinear and proportional to the overall attenuation. The
consistent comparative analysis of both formula for quasi-periodic and modulated sound
is proceeded.

Keywords: Instantaneous acoustic streaming, Radiation force, Non-linear sound propaga-
tion force
PACS no. 43.25 Nm

1 Introduction

The term acoustic streaming refers to a bulk movement arising from the transfer of momentum
from an acoustic field to a fluid. The well-understood origins of acoustic streaming are nonlin-
earity and attenuation. Nonlinear losses in momentum of intense sound cause solenoidal mean
mass flow, which arises exclusively in the multi-dimensional flows. The theory of streaming
deals as a rule with acoustic beam in the role of origin of the driving force. The reducing to the
quasi-plane geometry allows to use series in small divergency parameter in seeking of governing
equations. The problem of general description is still poorly analyzed even in the unbounded
flow which is not affected by external forces, over initially uniform background.
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The traditional method for successive separation of different types of motion consists in
linear combination and averaging over the sound period of the continuity and momentum
equations [1,2]. It presupposes temporal average over the sound period of quantity ∂ρ/∂t
be equal zero, where ρ is total density. In the thermoviscous flows, excess density includes,
among acoustic part, the slowly decreasing part originated from isobaric heating, so that the
averaged value of ∂ρ/∂t is not longer zero. The important inconsistency of classical treatment is
supposing that the fluid is incompressible [1]: streaming is itself generated by sound which can
propagate because of fluid compressibility. The traditional method starts from the continuity
and the Navier-Stokes equations in a viscous incompressible fluid. It does not account for
energy balance and, therefore, discards thermal conductivity, though it is well-understood that
streaming depends on total attenuation involving heat conduction [2,3]. The traditional method
needs many intermediate discussions of individual roles of every term arising in the averaged
acoustic force [1,2]. We can avoid that by means of instantaneous projecting of initial equations.

The present study continues investigations of acoustic streaming and heating basing on
consistent division of conservative equations into specific parts [4,5]. The procedure includes
the determination of all modes (or possible types of fluid motion) as links of hydrodynamic
variables, perturbations of two thermodynamic quantities and components of velocity. These
links originate from roots of dispersion relation of the infinitely small-amplitude flow, they are
independent on time. The links, or, in the other words, polarization relations for vorticity,
acoustic and entropy motions may be found in the Chapter 10.3 of [6]. The overall flow repre-
sents a superposition of these possible motions of a fluid. For correct description of nonlinear
thermoviscous phenomena, the links should account for attenuation. The next important step
is pointing out the ways to separate dynamic equation for every mode by linear combining of
initial equations. This procedure is valid in any time. It may be formally proceeded by instanta-
neous projecting, which decouples modes in the linear part of equations but yields in nonlinear
terms responsible for their interaction, including self-action (in the meaning of nonlinear terms
of exclusively one mode) [4,5]. In the studies of acoustic streaming, a sum of nonlinear acoustic
terms, which is a reason for vortex flow following intense sound, is called the driving force of
acoustic streaming. The correspondence in the leading order of classical acoustic driving force
and that obtained by projecting is demonstrated in the case of strictly periodic sound in Sec.2.
The role of sound aperiodicity and effects of modulated sound are discussed in Sec.3.

2 Dynamic instantaneous equation of acoustic streaming

in the thermoviscous unbounded flow

The continuity, momentum and energy equations for a thermoviscous fluid flow in an unbounded
space without external forces read:

∂ρ

∂t
+
−→∇(ρ−→v ) = 0,

∂−→v
∂t

+ (−→v −→∇)−→v =
1

ρ

[
−−→∇p + µ∆−→v +

(
µB +

µ

3

)−→∇(
−→∇−→v )

]
, (1)
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∂e

∂t
+ (−→v −→∇)e =

1

ρ

[
−p
−→∇−→v + χ∆T + µB

(−→∇−→v
)2

+
µ

2

(
∂vi

∂xk

+
∂vk

∂xi

− 2

3
δik

∂vl

∂xl

)2
]

.

Here, ~v denotes Eulerian velocity of fluid, ρ, p are density and pressure, e, T mark internal
energy per unit mass and temperature, µB, µ, χ are bulk, shear viscosities and thermal conduc-
tivity (all supposed to be constants), xi, t - spacial coordinates and time. Two thermodynamic
functions e(p, ρ), T (p, ρ) should complete the system (1). Thermodynamics of ideal gases gives:

e(p, ρ) =
p

(γ − 1)ρ
= CvT (p, ρ), (2)

where γ = Cp/Cv is the ratio of the specific heats at constant pressure (Cp) and constant volume
(Cv). Basing on the linearized version of Eqs. (1), the dispersion relations can be obtained
for three independent ”modes” of small-signal disturbances in an unbounded fluid, called the
acoustic (two branches), vortex flow (two branches), and thermal (or entropy) modes.(Taking
into account of boundaries and/or external forces would result to the more complex definition
of modes.) In general, each of the field variables contains contributions from each of three
modes, for example, −→v = −→v ac + −→v ent + −→v vort. The method developed by the author gives
possibility of consequent decoupling of the initial system (1) into specific dynamic equations for
every mode basing on the specific properties of each mode in weakly nonlinear, thermoviscous
and diffracting flow [4,5].

Our limited aim is an equation for acoustic streaming valid within accuracy up to the second
order of a number of small parameters. The first is acoustic Mach number M = v0/c0, where
v0 is a typical particle velocity magnitude, c0 is the infinitely-small amplitude sound speed.
The next small parameters are dimensionless viscosities and thermal conductivity, β = µ

ρ0c0λ
,

βB = µB

ρ0c0λ
, δ = χ

ρ0c0λ
( 1

Cv
− 1

Cp
), λ is characteristic sound scale, ρ0 is static density. Weak

diffraction presupposes smallness of ε = (λ/Rt)
2, where Rt is a transversal scale of a flow, for

example, a radius of a transducer. At last, sound is dominative, so that the ratio of particle
velocities correspondent to sound and vortex flow, should keep small. All formulae everywhere
below in the text, including links of modes and governing equation, are written on in the leading
order. Following Lighthill [7], we choose to treat total attenuation b = 4β/3+βB + δ and M of
comparable smallness, and we shall discard O(b2M) and O(M3) terms in all expansions. The
resulting model accounts for the combined effects of nonlinearity, dissipation, and diffraction
on three-dimensional sound waves and vortex flow.

Let y designates the nominal axis of the beam pointing in the propagation direction, and
let (x, z) be the coordinates perpendicular to this axis. It is convenient to rearrange formulae
in the dimensionless quantities as follows:

p′ =
p− p0

c2
0 · ρ0

, ρ′ =
ρ− ρ0

ρ0

, ~v′ =
~v

c0

, x′ =
√

εx

λ
, y′ =

y

λ
, z′ =

√
εz

λ
t′ =

c0

λ
t, (3)

where p0 is static pressure, c0 is infinitely small amplitude sound speed.
Everywhere below in the text, primes by dimensionless quantities are dropped. There are

five roots of dispersion relation and correspondent eigenvectors of the linearized system (1),
including the entropy, or thermal mode. The details of establishing of links connecting the
thermodynamic perturbations and velocity components may be found in the paper [4]. Every
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root of dispersion relation determines the links of Fourier-transforms of excess thermodynamic
quantities and velocity components, which specify correspondent links in the (−→x , t) space.
These links account for weak diffraction and attenuation. The acoustic field is represented by
two branches, progressive in the positive and negative directions of y, marked by indices 1 and
2, correspondingly. The two branches of vortex motion in perpendicular planes z = 0 and
x = 0, are also indexed by 1 and 2. The acoustic and vortex modes are as follows:

ψa = ψa,1 + ψa,2 =




vx,a

vy,a

vz,a

pa

ρa




=




√
ε ∂

∂x

∫
dy

1− ε
2
∆⊥

∫
dy

∫
dy − b

2
∂/∂y√

ε ∂
∂z

∫
dy

1− δ∂/∂y
1




ρa,1+




−√ε ∂
∂x

∫
dy

−1 + ε
2
∆⊥

∫
dy

∫
dy − b

2
∂/∂y

−√ε ∂
∂z

∫
dy

1 + δ∂/∂y
1




ρa,2, (4)

ψvort = ψvort,1 + ψvort,2 =




vx,vort

vy,vort

vz,vort

pvort

ρvort




=




− ∂
∂y√
ε ∂

∂x

0
0
0




φvort,1 +




0√
ε ∂

∂z

− ∂
∂y

0
0




φvort,2.

where ε∆⊥ = ε
(

∂2

∂x2 + ∂2

∂z2

)
is a Laplacian that operates in the plane perpendicular to the axis

of beam. In evaluations of modes and correspondent projectors, the series of square root of
Laplacian ∆ = ∂2/∂y2 + ε∆⊥ is used:

√
∆ ≈ ∂/∂y + 0.5ε∆⊥

∫
dy. The links of hydrodynamic

perturbations inside every mode reflect the well-known properties of sound and vortices [6]:

−→∇ ×−→v a = ~0,
−→∇−→v vort = 0, (5)

where −→v = (vx vy vz)
T ,
−→∇ = (

√
ε∂/∂x, ∂/∂y

√
ε∂/∂z) is the dimensionless divergency.

The method of combining initial equations in order to derive governing equations for each type
of hydrodynamic motion by means of projecting is discussed in details and employed to a single
acoustic pulse in the paper by the author [4]. All five projectors which sum is the unix matrix,
may be found there.

The projector on vortex motion is a matrix operator consisting of five rows and five columns:

Pvort =




1− ε ∂2

∂x2

∫
dy

∫
dy −√ε ∂

∂x

∫
dy −ε ∂2

∂x∂z

∫
dy

∫
dy 0 0

−√ε ∂
∂x

∫
dy ε∆⊥

∫
dy

∫
dy −√ε ∂

∂z

∫
dy 0 0

−ε ∂2

∂x∂z

∫
dy

∫
dy −√ε ∂

∂z

∫
dy 1− ε ∂2

∂z2

∫
dy

∫
dy 0 0

0 0 0 0 0
0 0 0 0 0




. (6)

It grants the requirements below in the leading order:

Pvortψa = 0, Pvortψvort = ψvort. (7)
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In order of careful comparing with the classic results in the case of periodic sound, note, that
the precise equality sounds:

Pvortψvort = (vx,vort (1 + ε∆⊥

∫
dy

∫
dy)vy,vort vz,vort 0 0)T . (8)

Collecting of O(M) terms on the left, O(M2) on the right in the system (1), and acting Pvort on
both sides, decouple perturbations in the linear part and yield in nonlinear ”forces” reflecting
modes interaction. Hence, the operator Pvort successfully extracts dynamic equation governing
the vortex velocity. The vortex operator actually operates on momentum equation. The right-
side ”force” is automatically solenoidal.

In the context of acoustic streaming, a ratio of magnitudes of vortex and acoustic velocities
is expected to be small, so that the largest, quadratic acoustic terms are kept in the right-hand
side. They form the driving force of acoustic streaming. In any thermoviscous nonlinear flow,
acoustic energy losses induces heating, which may input noticeably in the background density
and temperature. The correspondent acoustic ”source” of heating is proportional to the total
attenuation, analogously to the acoustic driving force of streaming. Heating does not induce
bulk movement of a fluid (though there exists weak movement with velocity proportional to
the thermal conductivity [5]). This type of slow process is left of account in the present study.
That means, that conclusions are true over temporal and spacial domains, where acoustic
perturbations are dominant comparatively to both other slow modes, solenoidal and entropy.

Acting of the second row of Pvort at the momentum equation results in the dynamic equation
for the longitudinal component of vortex flow velocity vvort,y:

(1 + ε∆⊥

∫
dy

∫
dy)

(
∂vvort,y

∂t
− β∆vvort,y

)
=




−√ε ∂
∂x

∫
dy

ε∆⊥
∫

dy
∫

dy
−√ε ∂

∂z

∫
dy




T

· T, (9)

where T is a vector consisting of three right-hand sides of momentum equation of order M2

[4]. Nonlinear terms standing by attenuation originate from series of density (1 + ρa)
−1 and

thermoviscous links connecting va,y, pa and ρa (4). The second-order term, originated from

(−→v vort
−→∇)−→v vort, may be removed to the left-hand side of the resulting equation, in order to

remind the hydrodynamic nonlinearity. Though it is small compared with other terms, the
important role of hydrodynamic nonlinearity in establishing of streaming was underlined in
many studies [8-10].

For simplicity, only rightwards progressive sound is considered in the role of the driving
force source (ρa = ρa,1:

(1 + ε∆⊥

∫
dy

∫
dy)(

∂vvort,y

∂t
− β

∂2vvort,y

∂y2
) + (−→v vort

−→∇)vvort,y =

εb

2

∫
dy

(
3

∂

∂x
(ρa

∂2ρa

∂x∂y
) + 3

∂

∂z
(ρa

∂2ρa

∂z∂y
)− 2∆⊥

∫
dy(ρa

∂2ρa

∂y2
)

)
. (10)

Links for acoustic mode (4) was used to express all perturbations through excess density.
Considering the axial symmetry relatively to the axis y of beam propagation: ρa(x, y, z) =
ρa(r =

√
x2 + z2, y), ∆⊥ = 1/r∂/∂r + ∂2/∂r2, it is easy to rearrange (10) into the following

equation:
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(1 + ε∆⊥

∫
dy

∫
dy)(

∂vy,vort

∂t
− β

∂2vy,vort

∂y2
) + (−→v vort

−→∇)vvort,y = (11)

Fy =
εb

2

[
3

2

(
∂ρa

∂r

)2

+

∫
dy

(
3ρa∆⊥

∂ρa

∂y
− 2∆⊥

∫
dyρa

∂2ρa

∂y2

)]

In its form (11), the governing equation exhibits that absorption, nonlinearity and sound
divergence are the origins of streaming. It is useful to establish the equivalence of the acoustic
force from formula (11) and the well-known one for periodic acoustic wave coming from [1].
It should be taken into account, that excess acoustic density (and other quantities: pressure
and velocity) of the rightwards progressive beam satisfy the famous Khokhlov-Zabolotskaya-
Kuznetsov equation (the well-known version using the dimensionless retarded time τ = t − y,
which is convenient in the boundary regime problems, follows the first one in the brackets):

∂ρa

∂t
+

∂ρa

∂y
+

ε

2

∫
∆⊥ρady +

γ + 1

2
ρa

∂ρa

∂y
− b

2

∂2ρa

∂y2
= 0, (12)

(
∂

∂τ

(
∂ρa

∂y
− γ + 1

4

∂ρ2
a

∂τ
− b

2

∂2ρa

∂τ 2

)
− ε

2
∆⊥ρa = 0

)

which may be derived consistently on the base of projecting [4]. Note the difference between
the both forms of (12): the first one needs establishment of the integration constant accordingly
to the physical meaning of the problem (generally, it is any smooth function of r and t). That
applies as well to the terms forming the driving force below. For flows over media different from
an ideal gas, the term (γ+1)/2 should be replaced by 1+B/2A, where B/A = (ρ0/c

2
0)(∂

2p/∂ρ2)s

is the parameter of fluid nonlinearity, evaluated at the unperturbed state. Equation (12) allows
to replace the Laplacian ∆⊥ acting on acoustic excess density in the following way:

ε∆⊥ =
∂2

∂t2
− ∂2

∂y2
+ O(M, b), ε∆⊥ = −2

∂2

∂t∂y
− 2

∂2

∂y2
+ O(M, b). (13)

In the leading order, these operators apply not only to the rightwards acoustic values V , but
also to a product V W , if W also satisfies the wave equation for the rightwards progressive
sound (12). The consequent replacing of operators in Eq.(11), and acting on the both sides by
(1− ε∆⊥

∫
dy

∫
dy) yield finally:

∂vvort,y

∂t
− β

∂2vvort,y

∂y2
+ (−→v vort

−→∇)vvort,y = Fy = Fy,class + Fy,1 + Fy,2,

Fy,class = −bρa
∂2ρa

∂t2
,

Fy,1 = b
∂2

∂t2

∫
dy

∫
dy

(
1

2
ρa

∂2ρa

∂y2
+

3ε

4

(
∂ρa

∂r

)2
)

+ (14)

b

(
2− ∂2

∂t2

∫
dy

∫
dy

) (
3

4

∂2ρ2
a

∂t2
− ∂2

∂t2

∫
dy

∫
dy · ρa

∂2ρa

∂y2
+

3

2

∂

∂t

∫
dy

(
∂ρa

∂y

)2
)

,

Fy,2 = bε

(
ρa∆⊥ρa − 3

2

(
∂ρa

∂r

)2
)

.
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For the strictly periodic sound, averaged acoustic driving force may be rewritten in the
form as follows (overbaring denotes temporal average over sound period, 2π in dimensionless

quantities, Fy = 1
2π

∫ t+2π

t
Fydt):

Fy,periodic = Fy,class + Fy,2 = b

(
−ρa

∂2ρa

∂t2
+ ερa∆⊥ρa − 3ε

2

(
∂ρa

∂r

)2
)

(15)

Formula (15) differs from the classic result Fy,class by the last two terms in brackets, which

sum is a small value and equals bερa∂2ρa/∂r2 at the axis of beam propagation. Since the
celebrated formula describes the driving force in the leading order, both expressions on averaged
force produced by periodic sound, are equivalent. Estimations predicted by the classic theory
somewhat overestimate experimental data of streaming velocity in the cross section of acoustic
beam [11,12]. The last two terms in brackets in Eq. (15) might correct this discrepancy. Simple
estimation of additional terms for the Gaussian profile ρa ∼ exp(−r2) results is a quantity
negative for every r.

Advance of projecting is instantaneous dynamic vectorial equation for acoustic streaming
(Eq.(11) and its equivalent form Eq.(14) govern the longitudinal component) which applies to
every type of sound (both periodic and aperiodic). An excess dimensionless acoustic density in
the right-hand side (the driving force) may be replaced by acoustic pressure or axial velocity
in view of links (4).

It is important, that acoustic force should be solenoidal in the leading order:
−→∇−→F = 0,

because
−→
F equals in the leading order ∂−→v vort/∂t, and −→v vort is solenoidal. The projecting sup-

ports this property. The vector force proportional to −ρa∆
−→va available in [8] is not obviously

solenoidal. The majority of experiments deals with measurement of axial velocity of stream-
ing which dynamics agrees with the classic theory predictions. As far as author knows, the
transversal velocity is simply calculated basing on the axial one [3,8,10-12]. That is probably
the reason for less attention to correct description of perpendicular to beam axis components

of
−→
F .
Consideration of this chapter was restricted by the acoustic field represented by the right-

wards progressive beam, thought it may be easily expanded on leftwards one or any superposi-
tion of two acoustic branches, by means of collecting nonlinear terms correspondent to different
acoustic branches and using links (4).

3 Examples of quasi-periodic diffracting beam

The complexity of mutual solution of (12), (14) is obvious. The limited aim of the present
study, among deriving of governing equation (14), is to give simple illustrations on the role of
aperiodicity in the acoustic driving force. In the role of sound, the two solutions, exact and
approximate, of the linear wave equation without attenuation

∂ρa

∂t
+

∂ρa

∂y
+

ε

2

∫
∆⊥ρady = 0, (16)

will be considered. The classic formula for strictly periodic sound will be compared with the
total driving force, averaged over the approximate sound period, 2π in dimensionless quantities.
Accordingly to (14), it is a sum of three parts:

Fy = Fy,class + Fy,1 + Fy,2, (17)
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one being the classic force, the second which equals exactly zero for strictly periodic sound,
and the last small part proportional to the beam divergence.

3.1 Quasi-periodic sound

The first example relates to the waveform:

ρa =
ρa,0

2

(
− i

1− i · 2εt exp

(
− r2

1− i · 2εt + i(t− y)

))
+ cc. (18)

In view of computational difficulty, the expansions in series in powers of ε are used in both
source and driving force, that is valid inside the temporal domain (0 ≤ t ≤ ε−1). Simple
evaluations yield in the series in diffraction ε as follows:

Fy,class = ρ2
a,0(0.5 + ε(r2 − 1) exp(−2r2)(cos(2(t− y))− 2)),

Fy,1 = −ρ2
a,0ε exp(−2r2)(r2 − 1) cos(2(t− y)), (19)

Fy,2 = −ρ2
a,0ε(r

2 + 2) exp(−2r2).

Hence, for approximately periodic sound (18), both additional terms are small, but the second
one would result in constant negative value for all distances from the axis of beam propagation
r, while the first one is periodic.

3.2 Periodic waveform with envelope

The second example is the periodic waveform multiplied by a slowly varying envelope:

ρa =
ρa,0

2
(1− exp(−Ω(t− y)))

(
− i

1− i · 2εy exp

(
− r2

1− i · 2εy + i(t− y)

))
+ cc. (20)

The waveform (20) is a solution of the linear wave equation (16) with accuracy of the order
Max(εΩ, ε2). The values of illustrative parameters correspond to those often used in experi-
ments. The carrying frequency of sound is 5MHz, and the radius of transducer is Rt = 0.01m,
that jointly with sound velocity in water c = 1560m/s yield the small parameter ε = 0.001.
The dimensionless parameter Ω equals to reverse number of periods before establishing of wave-
form. In calculations of averaged parts of the driving force, the spacial derivatives of envelope
are discarded. The calculations are trustable for 0 ≤ y ≤ ε−1. Temporal behavior of parts of
acoustic driving force at different distances from the transducer is shown by Fig. 1(a,b).
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Parts of axial force, y=0
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-0.6
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-0.2

0.2

0.4
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2

����������
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Fy,class
��������������

100Fy,1
��������

100Fy,2
��������

Fig.1a Fig.1b

Parts of the driving force of acoustic streaming, averaged over period of carrying sound at
different distances from transducer in accordance to Eqs (14),(20).

4 Conclusions

The main theoretical result is the dynamic equation for acoustic streaming velocity (14) and
representation of the driving force in the form convenient for comparison to classical result
relating to strictly periodic sound. Approximate equations are thought as series in powers of
small parameters. The first is the Mach number M , in order for the differential Navier-Stockes
system to be valid. The second is characteristic ratio of amplitudes of acoustic and nonacoustic
motions, the value varying with time. The last ones are total attenuation and diffraction.

We do not consider dynamics of acoustic streaming velocity, but only its driving force in
the right-hand side of Eq.(14). The general solution of (12), and, therefore, joint solution of
Eq.(12) and (14) are not available, and hardly expected to be found in the nearest future.
The basic difficulty is nonlinearity in both equations. Tjotta and Naze Tjotta [9] pointed out
that the hydrodynamic nonlinearity term (convective term) in the Navier-Stokes equation has
the crucial effect on the streaming generation, particularly, in the focal and postfocal region.
The role of nonlinear distortions of sound itself, originated from nonlinearity of conservation
equations and equation of state, is also well-understood.

The rough illustrations discovering the role of aperiodicity in this study exploit the solution
of linear wave parabolic equation for sound beam, though effects of nonlinearity and attenuation
should be necessarily considered while deriving the driving force of acoustic streaming. The
conclusion is that the difference of the instantaneous (after averaging over sound period) and
classic formula of the driving force consists of two parts, one being a negative value proportional
to the divergence ε, and the other is exact zero for periodic sound and different from zero for any
other waveforms. In this last part, the weakly different from periodic sound is hardly expected
to produce a noticeable difference comparatively to the classic formula. In the last decades,
the attention to the aperiodic sound and caused by it phenomena grows. Many experiments
appeared (including medical applications) dealing with aperiodic sources: series of pulses or
modulated with slow function sound [13,14].

The possibilities of analytical methods in the study of such multidimensional dependencies
are superior over that of experimental as well as numerical investigations. Analytic approach
provides usually more flexibility, is less time consuming, and unlike other methods, is not
constrained by fixed and limited set of values or varied parameters.
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