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Abstract

Conveyor belt type checkweighers are complex mechanical systems consisting of a weighing sensor (strain gauge
load cell, electordynamically compensated load cell), packages (of different shapes, made of different materials) and a
transport system (motors, gears, rollers). Disturbances generated by the vibrating parts of such a system are reflected
in the signal power spectra in a form of strong spectral peaks, located usually in the lower frequency range. Such low
frequency components overlap in the frequency domain with the useful signal and it is very difficult to eliminate them.
The conventional way of suppressing disturbances is via low-pass filtering of the signal obtained from the load cell.
However, if the speed of of the conveyor belt is high, the response of the applied filter may not settle fast enough to
enable accurate weighing of objects in motion, i.e., without stopping them on the weighing conveyor. Since attempts
to overcome this problem using classical linear time-invariant low-pass filtering fail for high belt speeds, the paper
presents and verifies experimentally a new approach, based on time-variant low-pass filtering. It is shown that, when
properly tuned, the proposed time-variant filter fulfills the measurement accuracy requirements for a wide range of
operating conditions.

Keywords: Dynamic mass measurement, automatic weighing, conveyor belt type checkweigher, time-variant
low-pass filter, signal processing, mechanical vibrations.

1. Introduction

In industrial fields it is often necessary to weigh objects in motion, without stopping them on the weighing plat-
form. Fast weighing, i.e., weighing in a time that is much shorter than the settling time of the measuring instrument,
is one of the basic challenges in the field of dynamic mass measurement [1]. Dynamic weighing systems are usually
used to check quantities of pre-packaged products. In this group of applications the conveyor belt type checkweighers
play an increasingly important role [2].

Checkweighers belong to a group of automatic catchweighing instruments [3]. They are mostly a part of pro-
duction lines and are integrated into a load transport system. During normal operation the transported products are
moved sequentially along the weighing conveyor and weighed on-the-fly without any intervention of an operator, as
it is schematically depicted in Fig. 1. The main source of disturbances corrupting the measurement signal, reflected in
the signal power spectra in a form of well-emphasized spectral peaks (located usually in the lower frequency range,
from several up to tens of Hz) are mechanical vibrations [4], [5], [6], [7], [8],[9]. The disturbance spectrum varies
with the conveyor belt speed and the mass of the weighed object. Moreover, such low frequency components overlap
in the frequency domain with the useful signal and it is practically impossible to eliminate them completely. For this
reason some more advanced noise attenuation techniques must be used [10], [11].
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(b) weighing cycle of a conveyor belt type checkweigher

Figure 1: A conveyor belt type checkweigher and its weighingcycle. L is the length of the weighing conveyor,l andm denote respectively the
active length and the mass of the weighed object,D is the distance between two consecutive objects, andv denotes the belt speed.
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tw

load cell signal

LPF 2
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Figure 2: The fundamental limitation of linear time-invariant low-pass filtering: the length of a transient response ofthe filter with low cutoff
frequency (LPF 1) exceeds the length of the weighing periodtw. On the other hand, the response of a filter with high cutoff frequency (LPF 2)
exhibits significant oscillations during the weighing period.

The paper solves the above-mentioned problem by proposing and verifying experimentally a linear time-variant
low-pass filtering technique. The new solution is compared with the identification-based approach proposed earlier in
the literature [12],[13] and with the classical filtering approach incorporating time-invariant low-pass filters.

2. Problem formulation

Suppose that to eliminate disturbances, one performs linear low-pass filtering of the measured signal. Narrow-
ing the filter passband decreases the influence of disturbances and increases the measurement accuracy. However,
bandwidth limitation is always achieved at the expense of increasing the settling time of a filter. In extreme cases
the duration of the filter transient may even exceed the duration of the weighing period. Improving the transient re-
sponse is possible by extending the filter bandwidth, this however increases the amplitude of disturbances occurring
during the weighing stage, as shown in Fig. 2. Both scenariosmentioned above illustrate the fundamental limitation of
time-invariant filtering: for a linear time-invariant low-pass filter the requirements of short transient response andhigh
disturbance attenuation are contradictory - modifying thefilter passband, one always improves one filter characteristic
at the expense of the other. As a result it is not possible to achieve high measurement accuracy.

In order to reduce the length of the transient response of thefilter, a bank of two or more low-pass filters with
complementary properties, combined into a switched parallel structure, was proposed in [6]. According to the Authors,
in such a scheme at least one filter with low cutoff frequency (i.e., long transient response) and one filter with high
cutoff frequency (i.e., short transient response) should be used.In the proposed solution two complementary moving
average FIR filters and a simplified Kalman filter were utilized; switching between filters was based on steady-state
criteria and realized in a way that does not produce discontinuities in the output signal.

Another way of attaining reduction in the duration of the filter transient response, worked out for analog low-pass
filters, was pointed out in [14], [15]. The goal was achieved by varying the values of the filter coefficients in the time
interval where the transient behavior is expected to occur.Coefficient changes were related to changes in the cutoff

3

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


frequency. In the initial phase of filtering a constant-highcutoff frequency was used; later on it was decreased, in a
continuous manner, until it reached a prescribed terminal value.

Leaving aside the fact that the method presented in [6] was designed for discrete-time signals, while the method
proposed in [14], [15] – for continuous-time signals, by comparing them one can find the following analogy: in both
cases the properties of the filter vary with time. There are also some important differences. In the first case parameters
of individual filters are fixed, yet - due to switching betweenthem - the internal system structure changes over time.
In the second case, filter parameters are subject to continuous changes, while the filter structure remains unchanged.
In both cases, however, time-variability of the filter allows one to reduce the duration of its transient response. This
suggests that using a time-variant filter, one should be ableto achieve the desired level of disturbance attenuation
without increasing the length of the filter transient.

3. Discrete time-variant low-pass filter

3.1. The analysis interval

A typical weighing cycle consists of the input stage, of length ti , during which the weighed object gradually slides
on the weighing conveyor, weighing stage, of lengthtw, during which the entire object remains on the weighing
conveyor, and the output stage, of lengthto = ti , during which the object slides of the conveyor - see Fig. 1(b). The
beginning and the end of each stage can be easily determined using signals from photocells located between the in-
feed and weighing conveyor, and between the weighing and out-feed conveyor, as shown in Fig. 3. The time interval
covering both the input stage and the weighing stage will be further referred to as the analysis interval. Note that the
length of the analysis interval is given byti + tw = v−1L, whereL denotes the length of the weighing conveyor andv
denotes its speed, and hence it does not depend on the active lengthl of the weighed object. The samples of the load
cell signal, measured in the analysis interval, will be further denoted by

x(1), x(2), x(3), . . . , x(N), (1)

where the first element, with index 1, precedes the rising edge of the front photocell pulse and the last element, with
index N, precedes the rising edge of the end photocell pulse. Our estimates of the object mass will be obtained by
means of processing the sequence (1).

load cell signal

ti tw

the analysis interval

front
photocell

pulse

end
photocell
pulse

x(1)

x(N)

Figure 3: Typical responses of the load cell (solid line) andboth photocell signals (dotted lines) observed during a single weighing cycle. Curly
bracket shows localization of the analysis interval.

3.2. Filter synthesis

One possible approach, widely used in industrial applications [9], is to determine the static weight of the object
based on the analysis of the lowpass-filtered load cell signal. Good results (see [16] and Section 4 below) can be
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achieved using a cascade connection of the first-order IIR filters of the form

yi(n) + akyi(n− 1) = bk

[
yi−1(n) + yi−1(n− 1)

]
, (2)

i = 1, . . . , k, n = 1, . . . ,N ,

wherek denotes the number of filters making up a cascade. The input signal entering the cascade is taken from the
load cell, i.e.,y0(n) = x(n), and the weight estimate is obtained by reading out the signal observed at the output of the
cascade at the instantN

m̂(N) = yk(N). (3)

When the order-dependent filter coefficientsak and bk (the same for all filters making up a cascade) are chosen
according to

ak =
fc − ck

π∆

fc +
ck
π∆

, bk =
1+ ak

2
, ck =

√
k
√

2− 1, (4)

where∆ [s] denotes the sampling period andfc [Hz] denotes the desired cutoff frequency, equations (2) can be
regarded as a discrete approximation of an analog critically damped low-pass filter.

Further improvement can be achieved by using time-variant low-pass filters governed by

yi(n) + ak(n)yi(n− 1) = bk(n)
[
yi−1(n) + yi−1(n− 1)

]
(5)

i = 1, . . . , k, n = 1, . . . ,N ,

whereak(n) and bk(n) denote time-varying coefficients obtained from (2) after replacing the time-invariant cutoff
frequencyfc with its time-varying counterpartfc(n). Even though for a time-variant filter the cutoff frequency is
a heuristic concept, difficult to justify in a mathematically strict manner, when usedwith a due caution it can be
very helpful in designing filters with improved characteristics. In our current context the idea is to use a filter with
a relatively large bandwidth at the initial stage of filtration (i.e., during the input stage), and to gradually reduce the
bandwidth as the end of the analysis interval (i.e., the end of the weighing stage) is approached. Such bandwidth
scheduling allows one to obtain low-pass filters with a shorter transient response compared to response of time-
invariant filters characterized by the same level of disturbance attenuation. To achieve this goal, the time-varying
“cutoff frequency”fc(n) was parameterized as follows (see Fig. 4)

fc(n) = f∞ + ( f0 − f∞)λ
n−1
α(N−1) , (6)

whereλ = 0.01 is a small real number,f∞ < f0, andα denotes the decay rate. According to (6), in the interval [1,N]
the cutoff frequencyfc(n) decreases monotonically from the initial valuefc(1) = f0 towards the limiting valuef∞,
with a speed depending on the parameterα. Note that forα = 1 it holds thatfc(N) = (1− λ) f∞ + λ f0 � f∞, i.e., the
cutoff frequency at the end of the analysis interval is close tof∞.

3.3. Optimal filter settings

The parameterf∞ of the function (6) and the cascade orderk characterize a time-invariant filter, to which the
filter (5) converges when the time variablen tends to infinity. Both parameters can be selected by analyzing the
magnitude of the Fourier transform components of (1), e.g. by using the multiple time averaging method [11]. The
parametersf0 andα determine the time-varying behaviour of the filter (5). Their optimal values were found, using
the Nelder–Mead simplex method [17], by means of minimizing– for each of nine belt speedsv j , j = 1, . . . , 9 – the
performance measure made up of two components

ξ∗j = arg min
ξ

{
δ j(ξ) + η j(ξ)

}
, ξ =

[
f0, α
]T ∈ R2, (7)

subject to the constraints
f0 > f∞, α > 1. (8)

5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


f∞

fc(N)

f0

fc(n)

α = 0.25
α = 1.0

α = 1.75

Figure 4: Plots of the functionfc(n) = f∞ + ( f0 − f∞)λ
n−1
α(N−1) for N = 80,λ = 0.1, and 3 different values ofα.

The first component of the function (7) quantifies the measurement accuracy, taking into account metrological recom-
mendations

δ j(ξ) = max

{
µi j (ξ)

µi max
,
σi j (ξ)

σi max
, i = 1, . . . , 3

}
(9)

whereµi j (ξ) andσi j (ξ) denote the mean error values and standard error deviationscomputed for thei-th test load
mi (i = 1, . . . , 3) and thej-th conveyor belt speedv j ( j = 1, . . . , 9) based on the training data set. The quantities
µi max andσi max denote the corresponding maximum permissible values (listed in Table 1) set in accordance with the
requirements specified in [3] for the category XIII(1) instruments. For a given belt speedv j the quantitiesµi j (ξ) and
σi j (ξ) were evaluated using the set of 20 independent mass measurements collected for each test loadmi , i = 1, . . . , 3.
According to (3), the corresponding measurement errors were defined asel

i j (ξ) = mi − m̂l
i j (N|ξ), where the superscript

l, l = 1, . . . , 20, denotes the measurement number.
The second component of the performance measure (7) penalizes long transient responses and is given by

η j(ξ) = max

{
ni j (ξ)

N
, i = 1, . . . , 3

}
(10)

whereni j (ξ) ∈ [1,N] denotes the smallest time coordinaten, starting from which the output of the filter (5) yields
mass measurementŝmi j (n|ξ) = yk(n) that comply with the accuracy specifications summarized inTable 1. Note that
whenni j (ξ) < N, then not only the last sampleyk(N), but also a certain number of previous filter response samples can
be used as weight estimates without violating the accuracy requirements. If for the last sample of the filter response
yk(N) it holds that|µi j (ξ)| > µi max or σi j (ξ) > σi max, the value ofη j(ξ) is set to 1. Inclusion ofη j(ξ) in (7) increases
robustness of the filter to anomalous data.

3.4. Continuous operation

During normal operation of the checkweigher, the time-variant filter works in a continuous manner, cyclically
switching between the static mode and the dynamic mode. The static mode, enabled by setting thefc parameter to
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load cell signal
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(a) filter response against the load cell signal

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

f0

fs

f∞

(b) evolution of the cutoff frequencyfc(n)

Figure 5: Continuous operation of the proposed time-variant filter.

a constant valuefs, is a default operating regime of the system; it is activatedduring the start-up of the weighing
module and lasts until the rising edge of the signal from the photocell located between the in-feed and the weighing
conveyor is detected – see Fig. 5. The value offs should be chosen in such a way that the measurement error in the
static mode does not exceed permissible values, specified bythe recommendation [18]. Detection of the rising edge at
the output of the first photocell triggers the dynamic mode ofthe filter, which lasts until the rising edge at the output
of the second photocell is detected. Then the current value of the filter output, treated as a mass measurement, is read
out and the filter returns to the static mode. At all time instantsn, including the moments of switching between the
static mode and dynamic mode, the system works in a fully autonomous way, i.e., the filtration is governed by the
equation (5), and filter parameters are calculated according to (4) based on the current value of the cutoff frequency
fc(n).

4. Experimental Verification

All experiments were carried out using an instrument shown in Fig. 6, made up of three conveyor belts. The length
of the weighing conveyor (mounted on a strain gauge load cell) was equal toL = 350 mm. The basic facts about the
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Figure 6: The experimental test-stand.

LengthL of the weighing conveyor 350 mm

Conveyor speed rangev 0.5 – 1.3 m
s

Test loadi Massmi Active lengthl i µi max σi max

1 300 g 0.48 g

2 500 g 142 mm 0.5 g 0.8 g

3 700 g 0.8 g

Table 1: Specification of experimental conditions, test loads, and the XIII(1) accuracy class maximum permissible values ofµi max andσi max.

experimental conditions, test loads, and the desired accuracy specifications are summarized in Table 1. For each of
three test loads and each of nine belt speeds (ranging from 0.5 to 1.3 m

s , in steps of 0.1 m
s ), twenty consecutive test

weighings were performed. After applying the above procedure twice, two sets of measurements were acquired. The
first set was used for training purposes, i.e., to optimize filter settings according to (7). The performance evaluation
was made using the second set. In all cases the signals obtained from the load cell and two photocells were sampled
at the rate of 1.6 kHz and stored on the computer hard disk. ThelengthN of the analysis interval varied from 1085
samples forv = 0.5 m

s to 424 samples forv = 1.3 m
s .

4.1. Filtration-based approach

In this approach a static weight of the test load was determined based on analysis of the filtered load cell signal.
Three filters were compared: classical discrete-time time-invariant Bessel filter, time-invariant critically dampedfilter
(2), and time-variant filter (5) operated in a continuous mode.

Optimal filter settingsξ∗j were obtained by means of minimizing the performance measure (7) for a training data

set. For time-invariant filters, optimal settings were found by searching a discretized space of parametersξ = [k, fc]T,
wherek denotes the filter order andfc denotes the cutoff frequency. In the case of the time-variant filter, the algorithm
described in subsection 3.3 was used. The results of optimization are summarized in Table 2. The verification results,
obtained using the evaluation data set (i.e., the one that was not used for optimization purposes), are presented in
Table 3.

4.2. Identification-based approach

The identification-based approach to dynamic weighing is based on different principles. Within this approach it
is assumed that the signalx(n) observed at the output of the checkweigher at the weighing stage can be modeled
as a response of an unknown dynamic system to a constant excitation signalu(n) (under nonzero initial conditions)
[12], [13]. In a number of publications, to describe the dynamics of the load cell or even of the entire checkweigher,
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v
[

m
s

]
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

time-invariant Bessel filter

f ∗c 5.7 5.4 7.6 8.4 7.2 8.1 8.9 9.2 9.6

k∗ 13 10 13 12 7 7 10 7 9

time-invariant critically damped filter

f ∗c 2.5 2.7 3.0 3.4 3.5 3.7 4.1 4.3 4.4

k∗ 18 19 14 17 13 13 14 12 8

time-variant filter

f ∗0 66.5 48.0 49.0 26.0 35.5 35.0 39.0 32.0 32.5

f ∗∞ 0.01

α∗ 0.86 0.97 0.99 1.29 1.16 1.20 1.18 1.37 1.33

k∗ 3

Table 2: Optimal filter settingsξ∗j for different conveyor belt speeds.

a simple model of damped harmonic oscillator was used [5], [15], [19], [20], [21], [22], [23]. The discrete-time
description of such a system takes the form

X(z) = H(z)U(z), H(z) =
bz−1

1+ a1z−1 + a2z−2
(11)

whereX(z) andU(z) denoteZ-transforms of the input and output sequences, respectively, andH(z) denotes the system
transfer function.

Assuming that the input signal is constant, namelyu(n) ≡ u0 > 0, the steady state value of the output signal (equal
to the mass of the weighed object) may be computed using the final value theorem, according to which

x(∞) =
bu0

1+ a1 + a2
. (12)

The indirect mass measurement may be accomplished by means of estimating – using the available output signal (1) –
the values of the coefficients appearing in (11), and applying (12). Denote byn0 the time coordinate of the falling edge
of the front photocell pulse (which corresponds to the beginning of the weighing stage). Incorporating the method of
least squares, one obtains

θ̂(N) = [ΦT(N)Φ(N)]−1
Φ

T(N)x(N) (13)

wherêθ(N) = [b̂(N), â1(N), â2(N)]T denotes the vector of estimates of system parameters,Φ(N) = [φ(n0), . . . ,φ(N)]T

is the matrix made up of regression vectorsφ(n) = [u0,−x(n−1),−x(n−2)]T, n = n0, . . . ,N, andx = [x(n0), . . . , x(N)]T.
The mass estimate can be obtained from

m̂(N) =
b̂(N)u0

1+ â1(N) + â2(N)
. (14)

It is worth noting that for the method to work, the amplitude of the input signalu0 (the true value ofu0, proportional
to the mass of the weighed object, is unknown) may be chosen arbitrarily, e.g. one can setu0 = 1. This is because
variations in the assumed input signal amplitude are automatically compensated by the corresponding changes inb̂(N)
– see [12]. Since the identification-based approach operates in an adaptive way, there is no need to use the training
data set. The verification results for this approach, obtained using the evaluation data set, are presented in Table 4.

4.3. Verification summary

The presented results show clearly advantages of the new method in terms of the measurement accuracy. While the
classical time-invariant filters offer reasonably good results but fail at speeds in excess of 0.9 m

s , the proposed method
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v
[

m
s

]
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

time-invariant Bessel filter

µ1 j -0.03 -0.12 -0.01 -0.01 -0.14 -0.25 0.15 -0.25 -0.27

σ1 j 0.16 0.05 0.16 0.13 0.15 0.23 0.20 0.31 0.24

µ2 j 0.09 -0.10 0.03 0.21 -0.29 -0.51 0.25 0.06 -0.04

σ2 j 0.11 0.13 0.14 0.16 0.12 0.21 0.13 0.33 0.25

µ3 j -0.03 0.25 -0.14 0.34 -0.28 0.01 -0.471.23 0.59

σ3 j 0.14 0.13 0.17 0.13 0.25 0.32 0.18 0.50 0.36

time-invariant critically damped filter

µ1 j -0.15 -0.08 -0.09 -0.15 -0.20 -0.24 -0.16 -0.07 -0.47

σ1 j 0.14 0.07 0.16 0.14 0.18 0.24 0.25 0.25 0.51

µ2 j -0.05 0.08 -0.10 0.03 -0.15 -0.46 0.35 0.24-0.53

σ2 j 0.12 0.15 0.14 0.22 0.19 0.24 0.34 0.37 0.71

µ3 j 0.13 0.14 0.18 0.34 -0.08 -0.68 -0.39 -0.54 -1.41

σ3 j 0.13 0.15 0.17 0.11 0.25 0.27 0.47 0.90 0.90

time-variant filter

µ1 j -0.10 -0.06 -0.03 -0.12 -0.07 -0.05 0.10 -0.10 -0.26

σ1 j 0.14 0.05 0.13 0.10 0.12 0.13 0.14 0.13 0.14

µ2 j 0.02 0.04 0.01 -0.09 -0.05 -0.13 0.30 -0.28 -0.34

σ2 j 0.12 0.12 0.11 0.14 0.10 0.13 0.11 0.16 0.17

µ3 j 0.04 0.07 0.11 -0.19 -0.08 -0.14 0.36 -0.23 -0.41

σ3 j 0.13 0.10 0.15 0.12 0.17 0.13 0.12 0.22 0.22

Table 3: Mean errorsµi j (ξ∗j ) and their standard deviationsσi j (ξ∗j ) for the i-th test load and thej-th conveyor belt speed in the filtration-based
approach. The values that exceed the accuracy XIII(1) specifications (given in Table 1) are shown in boldface.

v
[

m
s

]
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

µ1 j 1.78 0.10 -0.43 1.06 1.53 2.91 3.46 0.4 2.64

σ1 j 0.70 0.82 1.25 1.97 1.07 2.32 2.75 3.33 1.96

µ2 j -0.09 -0.11 -0.12 -3.29 1.58 4.02 4.22 1.29 7.84

σ2 j 2.41 0.91 1.09 5.13 2.16 3.62 4.88 2.86 3.25

µ3 j -0.21 0.59 1.39 0.98 0.24 0.23 5.49 10.15 0.83

σ3 j 1.18 1.52 1.68 4.06 2.22 2.14 2.85 6.39 3.72

Table 4: Experimental results obtained for the identification-based approach.
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yields satisfactory results under all operating conditions. Unlike the filtering-based methods, the identification-based
approach incorporating the second-order mass-spring-damper model fails for all test loads and all belt speeds.

The computational burden of the proposed approach is low. The cost of the Nelder-Mead algorithm, which belongs
to the class of direct search methods, depends mainly on the objective function, the starting point and the initial simplex
size. For this class of methods the criterion correspondingto an average number of objective function executions seems
to be a right choice. As it was found, for all optimization tasks (7), performed for nine considered belt speedsv, the
average number of evaluated vertices did not exceed 100. It should be noted, however, that since the optimization step
is performed in the offline mode, the optimization cost is incurred only once. The online part of the filtration routine,
governed by (5), requires 3Nk multiply-add operations, i.e., in the case considered, only 9 operations are needed per
time update.

5. Conclusions

In spite of the presence of strong low-frequency disturbances, the proposed linear discrete time-variant low-pass
filter is able to ensure that for a wide range of conveyor belt speeds the measurement errors do not exceed their
permissible values. The problem considered in the introduction can therefore be considered as successfully solved.
The cascade connection ofk first-order filters (5) can be easily implemented in a floatingpoint microprocessor-based
system. Given the number of arithmetic operations that are needed per time update, the computational cost of the
filter is negligible. If the problem of finding the optimal filter design is formulated in a more general way, with relaxed
constraints put on the sequence (6), some further improvements can be expected. The future work should provide
more insight into this issue.
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