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Dynamical description of quantum computing: Generic nonlocality of quantum noise
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We develop a dynamical non-Markovian description of quantum computing in the weak-coupling limit, in
the lowest-order approximation. We show that the long-range memory of the quantum reservoir~such as the
1/t4 one exhibited by electromagnetic vacuum! produces a strong interrelation between the structure of noise
and the quantum algorithm, implying nonlocal attacks of noise. This shows that the implicit assumption of
quantum error correction theory—independence of noise and self-dynamics—fails in long time regimes. We
also use our approach to presentpuredecoherence and decoherence accompanied by dissipation in terms of the
spectral density of the reservoir. The so-calleddynamical decouplingmethod is discussed in this context.
Finally, we propose aminimal decoherence model, in which the only source of decoherence is vacuum. We
optimize the fidelity of quantum-information processing under the trade-off between the speed of the gate and
the strength of decoherence.

DOI: 10.1103/PhysRevA.65.062101 PACS number~s!: 03.65.Yz
,
in
tl

de
e
o
th

th

o-

l-

e
es

m
en
e

l,
m
te
y
m
rk
p
th
le
tu

i
b
e
il
um
ib

e-
the
tion

ot
en-
se
to
me
ct.

is
zed
ans
ion

ical
ns
ree
o the
of
p-

he

-
to
um
ism

ol-
nd

m
in
en
be

gy
her-
I. INTRODUCTION

In spite of many remarkable results on decoherence
open quantum systems@1# the problem still remains open
involving some conceptual and interpretational difficulties
the description of the dynamical quantum effect. Recen
the problem has become crucial in connection with the i
of quantum computers@2,3#. The latter stimulated a hug
theoretical and experimental effort to control evolution
quantum systems. This progress allows one to hope that
oretical obstacles to building a quantum computer~QC! can
be overcome. To deal with unavoidable decoherence,
quantum error correcting codes have been designed@4,27#,
resulting in the theory of fault-tolerant~FT! quantum com-
putation@6–9#. In this theory it is tacitly assumed that dec
herence actsindependentlyof the structure of the controlled
self-evolution of the QC~the one including the quantum a
gorithm and the scheme of error correction!. The self-
evolution only propagatesthe errors. In fact, decoherenc
depends on the kind of dynamics of the system of inter
and this should be taken into account.

The main purpose of this paper is to provide a more co
plete general analysis of interrelations between decoher
and controlled evolution, basing on the well-establish
theory of open systems@10#. We develop the dynamica
Hamiltonian description of the decohering quantum co
puter, deriving and analyzing the non-Markovian mas
equation. We show that the long-range quantum memor
conjunction with self-dynamics of the quantum computer i
plies a highly nonlocal structure of noise. This has rema
able implications for the quantum error correction conce
The key idea of the latter is that the noise is local, so that
quantum information can be hidden in multiqubit entang
ment. Once we do not couple the qubits through quan
gates, the noise is local indeed. However, to protect the
formation against the noise, we need to produce multiqu
entanglement. Due to memory, the reservoir will then ‘‘se
the evolution as highly nonlocal, and after some time it w
act nonlocally itself. We argue that the long-range quant
memory is unavoidable for fundamental reasons: it is exh
1050-2947/2002/65~6!/062101~11!/$20.00 65 0621
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ited by interaction with vacuum, which can never be r
moved. It turns out that the memory is relevant even for
quantum optics regime, despite the fact that the devia
from exponential decay is unobservable.

In Refs. @7,9# it was noted that the FT method may n
work, if time or space correlations do not decay expon
tially. What we show here is that correlations in time cau
the noise to follow the evolution of the system that is
protect against the noise. It follows that the FT sche
should be revisited to take into account the memory effe

One should mention that the long quantum memory
exhibited also by phonon environment that characteri
stronger coupling than electromagnetic vacuum. This me
that within the program of solid-state quantum computat
the memory effects can become practically relevant.

Other programs to avoid decoherence usedynamical de-
coupling@11#, anddecoherence-free subspaces@12#. We dis-
cuss the first approach in the context of the real phys
environment and conclude that it is hard to find conditio
for which the method could be useful. The decoherent-f
subspaces approach bases on the paradigm opposite t
one of quantum error correction—it exploits symmetries
collective interaction with environment. Even though our a
proach is fully general, in this paper we will discuss t
independent interaction case.

We also introduce aminimal decoherence modelof evo-
lution, within the framework of the non-Markovian ap
proach. The motivation behind the model is to try to take in
account only fundamental obstacles for building the quant
computer. That is, we remove any decoherence mechan
that could be, in principle, avoided at some level of techn
ogy. In the model the only environment is the vacuum, a
there is no internal, natural self-evolution~the only evolution
of the system is constituted by quantum gates!. It follows
that there issome room to optimize the process of quantu
computation within this model. Subsequently, we obta
time-energy trade-off due to that fact that to perform a giv
gate one needs a constant amount of ‘‘action’’ that can
split in different ways into time and energy. Higher ener
implies a quick gate, but simultaneously, enhances deco
©2002 The American Physical Society01-1
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ence. As a result it is possible to maintain high fidelity at t
expense of poorer scaling. For a sequence ofn gates, the
physical time needed to maintain high fidelity scales asn3/2.

This paper is organized as follows. In Sec. II we ma
some preliminary remarks. Then we develop the Hamilton
approach in Sec. III. We obtain the transition map~called
here the error map!. Then we pass to the Markovian limit fo
the time-independent Hamiltonian and indicate that in
non-Markovian stage the reservoir recognizes the struc
of levels of the systems. We discuss possible types of s
tral densities causing decoherence and the problem of h
frequency cutoffs. Subsequently we discuss the dynam
decoupling method. In Sec. IV we present two example
the QC in a memoryless reservoir, and the QC driven
kicked dynamics. We discuss the error path interference
fect. In Sec. IV C memory causing by interaction wi
vacuum is derived. Then we pass to the main result of
paper~Sec. V!, deriving and discussing the master equat
for decohering QC. We relate the results to the quantum e
correction concept. In Sec. VI we postulate theminimal- de-
coherence model, and provide a formula for fidelity within
the model. An example of fidelity for single-qubit rotation
presented and the time-energy trade-off is discussed.

II. PRELIMINARIES

A. Fidelity in the interaction picture

We consider the general case of the QC interacting w
environmentE. The initial state of the QC is given byc t0

.
The dynamics of the QC without decoherence is given
unitary evolution of the quantum algorithm

c t0
→c t5U~ t,t0!c t0

. ~1!

We will call the algorithm the total controlled evolution, i.e
the computation algorithm itself plus the error correcti
procedures. Due to interaction with environment, the ini
state will evolve into the mixture,

c t0
→% t5L̃~ t,t0!% t0

, ~2!

with % t0
5c t0

. The fidelity of decohered computation
given by

Ft5^c tu% tuc t&. ~3!

It is convenient to use the interaction picture. Putting

L~ t,t0!5Û~ t0 ,t !L̃~ t,t0! ~4!

we obtain

Ft5^c t0
uL~ t,t0!~ uc t0

&^c t0
u!uc t0

&. ~5!

Here we used the notation

Û~% !5U%U†, ~6!

whereU is unitary operation.
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Note that in the interaction picture the quantum algorith
does not compute, but only ‘‘interacts’’ with errors, causi
them to spread more and more. The mapL(t,t0) describes
the net effect of decoherence. As we will see, in the
model the decoherence is ‘‘decoupled’’ from the algorith
so that the total decoherence amounts to the faults cause
environment, which are then propagated by the algorithm
the Hamiltonian approach, the interaction with environme
will be ‘‘entangled’’ with algorithm, due to quantum
memory, and no such simple description will apply.

B. General evolution

Through the paper we will deal with the equation

d

dt
s t5Lts t1Ls t , ~7!

whereLt is some time-dependent operator~it will describe
self-evolution!, while L is time-independent operator~inter-
action!, s t is vector. Let the free evolution ofs be given by
the operatorG(t,t0),

G~ t,t0!s t0
5s t . ~8!

The operator satisfies

d

dt
G~ t,t0!5LtG~ t,t0!. ~9!

The total evolution denoted byL̃(t,t0) satisfies

d

dt
L̃~ t,t0!5LtL̃~ t,t0!1LL̃~ t,t0!. ~10!

Then for the evolution in interaction picture given b
L(t,t0)5G(t0 ,t)L̃(t,t0) we have the following formal ex-
pansion

L~ t,t0!5I1 (
m51

` E
t0

t

dtm•••E
t0

t2
dt1

3G~ t0 ,tm!LG~ tm ,tm21!L•••LG~ t1 ,t0!.

~11!

Full evolution is given by

L̃~ t,t0!5G~ t,t0!1 (
m51

` E
t0

t

dtm•••E
t0

t2
dt1

3G~ t,tm!LG~ tm ,tm21!L•••LG~ t1 ,t0!. ~12!

III. EVOLUTION OF THE QC IN THE SECOND-ORDER
APPROXIMATION

In this section we derive reduced dynamics of the Q
interacting with environmentR. Consequently, in Eq.~7! the
operatorLt will be sum of free Hamiltonians of the QC an
R, the operatorL—the interaction Hamiltonian, ands t—the
wave function of the totalQC1R system.
1-2
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A. Non-Markovian Born approximation

The Hamiltonian of the total system is of the form

H5HQC1HR1lHint . ~13!

Here HQC is time-dependent Hamiltonian of the comput
HR is time-independent self-Hamiltonian of the environme
l is coupling constant, which is assumed to be smalll
@1). In the following we will removel from formulas by
incorporating it into interaction HamiltonianHint . The latter
is of the form

Hint5(
a

Sa ^ Ra , ~14!

where Sa and Ra are self-adjoint operators. The resultin
evolution of the total system is described by unitary transf
mationU(t,s) such that

Û~ t,s!%~s!5%~ t !. ~15!

We use the notation

Ĥ~% !5@H,%#. ~16!

The self-evolution of QC is given by

UC~ t,s!5T expF2 i E
s

t

HC~u!duG , ~17!

whereT is time-ordering operator. Finally, the free evolutio
of the total system is

Û0~ t,s!5ÛC~ t,s! ^ e2 iĤ R(t2s). ~18!

The initial state of the total system is given by

%~s!5%C~s! ^ vR , ~19!

where%C is the initial state of quantum computer, whilevR
is stationary state of environment. Without loss of genera
one can assume that

Tr RavR50. ~20!

Besides, the statevR commutes with dynamics of environ
ment,

@vR ,HR#50. ~21!

We consider the lowest-order approximation of the evo
tion, obtaining from Eq.~11!

Û~ t,s!.Û0~ t,s!2 i E
s

t

duÛ0~ t,u!Ĥ intÛ0~u,s!

2E
s

t

duE
s

u

dwÛ0~ t,u!Ĥ intÛ0~u,w!Ĥ intÛ0~w,s!.

~22!
06210
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Then the evolution of the reduced density matrix reads
%C(t)5TrR@%(t)# is given by

%C~ t !5ÛC~ t,s!%C~s!2TrRH E
s

t

duE
s

u

dwÛ0~ t,u!

3Ĥ intÛ0~u,w!Ĥ intÛ0~w,s!%C~s! ^ vRJ .

~23!

Subsequently, we find that%C(t) can be written in the fol-
lowing compact form:

%C~ t !5ÛC~ t,s!$%C~s!2 1
2 @A~ t,s!%C~s!2%C~s!A~ t,s!#

1F̂~ t,s!%C~s!2 i @h~ t,s!,%C~s!#%. ~24!

The completely positive superoperatorF̂(t,s) is given by the
following formula:

F̂~ t,s!%C~s!5(
ab

E
s

t

duE
s

t

dw^RaRb~u2w!&vR

3Sb~u,s!%C~s!Sa~w,s!, ~25!

where Sa(u,s)5ÛC
21(u,s)Sa , Ra(t)5eiH RtRae2 iH Rt are

the versions ofSa andRa evolving in the Heisenberg pictur
according to free evolution;̂RaRb(t)&vR

5Tr„vRRaRb(t)…
is the autocorrelation function of the environment. The o
eratorA(t,s) is given by

A~ t,s!5A†~ t,s!5F̂* ~ t,s!I, ~26!

whereF̂* is dual map toF̂. Explicitly,

A~ t,s!5(
ab

E
s

t

duE
s

t

dw^RaRb~u2w!&vR
Sa~u,s!Sb~w,s!.

~27!

Finally, h(t,s) describes the Hamiltonian contribution to th
dynamics due to the interaction with environment~Lamb
shift, collective Lamb shift, etc.!. In the following we put
h(s,t)[0 by applying the renormalization procedure. W
add to the HamiltonianHQC(t) the appropriate counterterm
that cancel the contributionh(t,s) in a given order of pertur-
bation calculus. Therefore, in the following,HQC(t) is the
full physical Hamiltonian containing all relevant terms.
this way, when passing to Markovian approximation for t
reservoir at the thermal equilibrium we obtain the Gibbs st
corresponding to the full Hamiltonian, as it should be.

One can pass to the frequency domain, putting

^RaRb~ t !&vR
5E

2`

1`

Rab~v!e2 ivtdv, ~28!

Ya~v!5E
s

t

Sa~u,s!e2 ivudu. ~29!
1-3
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The function Rab is called spectral density. We then can

write F̂ as

F̂~ t,s!%C~s!5(
a,b

E
2`

1`

dvRab~v!Yb~v!%C~s!Ya
†~v!,

~30!

where we do not write explicitly the dependence ont ands

of the operatorsYa . DenotingF̂(t,0)5F̂t , the evolution in
the interaction picture can be thus written~for s50! as

%C~ t !5Û0~ t,0!@%02 1
2 $F̂t* ~I!,%0%1F̂t%0#, ~31!

where%05%C(0). Theabove equation closely resembles t
form of the generator of the Markovian semigroup@13,10#.
In the next section we will exhibit the Markovian approx
mation of this formula.

One notes that the crucial element here is the transi

map F̂ ~we will call it error map!. OperatorsSa are errors
that can occur during interaction with the reservoir~cf. @14#!.
In particular, the map contains a propagation of errors tha
nothing but the evolution ofSa in the interaction picture. The

overall error is proportional toiF̂i , wherei•i is some norm
~see@7#!.

B. Markovian limit for the time-independent Hamiltonian

Let us putt5t/2, s52t/2, and

HC5(
j

e j u j &^ j u, ~32!

where$u j &% is the orthonormal basis in the Hilbert space
QC. To find the meaning of the completely positive mapF,
we will find the behavior of evolution for long time. We hav

Sa~u,s!5 (
vk5e j 2e j

Sa~vk!e
ivkue2 i /2vkt ~33!

with

Sa~vk!5 (
j , j 8:e j 82e j 5vk

u j &^ j uSau j 8&^ j 8u. ~34!

Then the formula~30! reads

F̂~s,t !%C~s!5Fp (
a,b,vk

E dvRab~v!dt
(2)

3~v2vk!Sb~vk!%C~s!Sa
†~vk!G

3t1p2(
a,b

(
vkÞv l

E dvRab~v!dt
(1)

3~v2vk!dt
(1)~v2v l !Sb~vk!%C~s!Sa

†~vk!

3expF2
i

2
~vk2v l !t G . ~35!
06210
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Here we have used two models of the Diracd function with
width 1/t,

dt
(1)~x!5

sin~tx!

px
, dt

(2)~x!5
sin2~tx!

px2t
. ~36!

Approximately we have (dt
(1))2.ptdt

(2) . The second, ‘‘non-
resonant’’ term of Eq.~35! will vanish in the limit of larget,
as the overlap between twod ’s will decrease for larget.
~This is an alternative form of a well-known rotating-wav
approximation.! More precisely, one requirest.!1/Dv,
where

Dv5min$ue j2e j 8u;e jÞe j 8%.

Finally, we obtain

F̂~ t,s!%C~s!5tp (
a,b,vk

Rab~vk!Sb~vk!%C~s!Sa
†~vk!.

~37!

Note that the map depends ont ands only through the factor

t5t2s. Thus (1/t)F̂ is exactly the transition map for th
quantum dynamical semigroup in the weak coupling lim
@10,15#

%̇C5L%C ~38!

with

L%C52 i @HC ,%C#2
1

2t
$F̂* ~I!,%C%1

1

t
F̂%C . ~39!

One can see@16# that we can distinguish the initial, non
Markovian stage, when the reservoir is ‘‘learning’’ the stru
ture of the Hamiltonian of the system. This requires timet
@1/Dv. Once the structure is recognized, we have the M
kovian stage, during which the system is being relaxed
wards the Gibbs state of thermal equilibrium (1/Z)e2bH de-
termined byH.

Suppose now that we have a two-qubit system, where
components are coupled to one another; e.g., the s
evolution is to produce some two-qubit gate. Then, in
Markovian stage the system relaxes to thecompoundGibbs
state. Thus, the noise, after recognizing that the Hamilton
is compound, becomes compound itself@17#. We will ana-
lyze it in more detail in Sec. V.

C. Decoherence and dissipation in the Markovian regime

The properties of the decoherence in the Markovian lim
can be read from the formula~37!. We will now analyze the
formula to get a first intuition about decoherence. First of
one can single outpure decoherencethat is not connected
with energy exchange with environment. The populations
energy levels are kept, but the phases undergo random
tion. The relevant term is
1-4
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pt(
a,b

Ra,b~0!Sb~0!%CSa
†~0!. ~40!

Indeed,Sa(0) commutes withHC . Hence this term does no
lead to transitions between energy levels. Thus the t
Rab(0) stands for the strength of pure dephasing. On
contrary, the other terms of the sum correspond to the de
herence accompanied by energy exchange, because th
eratorsSa(vk) either do not exist~if Sa commute withHC)
or describe transitions between energy levels. Note that if
spectral densityRab vanishes forv50, there is no pure
decoherence: the decoherence is always accompanied b
sipation. Assume, for example, that a system does not h
self-Hamiltonian~e.g., spin of free electron!. Then there is
no dissipation. If in additionRa,b(0)50 then there isno
decoherence at all.

D. Important examples of reservoirs

We note that an important characteristic of the interact
with environment is the shape of the spectral density. A g
eral property of the heat bath at the temperatureT is the
following:

Rab~2v!5e2v/kTRab~v!. ~41!

In particular, at zero temperature, only non-negative frequ
cies are relevant. Let us now present three important
amples of environments.

(a) Linear coupling to bosonic field.OperatorsRa are
given by

Ra5a~fa!1a†~fa!, ~42!

wherea†(fa), a(fa) are creation and anihillation operato
for fields fa , respectively. The following form of diagona
elements ofRab can be obtained:

Raa~v!5E dkd~V~k!2v!~n~k!11!ufa~k!u2, ~43!

where V(k) is the energy of the boson@V(k)5k2/2m or
V5vk#, n(k)51/ebV(k)21. Typically Raa(v) grows like
uvud for smallv and then rapidly falls down foruvu.vc (vc
is a cutoff frequency!. For electromagnetic interactions in th
dipole approximation we haveRa,a(v)'v3 for small v,
similarly for some cases of phonon interaction. The cut
parametervc is model-dependent~see, e.g., Ref.@18#! and
characterizes the range of validity of model but does
mean that the frequenciesv.vc are not influenced by noise
For example, the electromagnetic interaction can be
scribed by the dipole approximation forv/c5uku!1/r 0
wherer 05e2/mec

2 is the classical electron radius@19#. For
larger frequencies a different model involving nonbound
~scattering! states of electrons should be taken into accou
The other cutoff for free electronsvc.2mec

2 means only
that for larger frequencies the pair production should
taken into account. In solid statevc is a Debye frequency
For higher frequencies the coupling to phonons makes
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sense and we have to consider local interactions with
neighboring atoms or ions and electrons.

(b) Interaction with a dilute gas.We use the model of free
bosonic or fermionic gas in the low-density approximatio

Ra5a†~fa!a~fa!2^a†~fa!a~fa!& ~44!

The spectral density is then of the form

Raa~v!5E E dkdln~k!ufa~k!u2ufa~ l!u2

3d„V~k!2V~ l !2v…. ~45!

Typically Raa(0).0 and, againRaa(v), falls down for
uvu.vc a model-dependent cutoff frequency.

(c) Fluctuations of molecular field.The influence of a
local fluctuating field can be described by a classical no
Fa(t). For example, for a colored noise model we have

^FaFa~ t !&5De2utu/tc. ~46!

Then the spectral density is Lorentzian

Raa~v!5
D

v21tc
22

. ~47!

Such a density is relevant for the relaxation mechanism
pulsed nuclear magnetic resonance experiments.

E. Discussion of the dynamical decoupling method

From Eq.~37! we see that one can gamble with decoh
ence by changing the spectrum of the Hamiltonian trying
choose frequenciesvk for which the spectral density is
small. In Ref.@11# the method ofdynamical decouplingwas
exhibited. It bases on adding a periodic, rapidly alternat
term to the self-Hamiltonian of the QC that averages out
interaction part, leaving some room for controlled evoluti
of the QC. The method sometimes called ‘‘bang-bang’’ co
trol is supported by an elegant group-theoretic framewo
Here we would like to determine what types of reservo
allow us to apply such a method. Consider, as in@11#, the
decoherence in the QC with a rapidly oscillating term on
given by

H~ t !5H cos~Vt !, ~48!

whereH is time independent,V is large frequency. We nee
to deriveYa(v). Using the notation of Eq.~34! we have

Sa~ t,0!5(
vk

Sa~vk!expF i
vk

V
sin~V!t G . ~49!

Expanding the time-dependent term into Taylor series
applying the Fourier transform, we obtain

Ya~v!5(
vk

Sa~vk!H c0d~v!c1

vk

V
@d~v2V!

1d~v1V!#1•••J , ~50!
1-5
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whered stands fordt
(1) @see Eq.~36!#, c0,1 are constants and

we omitted higher harmonics. PuttingYa into formula ~30!
we see that to obtain low decoherence, we needRab ~i! to be
small for v'0 and ~ii ! to have cutoff frequency satisfyin
vc<V. Thus one would need bell-shaped spectral dens
The bosonic field reservoirs satisfy~i!, but, as we have al
ready mentioned, do not have physical cutoffs. On the o
hand, collisonal or the colored noise have cutoffs, yet all
for pure decoherence due to nonzero Rab(0). Theconditions
for dynamical decoupling can in principle be met in the QE
cavity. Then, however, the system loses its fundamental s
plicity: the quantum computer must now include modes
cavity, while the reservoir becomes the atoms building
cavity.

There is another aspect of the discussed method that
not been investigated so far. Namely, the time-depend
Hamiltonian is obtained by use of external fields that can
described classically~e.g., coherent light of the laser beam!.
However, a rapidly alternating field will get entangled wi
the controlled system~this is called quantum back reaction!,
so it must be treated quantum mechanically. The resul
disturbance was evaluated to be weaker than the ‘‘regu
~say collisional! decoherence@20#. However, it seems tha
for the bang-bang control, the considered effect can bec
relevant.

An interesting version of the dynamical decouplin
method was considered in Ref.@21#. Namely, the starting
point was to modulate the coupling constant in the inter
tion picture rather than the self-Hamiltonian. As a result,
the Schro¨dinger picture, the self-Hamiltonian was of th
form vHCsin(vt). Thus, in addition to modulation, the leve
differences of the Hamiltonian were rescaled. Then the ab
analysis does not apply and condition~i! is not necessary
Earlier, in @28#, the decoupling was achieved by addin
‘‘kicks’’ to the dynamics. Again, only~ii ! is then needed
However, one can show that in the cases where the ab
method works, more elementary strategies can protect
system against the reservoir. Indeed, one can simply perf
fast gates, instead of fast controlling kicks.

IV. EXAMPLES

We will present here two examples. The first one w
serve to introduce afault mapdescribing the action of nois
with propagation excluded. In the second one we cons
the kicked dynamics of algorithm, and illustrate the diffe
ence between quantum memory due to the interferenc
error paths and classical memory due to their probabili
mixing .

A. Memoryless reservoir: Error map and fault map

The memoryless reservoir has the white-noise spec
density. Its autocorrelation function isRab(s2t)5Rab

0 d(s
2t). Let us, for simplicity, assume independent interact
Rab(v)5Radab . The resulting error map is given by

F t~% !5(
a

Ra
0E

s

t

duSa~u,s!%Sa~u,s!. ~51!
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Suppose thatSa are one-qubit operators. According to th
notation of Ref.@7# we will call themfaults—these are errors
caused by the reservoir, and should be distinguished from
errors resulting from propagation of faults by algorithm@we
will denote it byU(t,s) in this section#. The propagation of
the faults is described by the fact that the error map invol
Sa in the Heisenberg picture. Note, that the overall error
caused solely by one-qubit faults and their propagation,
eraged in time. Such evolution can be described by the
lowing master equation:

d

dt
% t5 i @Ht ,% t#1L% t ~52!

with

L52 1
2 $F̂* ~I!,%%1F̂~% ! ~53!

for F̂(%)5(aSa%Sa . Indeed, let Eq.~7! s t be the density
matrix of QC, Lt52 iĤ t , whereHt is the Hamiltonian of
algorithm andL, the above generator. Applying the formu
~12! in first-order approximation we obtain

% t5Û~ t,t0!F% t0
2

1

2
$A,% t0

%1(
a

E
s

t

duSa~u,s!%Sa~u,s!G
5Û~ t,t0!F%2

1

2
$F t* ~I!,%%1F t~% !G . ~54!

Even though the memoryless case is not especially inter
ing from our point of view, the very form of the maste
equation~52! is particularly useful in our context, as th
faults themselves and the propagation are separated from
another. The propagation is described by the Hamilton
term, while the faults are described by the mapF, which we
will call fault map. We will derive such a master equation
the general case in the next section. Here, let us only men
that the ‘‘fault part’’ of the master equation is a sum of on
qubit operators. This means that environment actslocally,
and the multiqubit errors~i.e., correlated errors! occur solely
due to propagation.

B. Decoherence under the kicked dynamics of QC:
Error path interference effect

We will assume that the gates are performed quickly,
that they can be generated by the Hamiltonian with ti
dependence given byd function. This will not work for the
electrodynamic or phonon vacuum reservoir, as due to
behavior v3, any rapid changes in the self-Hamiltonia
cause large or infinite contribution. Thus in this case o
needs to work with Gaussian pulses. On the other hand,
kicked dynamics can be used for Lorentzian spectral den

Thus we divide computation timet into N pieces of length
t. The Hamiltonian is given by

H~ t !5(
j 51

N

d„t2~ j 21!t…hj , ~55!
1-6
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wherehj generates thej th step of computation. The unitar
evolution is given by

U~ t !5PW j 51
N u~ t2 j t!U~ j , j 21!, ~56!

whereU( j , j 21)5e2 ih jt is the j th step of computation~the
group of gates performed at timej t), u is the step function.
Consequently,

Ut55
U~1,0!, tP^0,t!,

U~2,1!U~1,0!, tP^t,2t!,

•••

U~N,N21!U~N21,N22!•••

•••U~1,0!, tP^~N21!t,Nt!.
~57!

Substituting such dynamics into the error map of Eq.~25!,
we obtain

FH5(
a

(
j ,k51

N

r jk
a Sa

j %Sa
k , ~58!

where Sa
j 5U j

†SaU j . For simplicity we assumed thatRab

5Radab . The coefficientsr jk
a are given by

r jk
a 5E

(k21)t

kt

duE
( j 21)t

j t

dvRaa~u2v !. ~59!

For the memoryless case we obtain the discrete counte
of

FPh5t(
a

Ra
0 (

k51

N

Sa
k %Sa

k . ~60!

In both formulas we see propagation of error, this time in
discrete manner:Sa

j denotes theerror resulting in propaga-
tion of fault Sa within the interval (0,j t). The difference is
that in Eq. ~58! we have interference due to quantum
memory. This effect of interference of error can remarka
modify the process of error propagation.

The difference is similar to that between separable
entangled mixed states. We can view the error map as
~subnormalized! density matrix and the Kraus operators
the pure components of the ensemble giving rise to the d
sity matrix. In general, the noise process can then behav
classical-like or as quantum stochastic process with time
relations of the form

Fcl%5 (
j 1••• j m

p~ j 1••• j m!S~ t j m
!•••S~ t j 1

!

3%S~ t j 1
!†
•••S~ t j m

!†,

Fqu%5 (
j 1••• j m ,i 1 , . . . ,i n

C~ j 1••• j mu i 1••• i m!

3S~ t j m
!•••S~ t j 1

!%S~ t i 1
!†
•••S~ t i m

!†, ~61!
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respectively. In the first case we always have a mixture of
product of Kraus operators, in the second one we can ha
map for which such representation may be impossible.
deed, in Eq.~60! the errors occurring in different times d
not interfere with each other, they are added as in class
probability calculus.

However, it seems that the crucial point is not the diffe
ence between quantum and classical memory, but itsrange.
In Sec. V we will exhibit the remarkable connection betwe
the range of the memory and the multiqubit faults that occ
the interference caused by long-range quantum memory
give rise to nonlocal noise.

C. Memory of the electromagnetic vacuum reservoir

Here we will calculate and discuss the memory caused
vacuum in free space. This is an important point in our p
per; as the vacuum is unavoidable, we cannot remove it
course we can put the QC into cavity, but then, we can c
sider the QC plus cavity as the total system; that is, agai
free space. We then prefer the latter setup, as it is m
fundamental.

Consider the two-level atom and electromagnetic fi
with dipole interaction,

H5 1
2 v0s31s1^ dE. ~62!

The spectral density of reservoir in temperatureT is given by

R~v!5
8p

3
d2v3S 11

1

e\v/kT21
D for v.0,

R~v!5
8p

3
d2uvu3S 1

e\v/kT21
D for v<0. ~63!

We must now calculate the autocorrelation function in ze
temperature. Taking the inverse Fourier transform, we ob

R~ t !5
1

~ t1 i e!4 . ~64!

We see that the memory scales as the power oft rather than
an exponential function. Then there is no characteristic tim
This is due to the fact that Coulomb interaction has no ch
acteristic range. Thus the range of vacuum memory is i
nite. Nevertheless, in quantum optics there is a notion
time of memory, which is the inverse ofv0—the transition
frequency for the atom—and one can work with the Marko
ian master equation, within times much longer than 1/v0.

This does not mean that there exists some character
time scale for the vacuum reservoir. Rather, in the interac
picture, the autocorrelation function acquires oscillating te
eiv0t which effectively makes the memory much weaker. F
optical transitions, the memory then has almost no obse
able consequences. In Ref.@22# the decoherence in the ion
trap quantum computer was analyzed. From the analys
follows that non-Markovian effects are indeed negligible
comparison with other types of noise. However, in the co
1-7
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text of the FT scheme, under a pessimistic assumption th
is not able to correct non-Markovian errors, the latter co
eventually dominate.

V. QUANTUM LONG-RANGE MEMORY IMPLIES
NONLOCAL STRUCTURE OF NOISE

A. Master equation

As we have seen, to discuss the structure of noise with
propagation effect, we need a master equation of the for

%̇52 i @HQC~ t !,%#1L̂ t%. ~65!

We will now derive such equation in second-order appro
mation. To this end, we differentiate Eq.~24!, obtaining

%̇~ t !5 U̇̂C~ t,s!%~s!1 U̇̂C~ t,s!@2 1
2 $F̂* I,%~s!%1F̂%~s!#

1ÛC~ t,s!@2 1
2 $Ḟ̂I,%~s!%1 Ḟ̂%~s!#. ~66!

We take the first step of approximation by removing the s

ond term. DifferentiatingF̂(t,s) and puttings50, we obtain

%̇52 i @HQC~ t !,%#2 1
2 $Ŷ t* I,%%1Ŷ t%, ~67!

whereŶ t5Ŷ(t,0) is given by

Ŷ~ t,s!~• !5(
ab

@Yab~• !Sa1Sb~• !Yab
† # ~68!

with

Yab5E
s

t

duRab~u2t !Sb~u,t !. ~69!

On the right-hand side of the equation we have density
trices evolving according to the self-Hamiltonian of the sy
tem. The second step of approximation is then to repl
them with the ones subjected to full evolution.~Better justi-
fication of such an integral differential master equation c
be obtained within the cumulant expansion method, see,
@23#.!

Now, the decoherence is essentially characterized by
map Ŷ t which we will call ‘‘fault map’’ in analogy to the

error mapF̂t . The latter one characterizes error, i.e., the
effect of the ‘‘attacks’’ of noise~faults! and their propagation
The present mapŶ t describes solely the action of noise. Th
propagation will be due to the Hamiltonian term in the abo
master equation.

Let us now discuss how the form ofY t depends on
memory. The crucial term is, of course,Yab . In the case of
no memory~and, for simplicity, independent decoherenc!
we obtainYab5dabSa, which is compatible with Sec. IV A.
Assuming that eacha denotes a different qubit, we obtai
that decoherence is local, and multiqubit errors are so
due to propagation. We can then write the generator in
form of
06210
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Lt5(
a

Lt
a , ~70!

whereLt
a operates only on theath qubit. If we admit expo-

nentially decaying memory~e.g., colored noise! with charac-
teristic time tR comparable with the time of performing
single computational step, but short in comparison with ti
between gates, there will be some time for the reservoi
learn something about the structure of two-qubit Hamil
nians, so that the noise will be a sum of two-qubit super
erators,

Lt5(
ab

Lt
ab . ~71!

In both cases decoherence is local. The possible faults
roughly speaking, symbolized byLa

t ,Lab
t and they couple at

most two qubits~in general, they involve so many qubits, a
the used gates do!.

Suppose now that the reservoir has long-range mem
Still, in each step of computation, there are two-qubit gat
The environment learns about their structure a bit. The ef
accumulatesdue to memory, so that after a long time, th
noise is strongly nonlocal: the generatorLt involves multi-
qubit operators, as it keeps the record of all the history
self-evolution~i.e., algorithm!. The decoherence becomes
‘‘entangled’’ as the quantum algorithm is entangling. No
that the effect does not depend on the time of perform
gates. For short gates, the reservoir has a short time to
tinguish the temporary levels~driving the gate!, but they are
easily distinguishable, as the energy differences are high
instead the energy differences are low, then the time mus
longer. This is the result of the time-energy uncertainty pr
ciple. Thus, the relevant parameter here is ‘‘action,’’ i.e., t
product of the time of gate, and the strength of the appl
Hamiltonian ~energy!. To perform the gate, the neede
amount of action must be always of the order of 1. Thus
general structure of noise does not depend very much on
way the gates are performed. In Sec. VI we will see that
strength of the decoherence does depend on it, so tha
have the mechanism of possible optimization.

B. Quantum memory and error correction

Let us now discuss the implication of the above results
the quantum error correction~QEC! method@4–7#. The basic
idea of the QEC method rests on two assumptions:~i! the
environment acts locally;~ii ! the environment acts indepen
dently of self-evolution of the system. If the above assum
tions are satisfied, it is indeed possible to protect the qu
tum information against decoherence by encoding it i
highly entangled multiqubit states. In the literature assum
tion ~i! was made explicitly, while assumption~ii ! was tacit.
Thanks to assumption~i! such nonlocally encoded informa
tion will not be affected by decoherence~acting locally!.
Assumption ~ii ! ensures that the self-evolution will no
modify the local structure of decoherence. As we have
gued, the latter assumption is never satisfied. If there
short-range memory, the dependence on self-evolution is
1-8
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relevant, and the QEC method still applies. However,
interaction with vacuum, which is unavoidable, introduc
long-range quantum memory, which causes the environm
to be rather malevolent: it traces self-evolution, and the m
entangled the latter is, the more nonlocal the faults beco
caused by noise. On the other hand, the self-evolutionmust
be entangling, since it is supposed to hide the quantum
formation just into entangled states. Thus, we have so
thing a bit analogous to the Lenz rule: the structure of
environment attack is proportional to the structure of
evolution that is to protect against it. It seems to be a rat
pessimistic result, as it implies that the very idea ofactive
protection against the environment is fundamentally in
equate, as far aslong quantum computation is concerned.

However, the conclusion need not be so pessimistic. F
of all, decoherence caused by vacuum is small in compar
with other sources of decoherence, e.g., dephasing du
collisions ~pressure decoherence!, colored noise or therma
noise. It seems that the QEC~and hence the FT method! can
be used to fight with the latter sources of decoherence, wi
the time window in which the vacuum-memory effect can
neglected. Strictly speaking, other types of reservoirs a
have long tails in memory, however, the dominant part
cays exponentially. Thus the FT method could certainly
performed within the time regime satisfying the followin
conditions:~i! the memory is exponentially decaying, ~ii ! the
memory majorizes vacuum memory. This regime may prove
sufficient to perform some quantum computational tasks

There is also another point to address@5#. The claim that
lack of memory is sufficient for the FT method does n
mean that it is in general impossible to improve the
method against some kind of memory. As a matter of fa
the mechanism producing multiqubit faults we described
some features that may be used to defend the FT sch
Namely, as seen from formula~69!, the multiqubit fault at
some placea arises frombackwardpropagation~with de-
creasing strength! of the single-qubit faultSa . Now since the
FT method is able to fight with propagation forward, it ca
not be denied that it will be robust against faults correlated
such a way. However, it goes beyond the scope of this pa

VI. MINIMAL DECOHERENCE MODEL FOR QUANTUM
CONTROLLED SYSTEMS

In this section we will postulate theminimal decoherence
model. We then derive a formula for fidelity of quantum
computation within the model. We shall consider a class
controlled open systems for whichHC(t)Þ0 only during
computation of subsequent gates. The spectral densityRab
satisfies

E
2e

e Rab~v!

v2
dv,` for some e.0. ~72!

This excludes reservoirs with any pure decoherence effe
such as gas or colored noise. Our motivation is that
would like to investigate only fundamental obstacles to bu
the quantum computer. The pure decoherence is not one
as in principle one could isolate the quantum computer fr
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any influence of the above kind~even though it might require
technology that will never be achieved!. Since obtaining ar-
bitrarily low temperature is also a matter of technology, w
can work with the only environment being vacuum. We r
move the time-independent part of the self-Hamiltonian, a
will only cause additional dissipation.

An example of the system could ben well-separated
spins-12 that interact with an electromagnetic field and pos
bly with phonons. The controlled HamiltonianHC(t) can be
realized by switching external magnetic fields and suita
interaction between spins. Another example is the ato
degenerate metastable level, with Stark or Zeeman split
used for controlling. Of course it may be impossible to ke
the possibility of controlling interactions~a cornerstone of a
quantum computer! and remove the influence of pure dec
herence. However, as said, we assume the most optim
case, and keep only the obstacle that cannot be remove
fundamental reasons. By removing the time-independ
self-Hamiltonian, we obtain that there is no decoherence
qubits that are not active. Thus decoherence will be cau
by the vacuum solely due to gate operations that require
energy levels to split during the time of performing the o
eration. In the case of independent interactions of qubits w
vacuum, this temporal difference of energy levels is used
the vacuum that forces the upper level to relax by sponta
ous emission. In the case of collective interaction~Dicke
limit ! this is not the case, where one has decoherence-
subspaces@12#.

A. Fidelity in the minimal decoherence model

We put%C(s)5uc&^cu ands52`, t51`. The fidelity
of computation is given by

F512d5^UC~ t,s!cu%C~ t !uUC~ t,s!c&. ~73!

We will denote Sa(t)5Sa(2`,t)5ÛC
21(t,2`)Sa . To

avoid infinite contribution from the interaction, we will as
sume that the interaction is adiabatically switched off at
finity ~the standard method in quantum field theory@24#!.
Thus the following operators are put into formula~30!:

Ya~v!5E
2`

`

Ŝa~ t !e2eutue2 ivtdt. ~74!

Performing partial integration and then passing to the lim
e→0 we obtain

Ya~v!5
1

ivE2`

`

dte2 ivtS d

dt
Sa~ t ! D5

1

v
Xa~v!. ~75!

We then obtain the following formula for errord:

d5(
a,b

E
2`

` dv

v2
Rab~v!$^cuXa

†~v!Xb~v!uc&

2^cuXa
†~v!uc&^cuXb~v!uc&%. ~76!
1-9
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B. Quantum information processing in the minimal
decoherence regime

We consider the simplest quantum gate: rotation o
single qubit by an angleaP@0,2p#, in the case of a two-
level atom coupled to the electromagnetic field at zero te
perature. The time dependent Hamiltonian will be of t
form HC(t)5 1

2 f (t)sz , with

E
2`

`

f ~ t !dt5a, lim
t→6`

f ~ t !50. ~77!

The interaction Hamiltonian isHint5sx^ f, and the spectra
density, as discussed earlier, is

R~v!5H R0v3 for v>0,

0 for v,0.
~78!

The full unitary transformation is given by

UC5UC~`,2`!5e2(1/2)asz. ~79!

The parametera is the amount of ‘‘action’’ needed to per
form the transformation. Roughly speaking,a is the product
of energy pumped into the system during the performing g
and the time of operation. In the case of nonrectangular p
shape, the time is given by the width of pulse. Typically,
the energy is low, then the accompanying dissipation
small; however, the time of the operation is long~while in
quantum computation, one would prefer short-time gat!.
Adding more energy, we obtain short time, but simul
neously enhance decoherence, causing loss of fidelity. Le
now calculate the fidelity. We have

X~v!5F2~v!s21F1~v!s1, ~80!

where

F65E
2`

`

dte2 ivt f ~ t !e6 if(t) ~81!

with f(t)5*2`
t f (u)du. From the formula~76! one easily

finds that any rapid variation off (t) will result in large error.
Indeed, the changes produce long tails of the Fourier tra
forms F6 , which, integrated withR0v for v>0, give poor
fidelity. In order to minimize this effect, we choose th
Gaussian shape of the pulse

f ~ t !5
a

A2pt1

expF2
1

2
~ t/t1!2G , ~82!

where t1 can be taken as the time of performing a sing
gate. Using the approximate formulaf(t). f (0)t1a/2 one
finds

uF6~v!u5a expH 2
1

2 S vtC6a
1

A2p
D 2J . ~83!

Consequently, the error can be estimated as follows:
06210
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d.~^cus1s2uc&2u^cus1uc&u2!a2R0t1
22 . ~84!

Taking the average over possible input statesc we get

d1;R0a2t1
22 ~85!

up to a constant factor.
We execute ‘‘algorithm’’ with actionA in n steps~gates!,

i.e., a5A/n5O(1). It turns out that the formula~76! is
additive with respect to the composition of gates. To se
considern Gaussian pulses of widtht1 separated with time
t5mt1, where m@1. This is the smooth realization o
kicked dynamics considered earlier. One finds

Xa~v!5(
j 51

n

e2 iv jtÛ†~ j t,0!Ya
j ~v!, ~86!

where

Ya
j ~v!5E

2t/2

t/2

e2 ivt
d

dt
Û†~ t, j t!Sa . ~87!

Now, we have, for example,

^cuXa
†~v!Xb~v!uc&

5(
j , j 8

e2 ivt( j 82 j )^U~ j t,0!cuYa
j †~v!Yb

j ~v!uU~ j t,0!c&.

~88!

Taking the large separation between gates, we obtain tha
terms involvingj Þ j 8 are averaged out by rapid phase ro
tion. The remaining term is nothing but the sum of sing
gate terms.

Consequently, forn pulses with average errord1 the total
error is given by

dn;nd1 . ~89!

Suppose now that we would like to keep the total error bel
some thresholde, then we obtain the following estimatio
for the time of computationtC5n(m11)t1 ~wheret1 is the
time of single pulse!:

tC>
1

Ae
R0

1/2~m11!n3/2. ~90!

In conclusion, it is possible to keep high fidelity, at the e
pense of worse scaling of the physical timetC;n3/2 in com-
parison with ‘‘algorithmic’’ time talg;n.

Finally, one should mention that our result is not restrict
to the simple one-qubit system. If one takes two qubits, a
some two-qubit gate, the reasoning will be similar. If t
system isK qubit ~still with, say, at most two-qubit gates!,
the only difference will be the need of scaling fidelity p
one qubit as 1/K to get high fidelity of the total finalK-qubit
state. This can be achieved by further slowing down
gates. Finally, to keep high fidelity of the quantum compu
in vacuum we need physical time to scale astC;n3/2AK or
1-10
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tC;nAv, wherev5nK is the complexity of the problem~or
volume of the algorithm!, i.e., the number of steps times th
number of qubits needed to run the algorithm.

VII. CONCLUDING REMARKS

We have developed a dynamical description of a deco
ing quantum computer. We have obtained dependence o
structure of decoherence on the quantum memory of the
ervoir. The nonlocal structure of decoherence implied
vacuum memory suggests that long quantum computatio
constant error rate is impossible. Instead, one should
with short-time quantum computation by the use of low f
quencies. This of course requires optimization of the kind
performed in the last section. However, that the scheme
FT quantum computing can be defended cannot be exclu
Indeed, the collective noise attacks due to memory are
special type: they can be viewed as a result of the propa
tion backward in time of single-qubit errors.

Finally, we have designed the most optimisticminimal
decoherence model, and provided a fidelity formula, in first
order approximation. Using it we have shown how the tim
energy trade-off influences scaling of the physical time
computation.

In general, we have argued that in a description of qu
tum computing the Markovian approach fails, as far as lin
ob

on

dis

he
al

d

06210
r-
he
s-
y
at
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e
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d.
a
a-

-
f

-
r

coupling to a boson field is concerned. The effects are r
tively small for coupling to electromagnetic vacuum. O
results can have practical meaning for the systems interac
with phonons, like, e.g., quantum dots~cf. @25#!, where the
coupling is much stronger. Then the memory effects can
of similar order as other sources of decoherence. There
also less fundamental but practical sources of memory s
as the heating mechanism in ion traps@26#.

Finally, we believe that our non-Markovian dynamical d
scription of quantum computing will have some meaning
future practically useful implementations of the quantu
computer involving large numbers of qubits and a relativ
long time of computation@27#.
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