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Abstract
We study the topological constraints on the dynamics of magnetic field lines in flux
tubes. Our approach is based on the application of the topological invariant: fixed
point index. We consider periodic flux tubes and find various restrictions on the field
lines that come from the sequence of fixed point indices of iterations. We also ana-
lyze the case of a tube with a cylindrical obstacle, deducing some special dynamical
properties of the field line mapping from geometrical properties of the tube and the
additional assumptions put on the field.

Keywords Magnetic flux tubes · Fixed point index · Diffeomorphisms ·
Low-dimensional dynamics
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1 Introduction

Magnetic flux tubes are one of the most important structures used in description and
analysis of the evolution of astrophysical magnetic fields. The interest in study of
fixed point index for field line mappings in magnetic flux tubes comes from induced
topological constraints on thedynamics of the field. Namely, according to the theory of
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Taylor [20] concerning magnetohydrodynamics of toroidal plasmas, the topological
constraints are gradually relaxed until so-called linear force-free final state.

However, recent works (see e.g. [18, 23, 24] and references therein) show that
this does not necessarily apply to the magnetohydrodynamics of the solar corona.
This observation has been explained by the additional topological constraints coming
from fixed point index theory, which prevent from reaching the final state predicted
by Taylor’s theory.

In case of flux tubes instead of considering the continuous flow of the field through
the tube, one can analyze the discrete field line mapping through the consecutive
horizontal cross-sections of the tube: f : D → D, where D is a two dimensional
closed disk. Consequently, the methods of discrete dynamical systems apply, which
enable one to examine a topological invariant for f called fixed point index.

Let us mention here that fixed point index could be successfully applied for
topological characterization of physical objects called vortices that are used in
description of many real physical systems (Bose-Einstein condensates, superfluid
helium, coherent optical fields, singular electron microscopy and others) [5, 8, 21].

Assuming that the flow lines preserve the boundary of a general flux tube, the sum
of indices of interior fixed points is invariant under the evolution of the field. Anal-
ogously, one can consider periodic point indices for a periodic flux tube (fixed point
indices of iterated mappings), which, although potentially lead to infinitely many
such invariants, give rise to at most two types of independent dynamical constraints
(see Theorem 4.2 in [23]).

In the current paper we generalize mathematical approach from [23] in two direc-
tions. First, we analyze dynamics of field line mappings under weaker assumptions
put on the field itself, obtaining the same types of results. Namely, basing on recent
theory developed in [11] and the smooth index theory (cf. [2, 4]) we obtain results
similar to those of Yeates and Hornig in [23] without demanding non-degeneracy of
fixed/periodic points (hard to verify in practice), and also dropping the assumption
on the vanishing of the field divergence (Theorems 3 and 4).

Second, we also study vector fields not only in cylindrical tubes but also in annular
ones, using the geometry of the obstacle inside the tube to obtain additional informa-
tion about the dynamics of the field. This approach gives us some types of bounds
which come from fixed point indices (Theorems 5, 6 and 7), but also other types of
dynamical restrictions. Basing on the results of Franks (related to the rotation the-
ory for an area preserving annulus homeomorphism [6], our Theorem 8), we analyze
special properties of the magnetic field mapping in the annular tube. In particular,
we formulate the assumption on the vector field imposing that the induced annular
map is an area preserving diffeomorphism, in which case the existence of one peri-
odic point implies the existence of infinitely many periodic points (Proposition 1).
Therefore rotation theory also proves to be useful in studying of systems arising in
magnetohydrodynamics, as well as in other natural sciences (see e.g. [19] for neuro-
science applications). In our analysis the effective tool for detecting the existence of
periodic points is the so-called rotation number of a point. This part of our findings
is illustrated with suitable examples in the final section.
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2 Cylindrical Flux Tube with no Obstacles

2.1 Assumptions on the Field

Firstly we state all the necessary physical assumptions on the magnetic field and their
counterparts for the non-obstacle case.

After [23] the magnetic field will be denoted

B(x) = Brer + Bϕeϕ + Bzez,

where x = (r, ϕ, z) are the coordinates of a point in the cylinder C = {(r, ϕ, z) : 0 �
r � R, 0 � ϕ � 2π, 0 � z � 1} with radius R and height 1. The lower and upper
boundary discs of the cylinder (corresponding to z = 0 and z = 1, respectively) will
be denoted by D0 and D1. The boundary conditions of the field B are the following:

B �= 0, (1a)

Br |r=R = 0, (1b)

Bz(r, ϕ, z) > 0, for all (r, ϕ, z) ∈ C, (1c)

B|D0 = B|D1 . (1d)

We also assume that B is C1. The (1a) means that the magnetic field never com-
pletely vanishes. The second assumption (1b) means that the lateral surface (side
boundary) of the cylinder is invariant for the trajectories of the field (no crossing of
the surface). Equation (1c) guarantees that the field always points up and that its lines
can be parametrized with z (z acting as the time-variable), while (1d) is the peri-
odicity condition (the distribution of the normal magnetic field is the same across
both ends of the tube) which allows later for iterations of field line mappings. Such
periodicity occurs e.g. in flux tubes with toroidal geometry - see [23] and references
therein. Moreover, we expect that the theory developed in this paper can also be used
in analysis of solar coronal magnetic loops since numerical simulations of these loops
sometimes are periodic and in general it is possible to turn the aperiodic flux tube
into a periodic domain using so-called reference field (similar to the relative magnetic
helicity defined in [3]).

We remark that instead of the two our conditions (1c)–(1d), in [23] we have only
the requirement that Bz|D0 = Bz|D1 > 0. However, if the variable z is going to be
interpreted as “time”, then it is clear that Bz must be positive everywhere in C. Sim-
ilarly the “periodicity condition” on D0 and D1, which causes that taking iterations
of the field line mapping f (to be defined below) makes sense, also needs to hold not
only with respect to Bz but to the whole B. Moreover, the assumptions (1c)–(1d) are
satisfied by all the examples studied in [23], as well as they are implicitly present in
some proofs therein. Therefore considering (1a)–(1d) does not reduce generality of
our considerations.

Considering iterations we need to reformulate the assumption (1d) in the following
way:

B(r, ϕ, z) = B(r, ϕ, z + 1) for all (r, ϕ, z) such that z ∈ [0, ∞). (1d’)
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Note that (1d’) is only an extension of the toroidal dynamics (i.e. the dynamics
within the bounded tube, 0 � z � 1) onto the periodic unbounded tube due to the
periodicity of the vector field.

Another important assumption is the vanishing divergence of the field:

divB(r, ϕ, z) := ∇ · B = 0, (2)

where

∇ · B = 1

r

∂

∂r
(rBr(r, ϕ, z)) + 1

r

∂Bϕ

∂ϕ
(r, ϕ, z) + ∂Bz

∂z
(r, ϕ, z).

Equation (2) means that the magnetic flux is the same through any horizontal cross-
section of the cylinder. In the context of real magnetic fields condition (2) must
always be satisfied because otherwise such a field would violate Maxwell’s equa-
tions and would be unphysical. However, note that for our developments we do not
assume (2) in general, unless stated otherwise.

In our setting the variable z can be interpreted as “time”. Indeed, considering the
original autonomous system

⎧
⎨

⎩

ṙ = Br(r, ϕ, z),

ϕ̇ = Bϕ(r, ϕ, z),

ż = Bz(r, ϕ, z),

and dividing the coordinates of the field B by Bz (making use of the fact that Bz > 0)
we obtain two-dimensional system

{
dr
dz

= B̂r (r, ϕ, z),
dϕ
dz

= B̂ϕ(r, ϕ, z),
(3)

where B̂ = (B̂r , B̂ϕ, B̂z) with B̂ := B
Bz . This system is in general not autonomous,

as we allow Br , Bϕ and Bz to depend on z explicitly. However, it can be viewed as
the following three-dimensional autonomous system:

⎧
⎨

⎩

ṙ = B̂r (r, ϕ, z),

ϕ̇ = B̂ϕ(r, ϕ, z),

ż = 1,
(4)

which is equivalent to the original system.
Now we define field line mappings (for B̂) f : x0 �→ f (x0), assigning to a point

x0 = (r0, ϕ0) an endpoint of the magnetic line starting at (x0, 0) ∈ D0 and ending at
(f (x0), 1) ∈ D1. Since all magnetic field lines (being integral curves of B) connect
D0 with D1 in the same direction and are parametrized with z, 0 � z � 1, we obtain
that

F(x0, ẑ) :=
∫ ẑ

0

B(F (x0, z))

Bz(F (x0, z))
dz, ẑ ∈ [0, 1]

is the point of intersection of the field line starting at x0 ∈ D0 for z0 = 0 with
the section {z = ẑ} (where x0 = (r0, ϕ0) and F(x0, ẑ) = (rẑ, ϕẑ)). This gives the
definition

f (x0) := F(x0, 1). (5)
Note that in the view of (4), f can be identified with the time-1 map �(1, ·)

induced by the flow �(·, ·) arising from (4) for an initial condition x0 on the lower
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disc D0. Further, notice that f : D0 → D1 is an orientation preserving diffeo-
morphism of the disc D = D0 = D1 to itself (we assume that B is differentiable
and time-1 maps of smooth vector fields of bounded domains of Rn are orientation
preserving diffeomorphisms, see e.g. [1])

2.2 Topological Constraints on the Evolution of theMagnetic Field Given by Fixed
Point Indices of Iterations

Fixed point index is a well-known topological invariant that characterizes an isolated
fixed point. The sequence of fixed point indices of iterates is a powerful tool that was
used in various contexts in periodic point theory and dynamics, cf. for example [2, 4,
9–11].

Let f : R
2 → R

2 and p be an isolated fixed point of f . Then the fixed point
index, ind(f, p), is defined in the following way: we take a small neighborhood W

of p without any other fixed points (except for p) and take a circle C ⊂ W centered
at p. Then ind(f, p) is equal to the number of revolutions of the vector connecting z

with f (z) as the point z is running one revolution along C in the positive direction.
We can define ind(f, p) also in case f : D → R

2 and p ∈ ∂D. Let W ⊂ R
2 be

some neighborhood of p. Then ind(f, p) := ind(f̃ , p), where f̃ = f ◦ r and r is a
retraction of W onto D (cf. [16]). For example, assuming (0, 0) is the center of D of
radius R we can take W = R

2 and r(x) = R x
|x| and then:

f̃ (x) =
{

f (x) if |x| � R,

f (R x
|x| ) if |x| > R. (6)

Note that the map f̃ might be not differentiable even if f has this property. In
our considerations by a C1 map we understand a map which has continuous partial
derivatives also at the points belonging to the boundary of D (see Definition 1).

By Fix(f ) we denote the set of fixed points of f . By T 1
int and T 1

∂ we denote,
respectively, the sum of the indices of fixed points in the interior of the disc D and
on the boundary ∂D = S1:

T 1
int =

∑

p∈Fix(f )∩Int(D)

ind(f, p); T 1
∂ =

∑

p∈Fix(f )∩∂D

ind(f, p); T 1 := T 1
int + T 1

∂ .

We recall that T 1 is a homotopy invariant. In particular, if f is a continuous mapping
of the disc, then T 1 = 1 (as D is contractible and therefore any continuous map is
homotopic to the constant map g ≡ 0 which has a single fixed point at x0 = 0 with
index +1).

Similarly, if x0 is a periodic point of f with period q, then it is the fixed point of
f q and therefore one can define its fixed point index ind(f q, x0). Similarly as for
q = 1, we define T

q

int, T
q
∂ and get:

T q := T
q

int + T
q
∂ = 1. (7)

We remark that an alternative way to obtain (7) would be to use Poincaré-Hopf
theorem (compare with the proof of Lemma 4).
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Now, we will prove Lemma 1, which has strong implications in the description of
properties of the field line map. This result was obtained in [23] under the condition
that all periodic points are non-degenerate as well as under the assumption (2) stating
that the divergence is zero. For a fixed point x0 (which is in the interior of D) the
condition on non-degeneracy means that det(Df q(x0) − Id) �= 0 for each natural q.
However in our generalization below we drop both of these assumptions.

For the rest of this section we make another general assumption: the set Fix(f q)

(where f : D → D is a field line mapping) is finite for every q ∈ N. Note that this is
equivalent to the fact that every periodic point of f is isolated (as D is a compact set).

Lemma 1 (cf. Lemma 3.3 [23]) Let f be the field line mapping of the magnetic field
B in the cylindrical flux tube, with the conditions (1a)–(1d’) and finite set Fix(f q)

for every q ∈ N. Then for every fixed point x0 ∈ ∂D we have

ind(f q, x0) = ind(f, x0) for all q ∈ N. (8)

Before giving the proof of Lemma 1 we state Lemma 2 below. We use the
following notations:

R
m+1+ = {(x, t) ∈ R

m × R : t ≥ 0},

R
m+1
0 = {(x, t) ∈ R

m × R : t = 0}.

Definition 1 By a C1 map we understand a map which has continuous partial deriva-
tives of degree 1, where for a point x0 ∈ R

m+1
0 we consider right derivatives ∂+fi(x0)

∂t
,

i = 1, . . . , m + 1.

We denote by D := Df (0, 0) the derivative of f at (0, 0) ∈ R
m × R+.

Lemma 2 (Lemma 3.3 in [11]) Let f : R
m+1+ → R

m+1+ be a C1 map such that
f (Rm+1

0 ) ⊂ R
m+1
0 and let (0, 0) ∈ R

m+1 be an isolated fixed point of f such that
∑q−1

j=0 Dj is nonsingular. Then (0, 0) is an isolated fixed point of f q and

ind(f q, (0, 0)) = ρ · ind(f, (0, 0)), (9)

where ρ = sign det
(∑q−1

j=0 Dj
)
.

Proof of Lemma 1 In our case m = 1 and, as the boundary of the upper half-plane
R × R+ is locally homeomorphic to ∂D, we will identify x0 with (0, 0), IntD with
Int(R×R+) and ∂D with ∂(R×R+). We represent our map f , defined in (5), locally
near the fixed point x0 ∈ ∂D as f (x, t) = (f1(x, t), f2(x, t)), where x ∈ R and
t � 0.

First observe that, as f preserves the boundary, the derivative of f at (0, 0) has
the form

D =
[

a ·
0 b

]

, (10)
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where a = ∂f1
∂x

(0, 0) and b = ∂f2
∂t

(0, 0). Notice that b � 0 by the definition (we are
in R×R+). Furthermore, f is a diffeomorphism that preserves the orientation so we
obtain that a > 0 and in fact b > 0.

Thus we obtain that for each q

det
q−1∑

j=0

Dj =
q−1∑

j=0

aj ·
q−1∑

j=0

bj > 0. (11)

As a consequence, by Lemma 2, we get that for a fixed point (0, 0):

ind(f q, (0, 0)) = ind(f, (0, 0)). (12)

This completes the proof of Lemma 1.

Definition 2 For a given d ∈ N we define the basic periodic sequence:

regd(q) =
{

d if d|q,

0 if d � |q.
The representation of a given sequence as the sum of basic periodic sequences is

called a periodic expansion.

Using the language of periodic sequences we may express the equality (12) as:

ind(f q, (0, 0)) = a1reg1(q), (13)

where a1 = ind(f, (0, 0)).
In contrast to simple behavior of indices for the boundary fixed points, the behav-

ior of indices of an interior fixed point can be more complicated. The following
theorem was proved in [2] (Theorem 3.7) and gives the possible periodic expansions
for fixed point indices at fixed points. Let us denote by σ(Df (p)) the spectrum of
derivative of f at p.

Theorem 1 Let f be a planar orientation preserving diffeomorphism.

(1) There can be only two forms of local indices of iterations at the fixed point
p ∈ Fix(f ):

(α) ind(f q, p) = a1reg1(q), if there are no roots of unity of degree greater
than 1 in σ(Df (p))

(β) ind(f q, p) = reg1(q) + adregd(q), if there is a primitive root of unity of
degree d > 1 in σ(Df (p)),

where ai ∈ Z (i = 1, d), d � 2 in all cases.
(2) Every sequence of one of the forms (α) or (β) can be realized as

{ind(f q, p)}∞q=1 for some local diffeomorphism f of R2.

For k � 1 we define P k(f ) = Fix(f k) and Pk(f ) = P k(f )\⋃
0<n<k P n(f ). The

former is the set of k-periodic points of f . If Pk(f ) �= ∅ then k is called a minimal
period of f . The set of all minimal periods of f will be denoted by Per(f ) and the
set of all periodic points of f by P(f ).
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Let p ∈ Pk , then the k-orbit of p is defined as the set Op =
{p, f (p), . . . , f k−1(p)}. The sequence of indices for an orbit (equal to the sum of
indices of periodic points in the orbit) can be easily deduced from Theorem 1 by
replacing each regd (including reg1) by regkd (cf. Lemma 2.10 in [12]). Namely:

Theorem 2 Let f be a planar orientation preserving diffeomorphism.

(1) There can be only two forms of local indices of iterations at k-periodic orbit Op:

(α′) ind(f q, Op) = akregk(q), if there are no roots of unity of degree greater
than 1 in σ(Df k(p)).

(β ′) ind(f q, Op) = regk(q)+akdregkd(q), if there is a primitive root of unity
of degree d > 1 in σ(Df k(p)),

where ai ∈ Z (i = k, kd), d � 2 in all cases.
(2) Every sequence of one of the forms (α′) or (β ′) can be realized as {ind(f q, Op)}∞q=1

for some local diffeomorphism f of R2, where p is a periodic point of f .

In the further part of the paper we will use the following well-known fact (cf. for
example [14]).

Lemma 3 The set of minimal periods of an orientation preserving circle homeomor-
phism consists of one element or is the empty set.

Observe now that in our context, by Lemma 3, Per(f|∂D) = ∅ or Per(f|∂D) = {k}
(k = 1, 2, . . . is a given fixed period). In the last case denote by xi periodic points of
f in ∂D. Then the sequence of indices of (f k)n at each xi is constant by Lemma 1,
i.e.

ind((f k)n, xi) = ai
k, (14)

where ai
k = ind(f k, xi) (and k is fixed). Of course, if k � q then ind(f q, xi) = 0.

Finally, summing over all points xi we get that

T
q
∂ =

∑

i

ai
kregk(q). (15)

We arrive at the important result:

Theorem 3 (cf. Theorem 4.2 in [23]) If f is the field line map of the magnetic field
over cylindrical flux tube with our assumptions (1a)–(1d’), then

a) if T 1
int �= 1, then T

q

int = T 1
int �= 1 for all q ∈ N,

b) if T 1
int = 1, then T

q

int = 1 for all q ∈ N iff
∑

i ai
k = 0.

Proof Case a). If T 1
int �= 1, then T 1

∂ �= 0, thus there exists a fixed point p of f in
∂D, which means by Lemma 3 that the set of minimal periods Per(f ) = {1}, i.e
the set of periodic points of f consists only of fixed points. Consequently,

T
q
∂ =

∑

p∈Fix(f )∩∂D

ind(f q, p) =
∑

p∈Fix(f )∩∂D

ind(f, p) = T 1
∂ , (16)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Math Phys Anal Geom (2018) 21: 26 Page 9 of 18 26

where in the second equality we used Lemma 2.
By the formulas (7) and (16) we obtain:

T
q

int = 1 − T
q
∂ = 1 − T 1

∂ = T 1
int, (17)

which ends the proof of the Case a).
Case b). Again, we have T

q

int = 1 − T
q
∂ . Thus T

q

int = 1 is equivalent to T
q
∂ = 0 i.e.

to
∑

i ai
k = 0.

Remark 1 If there are no periodic points on the boundary, then the condition
∑

i ai
k =

0 of item b) of Theorem 3 is automatically satisfied. To verify this condition one
may use rotation number. Let us recall that irrationality of the rotation number of an
orientation preserving circle homeomorphism is equivalent to the absence of periodic
points ([14]). The rotation number is easily computed as


(f ) := lim
n→∞

f̃ n(x) − x

n
mod 1,

where x ∈ R is arbitrary initial condition and f̃ denotes any lift of the map f to R

with respect to the projection p : t �→ e2πıt ∈ S1.

If the condition
∑

i ai
k = 0 in the case b) of Theorem 3 is not satisfied, there

are additional constraints for the magnetic field which follow from iterations. Now
we define a quantity that is an invariant for a higher order iterations and gives some
constraints on the field evolution.

First we define the notion of γn-periodic points (for the related definition of so-
called δm-periodic points see [13, 17]).

Definition 3 A periodic point x of f with minimal period k is said to be a γn-periodic
point (n > 1) if n = kd, where d denotes the degree of a primitive root of unity in
σ(Df k(x)).

Theorem 4 If f is the field line map of the magnetic field over cylindrical flux tube
and n > 1 is the minimal period for boundary periodic points of f with non-zero
indices, then f has either an n-periodic point or γn-periodic point in IntD.

Proof We can rewrite the equation 1 − T
q
∂ = T

q

int in the form:

reg1(q) − Anregn(q) =
∑

p∈Fix(f )∩IntD
ind(f q, p), (18)

where in the left hand-side there are terms related to the periodic expansions of the
orbits in ∂D (notice that by the formula (15) An = 1

n

∑
i ai

n, An �= 0).
The term regn(q) must be realized by a periodic expansion of an orbit Op ⊂ IntD,

which is either a fixed point or an orbit of higher period. On the other hand, we know
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(Theorem 2) the forms of expansions of periodic orbits. Namely, regn(q) could be
realized by indices of:

1) n-orbit of the form (α′) of Theorem 2 or
2) either by the sum of some indices of n-orbits of the form regn(q) in (β ′); or an

orbit of a γn-periodic point in (β ′).

Remark 2 In fact from the above proof we can deduce that in case there are no
γn-fixed points in IntD, then in addition to a periodic point there must be also a
fixed point in IntD, as its periodic expansion must realize reg1(q) appearing in the
left-hand side of (18).

3 Cylindrical Flux Tube with Cylindrical Obstacle Inside: An Annulus
Case

3.1 Topological Constraints Determined by Fixed Point Indices of Iterations

In this part of our work we consider the case of the disk with a hole (annulus), i.e.
the situation where some (cylindrical) solid obstacle is placed within the tube. We
assume this obstacle is homogenous in shape along the whole tube so that any plane

Fig. 1 The scheme of a
cylindrical magnetic flux tube
with one cylindrical obstacle,
leading to a field line mapping
between two annuli spaces
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parallel to the base of the cylinder introduces the same section of the tube (see Fig. 1).
The conditions (1a)–(1d’) are now translated into the following:

B �= 0, (19a)

Br |r=R1 = Br |r=R2 = 0, (19b)

Bz(r, ϕ, z) > 0 ∀(r,ϕ,z), (19c)

B(r, ϕ, z) = B(r, ϕ, z +1) for all (r, ϕ, z) such that R1 � r � R2 and z ∈ [0, ∞), (19d)

where R1 and R2 (R1 < R2) denote the radius of the base of the interior and exterior
cylinder, respectively, and A0 and A1 are the lower and upper annulus (for z = 0 and
z = 1, respectively) in the base and “top”-section of the tube. Since A0 = A1 when
dropping the z-coordinate, we will write simply A0 = A1 = A, with ∂A = S1 ∪ S2,
S1 and S2 denoting the two circles with radius R1 and R2, correspondingly. Similarly
as before, we obtain a map f : A → A (given by the formula (5)) which is an
orientation preserving diffeomorphism of A. Therefore f preserves the boundary
∂A. We recall that in general there exist orientation preserving diffeomorphims of

A, which exchange boundary components (e.g. f (r, ϕ) =
(√

R2
1 + R2

2 − r2, −ϕ

)

).

However, the condition (19b) implies that when f is a field line mapping obtained
from our vector field, then f preserves boundary components.

The following lemma holds:

Lemma 4 Let f : A → A be an orientation preserving diffeomorphism. We assume
that for every q ∈ N the set Fix(f q) is finite. Then

T
q
int + T

q
∂ = 0 (20)

for all q ∈ N.

Proof We use the well-known version of Poincaré-Hopf theorem, stating that for a
homeomorphism f of a manifold M the following relation holds (cf. [16]):

χ(M) =
∑

x0∈Fix(f )

ind(f, x0),

where χ denotes the Euler characteristics of M .
In our case, χ(A) = χ(S1) = 0. Of course, the same property holds for every

iteration f q , which yields the formula (20).

Denote by xi periodic points of f with minimal period k1 in S1 ⊂ ∂A and by
yj periodic points of f with minimal period k2 in S2 ⊂ ∂A. Then the sequence of
indices of (f k1)q at each xi or (f k2)q at yj is constant by Lemma 1. Thus, T

q
∂ =

∑
i ai

k1
regk1

(q) + ∑
j a

j
k2
regk2

(q). We obtain the counterpart of Theorem 3 (with an
analogous proof, which we omitt).

Theorem 5 If f is the field line map of the magnetic field over a cylindrical flux
tube with a cylindrical obstacle inside, then
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a) if T 1
int �= 0, then T

q

int = T 1
int �= 0 for all q ∈ N,

b) if T 1
int = 0, then T

q

int = 0 for all q ∈ N iff
∑

i ai
k1

= ∑
j a

j
k2

= 0.

Again in the case b) of Theorem 5 if the condition
∑

i ai
k1

= ∑
j a

j
k2

= 0 is
not satisfied we obtain additional constraints for the magnetic flow. Assume that
∑

i ai
k1

�= 0 and
∑

j a
j
k2

�= 0 (if only one of the sum is non-zero an analogous state-
ment with one period applies). Then there are some periodic points of minimal period
k1 in S1 and k2 in S2. Repeating the reasoning contained in the proof of Theorem 4
with two terms Ak1 regk1

(q) and Ak2 regk2
(q) in the left-hand side of (18) we get:

Theorem 6 If f is the field line map of the magnetic field over cylindrical flux tube
with cylindrical obstacle inside, and k1, k2 > 1 are the minimal periods for boundary
periodic points of f , then f has k1-periodic point or γk1-periodic point as well as
k2-periodic point or γk2-periodic point in IntD.

Now, let us assume that all periodic points are non-degenerate and that (2) is sat-
isfied i.e. the divergence is zero. Then, it has been proved in [23] (Lemma 3.3) that
for a boundary fixed point x0

ind(f q, x0) ∈ {−1, 0} and (ind(f q, x0))q is a constant sequence. (21)

Under these assumptions we can obtain the refinement of Theorem 6.

Theorem 7 Under the above assumptions, if f is the field line mapping of the
magnetic field over a cylindrical flux tube with a cylindrical obstacle inside, and
k1, k2 > 1 are the minimal periods for boundary periodic points of f with non-zero
indices, then f has k1-periodic point and k2-periodic point in IntD with non-negative
indices of iterations.

Proof Let x0 ∈ Pm(f ) ∩ ∂A be a periodic point with ind(f m, x0) �= 0 (and m = k1
or m = k2). Then by the (21) we get that

ind(f q, Ox0) = −regm(q). (22)

Now let us establish the formula for indices of non-degenerate points located
inside A.

Let us denote for short the derivative of f at y0 ∈ Fix(f ) ∩ IntA by D = Df (y0)

and by σ(D) its spectrum. By σ+ we denote the number of real eigenvalues of D

greater than 1 and by σ− the number of real eigenvalues of D less than −1, in both
cases counting with multiplicity. We get (cf. [4]):

ind(f q, y0) = sgn det(Id − Dq) =
{

(−1)σ+ if q is odd,

(−1)σ++σ− if q is even.
(23)

On the other hand, as f is orientation preserving, σ− = 0 or σ− = 2 is an even
number. As a result, ind(f q, y0) = ±reg1(q). Consequently, for y0 ∈ Pm(f ) ∩ IntA

ind(f q, Oy0) = ±regm(q). (24)
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By the assumption there are points of minimal period k1 and k2 in ∂A. Thus, by
the equation (20) and (22) we obtain:

|Ak1 |regk1
(q) + |Ak2 |regk2

(q) =
∑

p∈P(f )∩IntD
ind(f q, p), (25)

where Ak1 < 0, Ak2 < 0 and |Ak1 |, |Ak2 | denote the number of periodic orbits of the
period k1 or k2 with non-zero indices on the respective boundary component of ∂A.
Let O(m) denote an m-orbit of f . Applying the formula (24) we obtain:

|Ak1 |regk1
(q) + |Ak2 |regk2

(q) =
∑

m

∑

O(m)⊂IntD

±regm(q), (26)

which gives the thesis.

3.2 Topological Constraints Resulting from the Geometry of the Tube

In this part we recall some results concerning periodic orbits and rotations numbers
for homeomorphisms of annulus, as summarised in [6], and apply them in our case.
As in this section we do not make use of the index theory, we omit the assumption
that Fix(f q) is finite for every q, i.e. we allow for non-isolated fixed and periodic
points. Let us define an annulus A as A := S1 × I , where I = [0, 1].

Definition 4 Let f : A → A be a homeomorphism. We say that F : Ã → Ã, where
Ã := R × I , is a lift of f , if

f (π̄(x, y)) = π̄(F (x, y)),

where π̄ : Ã → A is given by π̄(x, y) = (p(x), y).

In this case, G(x, y) := F(x, y) + (m, 0), m ∈ Z, is also a lift of f .
Before we define the rotation number for an annulus map, we need to define the

translation number with respect to its lift:

Definition 5 Let f : A → A be an orientation preserving homeomorphism which
preserves boundary components and let F : Ã → Ã be its lift. The translation
number of a point w = (x, y) ∈ Ã under F is defined as

τ(w, F ) := lim
n→∞

p1(F
n(w) − w)

n
,

(provided that the limit exists), where p1 : Ã → R is the projection on the first
coordinate. Now, the rotation number of π̄(w) under f is the element of S1 = R/Z

defined by

(π̄(w), f ) := p(τ (w, F )).

We remark that if τ(w, F ) exists then 
(π̄(w), f ) exists as well and is well
defined, i.e. does not depend on the choice of a lift F .

Note also that since we identify S1 with R/Z, the projection p is equivalent to
taking mod 1, i.e. one can write 
(π̄(w), f ) = τ(w, F ) mod 1.
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For an annulus homeomorphism the rotation number 
(π̄(w), f ) might not exist,
and even if it exists it might depend on the point π̄(w) ∈ A at which it is calculated.
Nevertheless, it still has some good properties [6]:

– periodic orbits have rational rotation numbers
– if f preserves a probability Borel measure μ, then 
(x, f ) exists for all x ∈ A,

except a set of μ measure zero. Moreover,

τμ(F ) :=
∫

S1
τ(x, F )dμ =

∫

S1
�dμ,

where � : A → R, �(π̄(w)) = p1(F (w) − w) is the displacement function of
F . The value of τμ(F ) is called the mean translation number of F .

Definition 6 If f : A → A is an orientation preserving homeomorphism, which
preserves boundary components and F : Ã → Ã is its lift, then the collection of all
translation numbers of points (for which the translation number exists)

rot(F ) := {τ(w, F ) : w ∈ Ã}
is called the rotation set of f .

The set rot(F ) is closed. Moreover, if we further assume that our map f is also
area-preserving, then the rotation number tool is especially interesting. In particular,
the rotation set is in this case a closed interval (see e.g. remarks following Theorem
4.3 in [6]) and the following holds:

Theorem 8 (cf. [6]) Suppose that f : A → A is an area preserving homeomorphism
which preserves orientation and boundary components. Let F : Ã → Ã be its lift. If
there exist two points w0, w1 ∈ Ã such that

τ(w0, F ) �= τ(w1, F )

then f has infinitely many periodic points. Moreover, the set of minimal periods of
these periodic points is infinite.

The above theorem is a compilation of Theorem 4.1, Theorem 4.2, Theorem 5.4
and Theorem 5.7 from [6]. It can be justified by the properties of the rotation set:
precisely, if τ(w0, F ) �= τ(w1, F ), then the rotation interval rot(F ) is non-degenerate
since it contains the non-trivial interval [τ(w0, F ), τ (w1, F )] and every number τ ∈
rot(F ) is realized as the translation number τ(w, F ) for some w ∈ Ã. As the rational
translation numbers correspond to periodic orbits, the statement about period points
follows. In particular, if p/q ∈ Q (where p/q is in lowest terms) satisfies

τ(w0, F ) � p/q � τ(w1, F ),

then there exist at least two distinct periodic orbits with minimal periods q, as follows
from Theorem 4.2 in [6].

We also remark that if F0(x) := F(x, 0) and F1(x) := F(x, 1) denote the lifts
of the induced circle homeomorphisms f0 = F0 mod 1 and f1 = F1 mod 1 at
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the boundary components of A, then the unique rotation numbers 
(f0) and 
(f1)

of these circle homeomorphisms coincide with rotation numbers of boundary points
under annulus homeomorphism f , i.e. 
(f0) = τ(w0, F ) mod 1 and 
(f1) =
τ(w1, F ) mod 1, where π̄(w0) and π̄(w1) are arbitrary points on the corresponding
boundary components of A (w0 = (x0, 0) ∈ Ã and w1 = (x1, 1) ∈ Ã). Denoting
these unique translation numbers as τ(F0) := τ(w0, F ) and τ(F1) := τ(w1, F ), it is
often convenient to check whether τ(F0) �= τ(F1) in order to apply Theorem 8.

Another classical result that may be applied in our developments is the following:

Theorem 9 (cf. Theorem 3.5 in [7]) Let f : A → A be an area preserving homeo-
morphism, isotopic to the identity. If f has at least one fixed or periodic point, then
f must have infinitely many interior periodic points.

One can formulate a variety of conditions for the field B, each of which implies
that the arising map f : A → A is area preserving. Under the additional assumption
(2), this holds, for example, when

Bz(f (x0)) = Bz(x0) (27)

for every field line f and every x0 ∈ A. Indeed, then

|Df |(x0) = Bz(x0)

Bz(f (x0))
= 1

at every point x0 (cf. [23]). Of course, in this case f preserves also Lebesgue measure
�, and therefore the rotation number exists and is unique for almost all x ∈ A. Below
we provide some explicit condition for the map f : A → A to be area-preserving.

Proposition 1 Let f : A → A be the field line mapping of the magnetic field B̂
defined by the (4) associated with the field B satisfying our assumptions (19a)–(19d).
Moreover, we assume that divB(r, ϕ, z) = 0 and that

∀(r,ϕ,z) rBr(r, ϕ, z)
∂Bz

∂r
(r, ϕ, z) + Bϕ(r, ϕ, z)

∂Bz

∂ϕ
(r, ϕ, z) = 0. (28)

Then the induced map f : A → A preserves Lebesgue measure �, i.e. f is area
preserving.

In particular, the rotation number 
(x, f ) exists for all x ∈ A, the mean rotation
number τμ(F ) (where μ is the measure � normalised over A) exists as well and
Theorems 8 and 9 apply.

Proof Consider the three-dimensional flow �t induced by (4). This flow, on the
account of the Liouville’s Theorem (see e.g. Lemma 2.4 in [22]), preserves (three-
dimensional) Lebesgue measure, i.e.

�3(C) = �3(�
t (C)), (29)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


26 Page 16 of 18 Math Phys Anal Geom (2018) 21: 26

for any t and Lebesgue-measurable subset C of the tube, since the divergence divB̂ =
0. Indeed calculating divB̂ we obtain

divB̂ = 1

rBz(r, ϕ, z)

[

r
∂Br

∂r
(r, ϕ, z) + Br(r, ϕ, z) + ∂Bϕ

∂ϕ
(r, ϕ, z)

]

+

− 1

r(Bz(r, ϕ, z))2

[

rBr(r, ϕ, z)
∂Bz

∂r
(r, ϕ, z) + Bϕ(r, ϕ, z)

∂Bz

∂ϕ
(r, ϕ, z)

]

.

The first term in square brackets above vanishes since divB = 0 and the second
one is exactly the condition (28).

Now we show that also f : A0 → A1 preserves (two-dimensional) Lebesgue
measure, i.e. �2(N0) = �2(f (N0)), where N0 is an arbitrary open set contained in
A0.

Let us denote by Nt an open set which is the image of N0 under �t (Nt ⊂ At ,
with At = �t(A0)). For a given ε we define

Nε
t = {(x, z) : x ∈ Nt, t � z � t + ε}. (30)

Observe that by the formula (29) for a fixed ε we have: �3(N
ε
t ) = const. for all t .

In particular,
�3(N

ε
0 ) = �3(N

ε
1 ), (31)

which implies

lim
ε→0

�3(N
ε
0 )

ε
= lim

ε→0

�3(N
ε
1 )

ε
,

i.e. �2(N0) = �2(N1).

We also remark that the condition (28) is not very restrictive in fact. In particular,
all the examples studied in [23] satisfy it trivially, since always Bz ≡ 1 (and Br and
Bϕ do not depend on z) therein.

3.3 Examples

At the end we present two examples, which allow for easy computation of transla-
tion numbers of points in ∂A and hence for drawing conclusions on the existence of
periodic points in IntA.

Example 1 As the first example, let us consider vector field B = (Br, Bϕ, Bz) with
⎧
⎨

⎩

Br(r, ϕ, z) = (r − 1)2(2 − r)2

Bϕ(r, ϕ, z) = 2π
3 (2 − r) + 4π

3 (r − 1) − ϕ(r − 1)(2 − r)[(r − 1)(2 − r) + 2r(3 − 2r)]
Bz(r, ϕ, z) = 1

The field B readily satisfies all the assumptions of Proposition 1 and induces a
field line mapping f : A → A of the annulus with radii R1 = 1 and R2 = 2, which is
a diffeomorphism, preserving orientation, boundary components and Lebesgue mea-
sure. Moreover, on these circles {r = R1} and {r = R2}, f reduces, correspondingly,
to the rotation by 2π

3 (i.e. 1/3 of the full angle 2π) and to the rotation by 4π
3 . Indeed,

Bϕ(1, ϕ) = 2π
3 and Bϕ(2, ϕ) = 4π

3 and �(ϕ, z) = ϕ + 2π
3 z and �(ϕ, z) = ϕ + 4π

3 z

are the flows induced on {(R1, ϕ, z)} and {(R2, ϕ, z)}, respectively. It follows that the
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rotation number τ(ω) = 1/3 for every point ω on the internal circle {r = R1} and
τ(ω) = 2/3 on the external circle {r = R2} (under the projection ϕ �→ exp(ıϕ)).
Thus on the account of Theorem 8, the set of minimal periods of f is infinite.
Moreover, as one concludes from Theorem 4.3 in [6] (see also [15]), every number
τ ∈ [1/3, 2/3] is a translation number for some point w ∈ Ã (the closed rotation
interval rot(f ) := {τ(w, F ) : w ∈ Ã} contains the interval [1/3, 2/3]).

Therefore, for any co-prime p, q ∈ N, 1/3 � p/q � 2/3, f : A → A has a
periodic point with minimal period q.

Example 2 Let B be the so-called hyperbolic vector field (see also [23]) with Bz ≡ 1
and

Bhyp(r, ϕ) =
(
2 cos(2ϕ) sin

(πr

2

)
, − sin(2ϕ)

[
sin

(πr

2
+ πr

2
cos

πr

2

)])
. (32)

It is immediate to check that the conditions listed in Proposition 1 hold, with R1 = 2
and R2 = 4. On the invariant circle {r = R1} we obtain:

Bϕ(2, ϕ) = π sin(2ϕ)

whereas on {r = R2} we have:
Bϕ(4, ϕ) = −2π sin(2ϕ)

Thus we readily see that 0 ≡ 2π, π
2 , π, 3π

2 are the fixed points on both these
circles and both translation numbers (as verified also numerically) vanish: τ(F0) =
τ(F1) = 0. (It is also possible to obtain the exact formulas for F0 and F1 by solving
corresponding one-dimensional differential equations on the intervals between the
nearby fixed points).

However from the existence of these (boundary) fixed points, it follows (on the
account of Theorem 9) that that there are infinitely many interior periodic points as
well.
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