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EDGE SUBDIVISION AND EDGE MULTISUBDIVISION
VERSUS

SOME DOMINATION RELATED PARAMETERS
IN GENERALIZED CORONA GRAPHS

Magda Dettlaff, Joanna Raczek, and Ismael G. Yero

Communicated by Dalibor Fronček

Abstract. Given a graph G = (V, E), the subdivision of an edge e = uv ∈ E(G) means the
substitution of the edge e by a vertex x and the new edges ux and xv. The domination subdi-
vision number of a graph G is the minimum number of edges of G which must be subdivided
(where each edge can be subdivided at most once) in order to increase the domination number.
Also, the domination multisubdivision number of G is the minimum number of subdivisions
which must be done in one edge such that the domination number increases. Moreover,
the concepts of paired domination and independent domination subdivision (respectively
multisubdivision) numbers are defined similarly. In this paper we study the domination,
paired domination and independent domination (subdivision and multisubdivision) numbers
of the generalized corona graphs.

Keywords: domination, paired domination, independent domination, edge subdivision, edge
multisubdivision, corona graph.
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1. INTRODUCTION

Studies about the influence of edge subdivisions over a parameter in graphs can be
found in several areas of graph theory. Just for mentioning some of them we can
refer to [10] (influence of edge subdivision over the independence number) and [12]
(influence of edge subdivision over the total domination number) since are close to the
topic of our work.

The domination subdivision number was defined by Velammal in 1997 (see [15])
and since then it is widely studied in graph theory. This parameter was studied in
trees by Aram, Sheikholeslami and Favaron [1] and also by Benecke and Mynhardt [2].
General bounds and properties has been studied for example by Haynes, Hedetniemi
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and Hedetniemi [10], by Bhattacharya and Vijayakumar [3], by Favaron, Haynes and
Hedetniemi [5] and by Favaron, Karami and Sheikholeslami [6].

For domination problems, multiple edges and loops are irrelevant, so we forbid
them. Additionally, in this paper we only consider connected graphs. We use V (G)
and E(G) for the vertex set and the edge set of a graph G and denote |V (G)| = n
and |E(G)| = m.

A subset D of V (G) is a dominating set of G, if every vertex of V (G)−D has at
least one neighbor in D. Let γ(G) be the minimum cardinality among all dominating
sets in G. Moreover, the set D is a γ(G)-set if it is a dominating set of cardinality
γ(G).

Given a graph G = (V,E), the subdivision of the edge e = uv ∈ E(G) with a vertex
x leads to a graph with vertex set V ∪ {x} and edge set (E(G) − {uv}) ∪ {ux, xv}.
We call x a subdivision vertex. We denote by Guv,k = Ge,k the graph obtained from
G by subdividing the edge uv with k vertices (instead of the edge e = uv we put
a path (u, x1, x2, . . . , xk, v)). We call x1, x2, . . . , xk the subdivision vertices. For k = 1
we write Ge instead of Ge,1. We denote by Ge1,e2,...,ek

, the graph obtained from G by
subdividing the edges e1, e2, . . . , ek, where each edge is subdivided once.

The domination subdivision number of a graphG, denoted by sd(G), is the minimum
number of edges which must be subdivided (where each edge can be subdivided at
most once) in order to increase the domination number. Since the domination number
of the graph K2 does not increase when its only edge is subdivided, we consider
domination subdivision number for connected graphs of order at least three.

Similarly, let msd(uv) be the minimum number of subdivisions of the edge uv such
that the domination number increases. In this sense, the domination multisubdivision
number of a graph G, denoted by msd(G), is defined as

msd(G) = min{msd(uv) : uv ∈ E(G)}.

This parameter was introduced by Dettlaff, Raczek and Topp in [4] and is well defined
for all graphs having at least one edge. In their paper, they have also studied some
complexity aspects regarding the domination subdivision and domination multisub-
division numbers of graphs. That is, they studied the following decision problems.
Given a graph G = (V,E) with domination number γ(G): Is sd(G) > 1? and, Is
msd(G) > 1? As a result, in [4], it was obtained that these decision problems for
the domination subdivision number, as well as for the domination multisubdivision
number, are NP-complete even for bipartite graphs. In this sense, it is desirable to
find or describe some families of graphs in which is possible to give the exact value for
these parameters. The general bounds for this parameter are as follows

Theorem 1.1 ([4]). For any connected graph G with at least one edge,

1 ≤ msd(G) ≤ 3.

In particular for trees and cycles we have the following result.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Edge subdivision and edge multisubdivision. . . 577

Theorem 1.2 ([4]). For n ≥ 3,

msd(Cn) = msd(Pn) =


1 if n ≡ 0 (mod 3),
2 if n ≡ 2 (mod 3),
3 if n ≡ 1 (mod 3).

In this paper we study the domination subdivision number and the domination
multisubdivision number in the generalized corona product of graphs. Given a con-
nected graph G of order n ≥ 2 with a set of vertices V (G) = {u1, u2, . . . , un}, and a
sequence of n graphs H = (H1, H2, . . . ,Hn), the generalized corona graph H = G�H
is obtained by joining each vertex of Hi to the vertex ui of G. Figure 1 shows an
example of a generalized corona graph. In order to simplify the notation, in some
cases we denote by ZH the set of elements of H. In this sense, if for instance,
H = (K1,K2,K1,K2,K1,K2), then we just write ZH = {K1,K2}.

Fig. 1. Graph C4 �H, where H = (K2, P3, K3, K1)

The standard corona graph is a particular case of the generalized corona graph
when all the graphs of the family H are isomorphic to a graph H, in which case we
will just write G�H. Clearly, γ(G�K1) = γ(G�H) = |V (G)|.

In this paper we first present novel and interesting results concerning the domination
subdivision number and the domination multisubdivision number of generalized corona
graphs. Further we study similar (subdivision and multisubdivision) parameters related
to domination for generalized corona graphs, which are the following ones: paired
domination and independent domination.
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2. STANDARD DOMINATION

The following lemma presented independently in [7,13] will be useful in this section to
present results about domination subdivision numbers and domination multisubdivision
numbers of generalized corona graphs.

Lemma 2.1 ([7,13]). For any graph G with even order n and without isolated vertices,
γ(G) = n

2 if and only if the components of G are the cycle graph C4 or the corona
graph H �K1 for any connected graph H.

2.1. DOMINATION SUBDIVISION NUMBER

We begin the study with the domination subdivision number of generalized corona
graphs G �H for the case when every Hi ∈ H is isomorphic to K1, i.e., the graph
G�K1.

Proposition 2.2. If G is a connected graph of order n ≥ 2, then

sd(G�K1) = 3.

Proof. Let G be a connected graph of order n ≥ 2. We will denote by
V (G) = {ui : i = 1, . . . , n} the set of vertices of G, and by vi the corresponding pendant
vertex of ui, where uivi is an edge of G�K1. Clearly V (G) is a γ(G�K1)-set.

Haynes et al. [11], proved that if a graph G has adjacent support vertices, then
sd(G) ≤ 3. Hence, sd(G�K1) ≤ 3.

Now we show that sd(G�K1) ≥ 3, what means that subdivision of any two edges
e1, e2 does not change the domination number of a graph G�K1. Let us subdivide
these edges with vertices x and y, respectively.

If e1, e2 ∈ E(G), then let D′ = V (G), if e1 ∈ E(G), e2 = uivi (the case e1 = uivi,
e2 ∈ E(G) is similar), then let D′ = (V (G)− {ui}) ∪ {y}, and if e1 = uivi, e2 = ujvj

for some i 6= j, then let D′ = (V (G)−{ui, uj})∪{x, y}. In all cases, D′ is a dominating
set of (G�K1)e1,e2 of size γ(G�K1) and this implies that sd(G�K1) = 3.

Theorem 2.3. Let G be a connected graph of order n ≥ 2 and let H be a family
of n graphs. Then

sd(G�H) =


3, if ZH = {K1},
2, if ZH = {K1,K2},
1, for other cases.

Proof. If ZH = {K1}, then the result follows by Proposition 2.2. Now let ZH =
{K1,K2} and let without loss of generality that H1 = K2 = (w1, w2). Assume
H ′ is the graph obtained from G � H by subdividing the edges u1w1, u1w2 with
vertices x, y. If D′ is a γ(H ′)-set, then to dominate the vertices x, y, w1, w2 we
must have |D′ ∩ {u1, x, y, w1, w2}| ≥ 2 and to dominate the vertices of Hi, we must
have |D′ ∩ (V (Hi) ∪ {ui})| ≥ 1 for i ≥ 2. It follows that |D′| ≥ |V (G)| + 1 and so
sd(G�H) ≤ 2. Now we show that sd(G�H) ≥ 2. Let e = uv ∈ E(G�H) and H ′ be
the graph obtained from G�H by subdividing the edge e with vertex x. If u, v ∈ V (G),
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then let D′ = V (G), if u, v ∈ V (Hi) for some i, then let D′ = (V (G) − {ui}) ∪ {x},
and if u ∈ V (G), v ∈ V (Hi) for some i, then let D′ = (V (G)−{ui})∪{v}. In all cases,
D′ is a dominating set of H ′ of size γ(G�H) and this implies that sd(G�H) ≥ 2.

Finally let Hi ∈ H be a complete graph of order at least three or a non complete
graph of order at least two for some i, say i = 1. If H1 is a complete graph of order
at least three, then let H ′ be a graph obtained from G�H by subdividing an edge
uv ∈ E(H1), and if H1 is a non complete graph of order at least two, then let u, v
be two non adjacent vertices in H1 and H ′ be the graph obtained from G � H by
subdividing an edge u1u, with a vertex x. Assume D′ is a γ(H ′)-set. To dominate
the vertices u, v, x we must have |D′ ∩ (V (H1) ∪ {u1})| ≥ 2 and to dominate the
vertices of V (Hi), we must have |D′ ∩ (V (Hi)∪ {ui})| ≥ 1 for i ≥ 2. This implies that
|D′| ≥ |V (G)|+ 1 and so sd(G�H) = 1.

2.2. DOMINATION MULTISUBDIVISION NUMBER

The following observation (from [4]) and the lemma are useful to present our results.

Observation 2.4 ([4]). Let G be a graph. Then sd(G) = 1 if and only if msd(G) = 1.

Lemma 2.5. Let G be a graph of order n such that G does not have K2 as a component.
If γ(G) = n

2 , then

msd(G) = 3.

Proof. If γ(G) = n
2 , then by Lemma 2.1 we have that the components of G are C4

or the corona graph H � K1 for some connected graph H. Since the domination
multisubdivision number of G is the minimum of the domination multisubdivision
numbers of the graphs induced by its components, we study each component of G
separately. By Theorem 1.2 we have that msd(C4) = 3.

Now, let H be the subgraph of G induced by a component isomorphic to a corona
graph H ′�K1. Since G does not have K2 as a component and γ(G) = n

2 , |V (H)| ≥ 4.
Suppose that msd(H) ≤ 2. So, there exists an edge uv of H such that γ(Huv,2) > γ(H).
We have the following cases.

Case 1. uv is an edge of H ′. Since the whole vertex set of H ′ is a γ(H)-set, we have
that the vertices used to obtain the graph Huv,2 are still dominated by the whole
vertex set of H ′. Thus γ(Huv,2) = γ(H), a contradiction.

Case 2. uv is a pendant edge of H ′ ◦K1 with u ∈ V (H ′) and v ∈ V (K1). Let x1, x2
be the vertices used to subdivide the edge uv such that u ∼ x1 ∼ x2 ∼ v. Notice
that (V (H ′) − {u}) ∪ {x2} is a dominating set of H with cardinality γ(H). Thus,
γ(Huv,2) = γ(H), a contradiction again.

Therefore, for any edge xy ofH, γ(Hxy,t) = γ(H) and t ∈ {1, 2} we have γ(Hxy,t) =
γ(H) and, as a consequence, msd(G) = 3.D
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Theorem 2.6. Let G be a connected graph of order n ≥ 2 and let H be a family
of n graphs. Then

msd(G�H) =


3, if ZH = {K1},
2, if ZH = {K1,K2},
1, for other cases.

Proof. First we notice that, as a consequence of Observation 2.4 and Theorem 2.3
we have that msd(G � H) = 1 if and only if there exists Hl ∈ H which is neither
isomorphic to K1 nor to K2.

Now, assume that every Hi ∈ H is isomorphic to K1. Hence, by Lemma 2.1,
γ(G�H) = γ(G�K1) = n. Thus, Lemma 2.5 leads to msd(G�H) = 3.

On the other hand, we consider a generalized corona graph G � H with
msd(G�H) = 3. Suppose there exists Hi ∈ H such that Hi 6∼= K1. So, there exist at
least two vertices vi1, vi2 ∈ Vi in the graph Hi. Let ui be the vertex of G such that
ui ∼ vi1 and ui ∼ vi2. Now we subdivide the edge uivi1 with the vertices x1, x2 such
that ui ∼ x1 ∼ x2 ∼ vi1. We consider two cases.
Case 1. vi1 ∼ vi2. Since any γ((G � H)uivi1,2)-set contains at least one vertex in
Vi ∪ {x1, x2, ui}, to obtain a γ((G�H)uivi1,2)-set we need to dominate the vertices
ui, x1, x2, vi1, vi2, which induce a cycle of order five in (G � H)uivi1,2. Thus, any
γ((G�H)uivi1,2)-set contains at least two vertices of Vi∪{x1, x2, ui}. As a consequence
we have that γ((G�H)uivi1,2) > n = γ(G�H), a contradiction.
Case 2. vi1 6∼ vi2. To dominate the vertex vi2 we need a vertex in {vi2, ui} and to
dominate the vertex vi1 we need a vertex in {vi1, x2}. Thus, any γ((G�H)uivi1,2)-set
contains at least two vertices of Vi ∪ {x1, x2, ui}, and again we have that
γ((G�H)uivi1,2) > n = γ(G�H), which is a contradiction.

Therefore, as a consequence of the above cases, Hi
∼= K1 for every Hi ∈ H.

Finally, if there exists Hj ∈ H isomorphic to K2 and every Hi ∈ H − Hj is
isomorphic to K1 or K2, then from the above we have that msd(G � H) > 1 and
msd(G�H) < 3. Thus, it is clear that msd(G�H) = 2, and the proof is done.

As a consequence of the subsections above, we can see that every generalized corona
graph has equal domination subdivision and domination multisubdivision numbers.

3. PAIRED DOMINATION

A set of pairwise non-adjacent edges of a graph G is called a matching in G. If M is a
matching in a graph G such that every vertex of G is incident with an edge of M , then
M is a perfect matching in G. By V (M) we denote the set of vertices of the graph
induced by M . If M is a matching, u ∈ V (G) and there is an edge uv ∈M for some
v ∈ V (G), then u is a matched vertex. Otherwise, u is unmatched.

A paired dominating set, introduced by Haynes and Slater in [9], is a dominating
set whose induced subgraph contains at least one perfect matching. The minimum
cardinality of a paired dominating set in G is the paired domination number and is
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denoted by γpr(G). A set D is a γpr(G)-set if it is a paired dominating set of cardinality
γpr(G).

A support vertex is a vertex adjacent to a vertex of degree one. It is worth to
observe that every support vertex belongs to a paired dominating set of a graph G.

Now, the paired domination subdivision number, sdpr(G), of a nonempty graph G
is the minimum number of edges which must be subdivided (where each edge can be
subdivided at most once) in order to increase the paired domination number. Moreover,
the paired domination multisubdivision number of G, msdpr(G), is the minimum k such
that there exists an edge uv of G satisfying that γpr(Guv,k) > γpr(G). This parameter
was introduced by Raczek and Dettlaff in [14]. There was proven the general bound
for it.

Theorem 3.1 ([14]). For any connected graph G with at least one edge,

1 ≤ msdpr(G) ≤ 4.

To continue with our results, we first determine the paired domination number of
generalized corona graphs.

Lemma 3.2. Let G be a connected graph of order n ≥ 2 and let H be a sequence of n
graphs. Then

γpr(G�H) = 2n− |V (M)|,

where M is a maximum matching in G.

Proof. Let G be a connected graph of order n ≥ 2 and let H be a family of n graphs.
Since every support vertex belongs to every paired dominating set, V (G) is a subset
of every minimum paired dominating set of G�K1. Hence γpr(G�K1) ≥ n and any
minimum paired dominating set of G�K1 may be formed by the vertices of a graph
induced by the maximum matching in G, denoted M(G), together with unmatched
vertices of V (G) paired with any neighboring vertex of V (G�K1)− V (G). Therefore,

γpr(G�K1) = |V (M)|+ 2(n− |V (M)|) = 2n− |V (M)|.

Since G�K1 is an induced subgraph of G�H, γpr(G�K1) ≤ γpr(G�H). On the
other hand, any minimum paired dominating set of G�K1 is a paired dominating set
of G�H, implying that

γpr(G�K1) = γpr(G�H) = 2n− |V (M)|.

Theorem 3.3. Let G be a connected graph of order n ≥ 2 and let H be a sequence of
n graphs. If there exists a vertex u ∈ V (G) such that u is matched in every maximum
matching in G, then

sdpr(G�H) = msdpr(G�H) = 1.
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Proof. Let G be a connected graph of order n ≥ 2 and let H be a sequence of n graphs.
Assume there exists a vertex u ∈ V (G) such that u is matched in every maximum
matching in G. Then Lemma 3.2 and its proof imply that u belongs to each minimum
paired dominating set of G � H and u is always paired in a graph induced by a
minimum paired dominating set of G�H with a vertex of V (G).

Consider the graph (G � H)uu′,1, where u′ ∈ V (Hi) for some i = 1, . . . , n and
denote by s the subdivision vertex. Let D′ be a minimum paired dominating set of
(G � H)uu′,1. Then to dominate vertices of V (Hi), D′ should contain at least one
vertex of V (Hi)∪ {s}. If |D′| = γpr(G�H), then we would find in G�H a minimum
paired dominating set containing vertices of V (Hi), which is impossible.

Hence, |D′| > γpr(G�H). Therefore, if there exists a vertex u ∈ V (G) such that u is
matched in every maximum matching in G, then sdpr(G�H) = msdpr(G�H) = 1.

Theorem 3.4. Let G be a connected graph of order n ≥ 2 such that for each ver-
tex u ∈ V (G) there exists a maximum matching of G with u unmatched and let H
be a sequence of n graphs. Then

msdpr(G�H) =


4, if ZH = {K1},
3, if ZH = {K1,K2},
2, for other cases.

Proof. Let G be a connected graph of order n ≥ 2 such that for each vertex u ∈ V (G)
there exist a maximum matching of G with u unmatched and let H be a family of n
graphs.

First assume ZH = {K1}. Since the paired multisubdivision number for any
graph is equal either 1, 2, 3 or 4, it suffices to justify that subdividing any edge of
G�H, where H = {K1} with three vertices does not increase its paired domination
number. Subdivide any uu′ edge with three new vertices, where u ∈ V (G) and u′ is
the neighbor of u with degree one in G�H. Then the set formed by the vertices of the
graph induced by a maximum matching in G not containing u, altogether with two
adjacent subdivision vertices, where one of them is a support vertex in (G�H)uu′,3
and with unmatched vertices of V (G) − {u} paired with any neighboring vertex of
V (G�H)−V (G), is a paired dominating set of (G�H)uu′,3 of cardinality γpr(G�H).

Now subdivide any edge uw ∈ E(G�H) with three subdivision vertices, where
u,w ∈ V (G). Then the set formed by the vertices of the graph induced by a maximum
matching in G not containing u, altogether with u paired with the subdivision vertex
adjacent to u and with unmatched vertices of V (G)−{u} paired with any neighboring
vertex of V (G�H)− V (G), is a paired dominating set of (G�H)uw,3 of cardinality
γpr(G�H).

Since subdividing any edge of G � H with three vertices does not increase the
paired domination number of G �H, we conclude that if for each vertex u ∈ V (G)
the graph G has a maximum matching with u unmatched, then msdpr(G�H) = 4
when every Hi ∈ H is isomorphic to K1 (recall that msdpr(G) ≤ 4 for any graph G).

Now consider the case when ZH = {K1,K2}. Let e = uv be any edge of G�H. If
u, v ∈ V (G) or if u ∈ V (G) and v has degree one in G�H, then by similar reasoning
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as in previous case we obtain that γpr((G � H)uv,2) = γpr(G � H). Assume now u
is adjacent to a graph K2 ∈ H in G�H. Denote V (K2) = {x, y}. Observe that the
graphs (G � H)ux,2, (G � H)xy,2 and (G � H)yu,2 are isomorphic. In each such a
graph the subdivision vertices altogether with x, y induce a path P4. Therefore it is
possible to construct a paired dominating set D of each such a graph which contains
the vertices of the maximum matching in G with u unmatched altogether with two
inner vertices of the path P4. Then |D| = γpr(G�H). We conclude that in this case
msdpr(G�H) ≥ 3.

On the other hand, consider again a vertex u ∈ V (G) adjacent to K2 in G �H
and denote V (K2) = {x, y}. Observe that the graphs (G�H)ux,3, (G�H)xy,3 and
(G�H)yu,3 are isomorphic and, in each such a graph the subdivision vertices altogether
with x, y induce a path P5. Thus, no two paired vertices may dominate the subdivision
vertices plus x, y. Therefore the minimum paired dominating set of (G � H)yu,3 is
greater than γpr(G�H), implying that msdpr(G�H) = 3 for the case when there
exists Hj ∈ H isomorphic to K2 and every Hi ∈ H −Hj is isomorphic to K1 or K2.

At last consider the case when at least one element of H contains at least three
vertices or when H contains K2. Let e = uv be any edge of G�H. If u, v ∈ V (G) or
if u ∈ V (G) and v is a vertex of a K1 or K2 of H, then by similar reasoning as in
previous cases we obtain that γpr((G�H)uv,1) = γpr(G�H). Thus assume u ∈ V (G)
is adjacent to Hi ∈ H with at least three vertices or Hi = K2. It is no problem to verify
that the paired domination number does not increase when we subdivide once any
edge incident with a vertex of V (Hi). We conclude that in this case msdpr(G�H) ≥ 2.

On the other hand, consider the edge uu′, where u ∈ V (G) is adjacent to each
vertex of Hi ∈ H, such that Hi has least three vertices or Hi = K2. Then every
minimum paired dominating set of (G�H)uu′,2 contains u, a vertex paired with u and
the vertices of the graph induced by a maximum matching in G with u unmatched.
However, in this case u′ does not have any neighbor in such a set. Therefore, the
minimum paired dominating set of (G�H)uu′,2 has cardinality greater than γpr(G�H),
implying that msdpr(G�H) = 2 for H containing a graph with at least three vertices
or containing K2.

Theorem 3.5. Let G be a connected graph of order n ≥ 2 such that for each vertex
u ∈ V (G), there exists a maximum matching in G with u unmatched and let H
be a sequence of n graphs. Then,

sdpr(G�H) = 2.

Proof. Let G be a connected graph of order n ≥ 2 such that for each vertex u ∈ V (G)
there exists a maximum matching in G with u unmatched and let H be a family of
n graphs. By Theorem 3.4, msdpr(G�H) > 1, so sdpr(G�H) > 1. By Lemma 3.2,
there exists a minimum paired dominating set of G�H with u unmatched.

Let u, v ∈ V (G) and let u′, v′ be vertices not belonging to V (G) and adjacent to
u and v, respectively, in G�H. Denote by (G�H)uu′,vv′ the graph obtained from
G�H by subdividing edges uu′, vv′. Then every minimum paired dominating set of
(G�H)uu′,vv′ contains every subdivision vertex. Thus, γpr((G�H)uu′,vv′) > γpr(G�H).
Therefore sdpr(G�H) = 2.
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4. INDEPENDENT DOMINATION

A set D is an independent set if the subgraph induced by D has no edges. The
maximum cardinality of an independent set in G is the independence number and it
is denoted by α(G). In this sense, the set D is an independent dominating set, if D
is independent and dominating in G. The minimum cardinality of an independent
dominating set in G is the independent domination number and is denoted by i(G).
The set D is a i(G)-set, if it is an independent dominating set of cardinality i(G).

Now, the independent domination subdivision number, sdi(G), of a graph G is
the minimum number of edges which must be subdivided (where each edge can be
subdivided at most once) in order to increase the independent domination number.
Analogously, we only consider independent domination subdivision number for con-
nected graphs of order at least three. The independent domination multisubdivision
number of G, msdi(G), is the minimum k such that there exists an edge uv of G
satisfying that i(Guv,k) > i(G).

The following result will be useful in this section.
Lemma 4.1. Let G be a graph of order n and let H be a family of n graphs. Then

i(G�H) ≥ α(G) + (n− α(G)) min{i(Hi) : Hi ∈ H}

and
i(G�H) ≤ α(G) + (n− α(G)) max{i(Hi) : Hi ∈ H}.

Proof. We consider an i(G � H)-set S. Hence, if ui ∈ V (G) ∩ S, then for every
v ∈ V (Hi) we have that v /∈ S. Also, if ui /∈ V (G) ∩ S, then there exists Si ⊂ V (Hi),
such that Si ⊂ S and |Si| ≥ i(Hi) ≥ min{i(Hi) : Hi ∈ H}. As a consequence, there
exists an independent set A ⊂ V (G) and t independent dominating sets Si ⊂ V (Hi)
in Hi, such that n = t+ |A|, |A| ≤ α(G) and S = (

⋃t
i=1 Si) ∪A. Thus, t ≥ n− α(G)

and the lower bound is obtained as follows.

|S| = |A|+
t∑

i=1
|Si| = n− t+

t∑
i=1
|Si|

≥ n− t+ t ·min{i(Hi) : Hi ∈ H}
= n+ t(min{i(Hi) : Hi ∈ H} − 1)
≥ n+ (n− α(G))(min{i(Hi) : Hi ∈ H} − 1)
= α(G) + (n− α(G)) min{i(Hi) : Hi ∈ H}.

On the other hand, let A be an independent set of maximum cardinality in G
and for every ui ∈ A, let Si ⊂ V (Hi) be an independent dominating set in Hi. It
is straightforward to observe that the set S = A ∪ (

⋃
ui∈A Si) is independent and

dominating in G�H. Therefore,

i(G�H) ≤ |A| ∪
( ⋃

ui∈A

|Si|

)
≤ α(G) + (n− α(G)) max{i(Hi) : Hi ∈ H},

and the upper bound follows.
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Notice that the above result leads to the following consequence, for the case in
which the whole graphs of the family H are isomorphic between them. Such a result
was previously presented in [8].

Theorem 4.2 ([8]). For any connected graph G of order n and for any graph H,

i(G�H) = α(G) + (n− α(G))i(H).

Corollary 4.3. For any connected graph G of order n and any graph H having one
simplicial vertex (its neighbors form a clique), i(G�H) = n.

Some examples of the above result are i(G�Kr) = n and i(G� S1,r) = n.
In contrast with the standard domination and the paired domination, the influence

of the edge (subdivision or multisubdivision) over the independent domination number
of a graph seems to be quite difficult to settle. This is related with the fact that the
subdivision or multisubdivision of an edge in a generalized corona graph G�H can
decrease or increase the independent domination number i(G�H). For instance, take
the graph K4�P4. From 4.2 we have that i(K4�P4) = 7. Now, the subdivision of any
edge of any copy of P4 or any edge connecting K4 with a copy of P4 does not change
i(K4 � P4) = 7, while the subdivision of any edge of K4 makes that the obtained
graph has independent domination number equal to six. Hence, in this section, we are
only centered in the case of corona graphs G�K1.

4.1. INDEPENDENT DOMINATION SUBDIVISION NUMBER

A set X is a clique in a graph G, if the subgraph induced by X is isomorphic to a
complete graph. A clique X is maximum if it has the maximum cardinality among all
cliques in G and its cardinality is the clique number.

Proposition 4.4. If G is a connected graph of order n ≥ 2, then

sdi(G�K1) =
{

3, if the clique number of G is at most three,
2, otherwise.

Proof. First notice that it is straightforward to check that sdi(G �K1) > 1. Thus,
sdi(G�K1) ≥ 2. Now, for every i ∈ {1, . . . , n}, let ui be a vertex of G and let vi be
the corresponding pendant vertex of ui.

We consider the case that G has clique number greater than three. Let S be
a maximum clique of G and let four different vertices ui, uj , uk, ul ∈ S. We will
subdivide the edges uiuj and ukul with vertices x and y, respectively. Notice that to
independently dominate the vertex x we need at least one of the vertices ui or uj .
Analogously, to independently dominate the vertex y we need at least one of the vertices
uk or ul. Now, since the vertices vi, vj , vk, vl must be also independently dominated
and ui, uj , uk, ul form a clique in G, it is clear that i((G�K1)uiuj ,ukul

) > i(G�K1)
and we have that sdi(G�K1) ≤ 2. Therefore, if G has clique number greater than
three, then sdi(G�K1) = 2.
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Now assume that G has clique number at most three. We shall prove that
sdi(G�K1) ≤ 3, Let e1, e2, e3 be three different edges of G�K1 such that e1 = uiuj ,
e2 = uivi and e3 = ujvj , where i, j ∈ {1, 2, . . . , n} and i 6= j. We subdivide them with
the vertices x, y, z, respectively. So, notice that the set D = {v1, . . . , vn} − {vi, vj} ∪
{x, y, z} is an i((G�K1)e1,e2,e3)-set and |D| = n+ 1 > n = i(G�K1).

Now, we will prove that subdividing any two different edges e1, e2 does not change
the independent domination number of the graph G � K1. Let us subdivide these
edges with the vertices x and y, respectively. We consider the following cases.
Case 1. If e1 = uivi and e2 = ukvk, where i 6= k and i, k ∈ {1, 2, . . . , n}, then
D = {v1, . . . , vn} − {vi, vk} ∪ {x, y} is an i((G�K1)e1,e2)-set and |D| = i(G�K1).
Case 2. If e1 = uivi and e2 = ukul, where i, k, l ∈ {1, 2, . . . , n} and k 6= l, then
i 6= k or i 6= l. Without loss of generality suppose i 6= k. Hence the set D =
{v1, . . . vn} − {vi, vk} ∪ {x, uk} is an i((G�K1)e1,e2)-set and |D| = i(G�K1).
Case 3. If e1 = uiuj and e2 = ukul, where i, j, k, l ∈ {1, 2, . . . , n} and i 6= j, k 6= l,
then we consider the following subcases.
Subcase 3.1. If j = k, then i 6= l and D = {v1, . . . , vn} − {vj} ∪ {uj} is an i((G �
K1)e1,e2)-set and |D| = i(G � K1). Analogously, if i = l, then j 6= k and D =
{v1, . . . , vn} − {vi} ∪ {ui} is an i((G�K1)e1,e2)-set and |D| = i(G�K1).
Subcase 3.2. If i 6= l and j 6= k, then since G has clique number at most three, we have
that ui 6∼ uk or ui 6∼ ul or uj 6∼ uk or uj 6∼ ul; say for instance, ui 6∼ uk. Thus, the set
D = {v1, . . . , vn} − {vi, vk} ∪ {ui, uk} is an i((G�K1)e1,e2)-set and |D| = i(G�K1).

As a consequence of the above cases, we obtain that sd(G�K1) = 3.

4.2. INDEPENDENCE DOMINATION MULTISUBDIVISION NUMBER

Theorem 4.5. If G is a connected graph of order n ≥ 2, then

msdi(G�K1) = 3.

Proof. First we prove that msdi(G � K1) ≤ 3. To do so, it is only necessary to
subdivide three times a pendant edge uv of G�K1 with the vertices x1, x2, x3 and we
obtain a graph (G�K1)uv,3 such that i((G�K1)uv,l) = n+ 1, since to independently
dominate the vertices u, x1, x2, x3, v are necessary two vertices and we also need one
vertex n− 1 vertices to independently dominate the rest n− 1 vertices of K1.

On the other hand, suppose that msdi(G�K1) ≤ 2. So, there exists an edge uv of
G�K1 and an integer l ∈ {1, 2} such that i((G�K1)uv,l) > i(G�K1). Notice that
the whole set S of pendant vertices of G�K1 (the vertices of all the copies of K1) is
an i(G�K1)-set. We consider the following cases.
Case 1. uv is an edge of G. Let u′ and v′ be the pendant vertices of u and v, respectively.
Hence, we have that the set S′ = S − {u′, v′} ∪ {u, v} is an independent dominating
set in (G �K1)uv,l with cardinality i(G �K1). Thus i((G �K1)uv,l) = i(G �K1),
a contradiction.
Case 2. uv is a pendant edge of G, say u is a vertex of G and v is the vertex of K1.
We consider the following subcases.
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Subcase 2.1. l = 1. Let x be the vertex used to subdivide the edge uv. Hence the set
S′ = S − {v} ∪ {x} is an independent dominating set in (G�K1)uv,l with cardinality
i(G�K1), a contradiction.
Subcase 2.2. l = 2. Let x1, x2 be the vertices used to subdivide the edge uv such that
u ∼ x1 ∼ x2 ∼ v. Let w be a neighbor of u in G and let w′ be the pendant vertex
adjacent to w. Hence the set S′ = S − {w′, v} ∪ {x2, w} is an independent dominating
set in (G�K1)uv,l with cardinality i(G�K1), a contradiction again.

Therefore, for any edge xy of G�K1, i((G�K1)xy,l) = i(G�K1), with l ∈ {1, 2}
and, as a consequence, msdi(G�K1) = 3.
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