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ƉŽƉƌǌeǌ ŵŽdƵůacũę ƉŝęcŝƵ ǌŝdeŶƚǇfŝŬŽǁaŶǇch ƉƌŽceƐſw. 
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Abstract of the doctoral dissertation in English: The main aim of the PhD dissertation was to indicate 

the importance of conjugation of bile salts (BS) on the level of lipolysis, determine factors influencing the 

alteration of BS composition, and establish processes controlling the rate of lipolysis. Experimental results 

(in-vitro digestion models, interfacial studies) and meta-analysis of literature data were combined to 

determine the most influential factors affecting the rate of lipolysis. The results demonstrate that several 

factors such as antibiotics, disease state, and gut microbiota composition may affect the lipid digestion 

process via the action of BS. Conjugated forms of BS ʹ sodium taurocholate (NaTC) were shown to enhance 

free fatty acids (FFA) release to a significantly higher level than unconjugated forms of BS ʹ sodium 

deoxycholate (NaDC) present in our gastrointestinal tract. NaTC showed greater potential to adsorb to the 

lipid droplet enhancing the adsorption of lipase and promoting the emulsification process. Moreover, NaTC 

required fewer molecules and surfactant concentration to create aggregates responsible for incorporating 

lipolysis products from the oil interphase. The lipolysis driven by NaTC could achieve greater FFA release 

due to faster removal of lipolysis products via the desorption process, allowing the continuous process of 

lipid digestion. The lipolysis was shown to be controlled by the concentration of conjugated BS by 

modulation of five identified processes.  
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1. Introduction 
The increasing problem with obesity in the last decades (recent statistics have shown that the obesity problem 

increased by up to 50% in Europe (Stival et al. 2022) and 55% in Poland (Rychlik et al. 2022)) highlight the 

importance of the digestion process, as the controlling factor of calorie uptake. Essential nutrients can be used 

for energy, repair of cells, and growth, etc are obtained during the digestion process by breaking down food. 

Absorption of food and the final stage of digestion takes place in the small intestine. One of the main 

components of our diet is lipids, which are broken done through the process of lipolysis. This process uses BS as 

the key factor responsible for emulsification and creating micelles which may transport digestion products to 

our body.  

 

  

 
Figure 1 The workflow presents the graphical representation of the results from three scientific articles covering the subject 
of the dissertation. Publication A1 presents the steps of the lipolysis process: initial emulsion, adsorption of BS and 
lipase/colipase complex, emulsification process, desorption, and removal of lipolysis products.  Each of the steps of lipolysis 
(A-G) is linked with results from publication A1 and publication A3. The reddish-blue shadow behind the graph shows changes 
in BS ratio and corresponding alteration of results concerning healthy and pathological states. Publication A2 represents 
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changes in BS composition in healthy and pathological patients concerning four diseases: cholangiocarcinoma, 
choledocholithiasis, and pancreatic neoplasm. The composition of BS in pathological patients is disturbed due to the reduction 
of the flow of BS which results in alteration of gut microflora composition. BS- bile salts, NaTC ʹ sodium taurocholate, NaDC 
ʹ sodium deoxycholate, CMC ʹ critical micelle concentration, MSR ʹ molar solubilisation ratio, PWA ʹ protein weight average, 
MW ʹ molecular weight, Ca ʹ calcium,  FFA ʹ free fatty acids, C/U ʹ conjugated/unconjugated, P/S ʹ primary/secondary, SIF 
ʹ simulated intestinal fluid, BSH ʹ bile salt hydrolase. 

In our first publication (publication A1) we performed the meta-analysis for three main defined lipolysis 

parameters: (1) critical micelle concentration (CMC), (2) aggregation number, and (3) molar solubilization ratio 

(MSR) for four types of BS: Primary conjugated (PC) and unconjugated and secondary conjugated and 

unconjugated. Our analysis revealed that the type of BS influences the main parameters of the lipolysis process.  

Further analysis revealed that bacterial transformation in the small intestine results in deconjugation of PC BS 

into secondary unconjugated (SU) BS. Therefore, representatives of two predominant forms of BS in our 

gastrointestinal tract were chosen for further analysis.: PC ʹ sodium taurocholate (NaTC) and SU ʹ sodium 

deoxycholate (NaDC).  We used the static pendant droplet technique to screen the difference in interfacial 

properties of BS. Finally, the in-vitro digestion model was used to check the extent of lipolysis influenced by 

NaTC and NaDC. Our results indicated that NaTC and NaDC yield significantly different surface activity properties 

and could influence lipolysis efficiency to a significantly different extent. NaTC was shown to promote the release 

of free fatty acids (FFA) to a higher extent than NaDC.  

 

Our second publication (publication A2) discussed BS as a disease indicator and also as a factor that is sensitive 

towards changes in health state. The data collected on the composition of BS during different diseases state: 

cholangiocarcinoma, choledocholithiasis, pancreatic neoplasm, and stricture have shown significant change 

concerning the concentration of BS in healthy individuals. The reason for the significant alteration of BS 

composition was mostly connected with blockage of the flow of BS to the small intestine providing a decreasing 

concentration of re-absorbed BS and by modulation of molecular receptors increasing BS synthesis. Even though 

the analysis showed that BS is not specific enough to serve us markers, the results bring attention to the 

connection between disease development and the possible effect on the lipolysis process due to significant 

changes in BS concentration. Moreover, the performed analysis revealed that reduced BS concentrations in the 

small intestine resulted from the development of disease state, and enhanced BS synthesis due to absorption of 

low concentrations of BS. Normal BS synthesis results in a concentration of BS in the small intestine in the range 

of 5-10mM (Naso et al. 2019). Increased BS synthesis leads to the formation of excessive concentration of BS, 

which is correlated with two effects: (1) a greater concentration of conjugated BS in the small intestine may 

significantly enhance the rate of the lipolysis process which can promote the development of the obesity 

problem and (2) a formation of excessive concentration of unconjugated BS by intestinal bacteria, which may 

further disturb BS synthesis and promote development of diseases connected with the toxicity of SU BS.  

 

Finally, our last publication (publication A3) aimed to develop the main outcomes and conclusions from two 

previous publications: publication A1 and publication A2. First of all the idea of the dominant process during 

lipolysis was developed including adsorption, co-adsorption of lipase, desorption, formation of micelles, and 

MSR of lipolysis products. The influence of particle size of initial emulsion in a high range of 200-3800nm was 

also investigated, to consider the possible variation of delivered food. Results also indicated that the efficiency 

of previous stages, gastric digestion, also influences the final rate of lipolysis. Moreover, the results showed that 

with decreasing particle size of the digested emulsion, the efficiency of digestion increases. Duodenum consists 

of 98% of conjugated BS, it is also where most lipolysis takes place. Conclusions from publication  A2 allowed us 

to consider additional factors influencing lipolysis efficiency, such as the development of disease state, but also 

the possibility of consuming antibiotics connected with specific diseases and resulting changed BS profile in the 

small intestine. Therefore, all experiments in publication A3 were performed within the whole range of 

NaTC/NaDC ratio assuming 0 NaTC/NaDC (100% NaDC) and 1 NaTC/NaDC (100% NaTC). The digestion process 

was studied by performing experiments covering in vitro digestion models (release of FFA) and surface science 

(interfacial tension measurements). To determine the most influential parameter controlling the lipolysis 

process the meta-analysis was performed covering the lipolysis process for single systems (pure BS) and complex 

systems (BS of various animals). All of the previously collected data, as well as analysis of meta-analysis results, 

allowed us to consider emulsification as the predominant step. BS by modulating five separate processes have 

been shown to influence the lipolysis process. Results revealed the possibility of controlling the rate of lipolysis 

by modulating lipolysis processes.  
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Modulating the food digestion process is a worldwide challenge. Digestion of the lipid component may be 

controlled either by altering the food structure or modulating the digestion process. BS in respect to their form 

may demonstrate different properties, which will influence the final rate of lipolysis and regulate nutrient 

absorption. The impact of the BS on the lipolysis efficiency is modulated by five processes. The results of 

publication A1, publication A2 and publication A3, as shown in Figure 1 indicated BS as the agent͛Ɛ modulation 

of the lipolysis process. 

 

1.1. Digestion of lipids 
The research of publication A1 and publication A2 includes the digestion of lipid droplets and the complexity of 

their evolution during the lipid digestion process. Unravelling the mechanism of lipid digestion gives the 

potential to modulate the lipolysis process. The research has been focused on lipid digestion, as lipids are 

common diet components. Humans need to eat as our bodies require sources of energy and building blocks that 

we cannot provide for ourselves. Digestion is a complex and long process, which starts when we consume food 

and is responsible for processing material to the form that is useful for our organism. Lipids are an important 

part of our diet as they are responsible for delivering energy to our body and enable absorption of vitamins A, 

D, E, and K. They are also widely available and are ingredients of many food products. However, our body cannot 

just absorb lipids in the form as is delivering to our body. Instead, it needs to be broken down into preliminary 

parts which we can absorb.The research covered in this work covers small intestinal digestion of lipids, however, 

the potential impact of digestion in the mouth and stomach were also considered (particle size reduction), as 

they influence the final efficiency of digestion 

 

1.2. Digestion in the mouth 
Consumed food, starts to be digested in the mouth when saliva is released, which is a neutral fluid composed of 

a mixture of proteins and minerals (Bansil and Turner 2006). The emulsion is destabilized due to the flocculation 

and coalescence process.(Vingerhoeds et al. 2005; Silletti et al. 2007a, b). During the limited time that food bolus 

spends in the mouth, the exposure to mastication and temperature results in phase inversion of the emulsion.  

 

1.3. Gastric digestion of lipids 
Before small intestinal digestion, food enters the stomach, where it is exposed to the acidic environment created 

by gastric juices, which results in a decrease in the colloidal stability of the emulsion due to the electrostatic 

screening of protein. Digestion of lipids in the stomach is driven by gastric lipase which is characterized by high-

range activity (pH 3-7) in comparison to intestinal lipase, with an optimal working pH of 6.5 (Hamosh 1990; 

Carriere et al. 1993; Porter et al. 2007). The optimal activity of gastric lipase was estimated to be around pH 

5.4.(Carriere et al. 1993). Therefore digestion of the lipids in the stomach occurs mostly during the first hour, 

later on, the consumed product may disturb pH level and reduce lipase activity. One hour may not yield enough 

time to digest lipids, resulting in only partially digested products. The gastric lipase hydrolyses dietary lipids into 

fatty acids and diglycerides. Gastric hydrolysis yields 5-30% of the total lipid digestion(Armand et al. 1999). 

Gastric digestion helps to emulsify lipid droplets and, therefore, may enhance the efficiency of further intestinal 

digestion by increasing the surface area of the lipid droplet. However, gastric hydrolysis yields 5-30% of the total 

lipid digestion (Golding and Wooster 2010). In the case of emulsions that were tested during my research gastric 

hydrolysis would not have a significant effect, as the emulsions could be fully digested during the intestinal 

process. Moreover, partially digested emulsions from the mouth and gastric phase could hide the full action of 

BS and, therefore were not considered during research. 

 

1.4. Small intestinal digestion of lipids 
When food is moved from the stomach to the intestine, pH rapidly increases due to the secretion of alkaline bile 

juice. Intestinal digestion of lipids is driven by pancreatic lipase(Carriere et al. 1993). The lipolysis process 

promotes breaking down lipids into FFA and glycerol with the assistance of BS ʹ the key factors responsible for 

the digestion and absorption of lipids.  

The lipolysis process starts when BS is transported to the small intestine. The first role of BS is to improve the 

adsorption of lipase by increasing the accessibility of the oil droplet. BS acts as an emulsifying agent and 

increases the surface area of the lipid droplet (Macierzanka et al. 2014). BS are also responsible for displacing 

the lipolysis material from the oil interface, therefore promoting the adsorption of the lipase(Torcello-Gómez et 
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al. 2011). BS also play an important role in the transportation of FFA generated during the lipid digestion process 

to enterocytes where they are absorbed (Maldonado-Valderrama et al. 2011). 

 

BS are multi-tasking biosurfactants, necessary during the digestion process of lipids. Due to its complex and rate-

limiting functions during the digestion process, BS were the main interest of our research. Although it was 

observed that lipolysis is controlled by different parameters acting simultaneously, still there insufficient data 

to indicate a distinct rate-limiting factor. More detailed research on the relation between lipolysis rate and type 

of BS should be investigated to understand their contrasting role in this process. The behaviour of the BS is 

associated with their molecular structure, therefore, understanding the source of their action would give 

perspective to control the lipolysis process.   

 

1.5. Nature of BS 
In the third century, Hippocrates created a concept of the hƵŵaŶ bŽdǇ beŝŶg cŽŵƉŽƐed Žf fŽƵƌ ͞hƵŵŽuƌƐ͕͟ 
consisting of two biles (Guzior and Quinn 2021). The four humours were referred to as blood, phlegm, yellow 
bile, and black bile (Thompson and Turner 1913; Goodacre and Naylor 2020). According to Hippocrates͛ idea, 

the body is healthy when humours are balanced and a disease state develops ǁheŶ aŶǇ Žf ƚhe ͞hƵŵŽƵƌ͟ ŝƐ ŝŶ 
excess or deficiency (Goodacre and Naylor 2020). Greek physician, Galen, developed the Hippocrates idea by 

deƐcƌŝbŝŶg ƉeƌƐŽŶaůŝƚŝeƐ ǁŝƚh ƵŶbaůaŶced ͞hƵŵŽƵƌƐ͘͟ A person with an excessive concentration of yellow bile 

was named choleric and one with an excessive concentration of black bile was named melancholic (Goodacre 

and Naylor 2020). Still, since then we have been trying to understand and we are developing ideas of how the 

BS ratio influences our health state.  The role and importance of BS was more widely understood by discovering 

the structure of BS.  

 

 
Figure 2 A Structure of BA. Cholic acid is synthesized from cholesterol in the liver and is known as primary unconjugated BS. 
BS consists of 4 rings.  B Planar polarity of BS. The hydrophobic part is located on the convex side (yellow part) consisting of 
methyl groups and the hydrophilic part is located on the concave side (blue part) consisting of hydroxyl groups. This yields the 
unique structure of BS, different from standard surfactants. 

Over the years the knowledge about BS expanded and the cŽŶceƉƚ Žf ͞hƵŵŽƵƌ͟ evolved, and an understanding 

of the structure and real impact of BS on the human body emerged. The discovery of the chemical structure of 

BS in 1932 was the breakthrough moment, which enabled further research development (Hofmann and Hagey 

2014).  BS are surface active, steroid and  ionic compounds with an amphiphilic nature (Moghimipour et al. 

2015). As shown in Figure 2 A they consist of a steroid skeleton, composed of four rings, three six-carbon rings 

(1-3) and five carbon rings (4). Differently from traditional surfactants, mostly consist of a polar head and non-

polar tail (Holm et al. 2013), BS possessed planar polarity, as shown in Figure 2 B (Warren et al. 2006). The 

hydrophilic part of BS with hydroxyl groups is located on the concave (ɲ) side and the hydrophobic part with 

methyl groups is located on the convex (ɴ) side. Different types of BS differ by the number of hydroxyl groups 

and functional groups, which were shown in publication A1 and publication A3 to have a direct influence on the 

lipolysis efficiency process. Therefore their concentration and type are of high importance. 
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1.6. Enterohepatic circulation and alteration of BS structure 
 

 
 

 
 
Figure 3 A. Enterohepatic circulation of BS in our gastrointestinal tract (Ridlon et al. 2006). B. Structures of exemplary four 
predominant forms of BS in our organism. The number above the arrows corresponds to the transformation processes of BS 
taking place in marked locations. C. Schematic representation of bile acid synthesis from cholesterol as shown by 
Moghimipour et al. (Moghimipour et al. 2015). Classic pathway represents the formation of cholic acid and chenodeoxycholic 
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acid from 7-hydroxy-cholesterol and alternative pathways, knows also as acidic pathways, represent the formation of 
chenodeoxycholic acid from cholesterol.  

The disease state results in changes in BS composition, which in publication A2 was concluded to be an effect of 

blockage of BS flow. The BS enterohepatic recirculation mechanism controls the synthesis of BS. Increased or 

reduced concentration of BS synthesis was linked to alteration of lipolysis efficiency. Therefore the proper BS 

flow and re-absorption are crucial for our organism. 

Bile acid (BA) are synthesized from cholesterol in the liver by two possible pathways. Neutral pathways, also 

known as classical pathways are responsible for synthesizing almost 90% of BA from the liver, while alternative 

pathways synthesize about 10% of BA. BA either cholic acid or chenodeoxycholic acid are formed from 

cholesterol, as shown in Figure 3C (Moghimipour et al. 2015). The conjugation of primary BA with glycine or 

taurine is catalyzed by BA CoA: amino acid N acyltransferase , created respectively by taurocholic acid, 

glycocholic acid, taurochenodeoxycholic acid and glycochenodeoxycholic acid (Ridlon et al. 2006; Chiang and 

Ferrell 2018), as shown in Figure 3A number 1. Healthy human bile consists of 75% of glycol-conjugated BS and 

25% of tauro-conjugated BS. In the small intestine, BA is transformed into BS due to deprotonation. PC BS is 

further transformed in the small intestine by bacterial action to create secondary forms, as shown in Figure 3B. 

The enterohepatic recirculation process controls the flow of BS through our body. Disturbance of the flow of BS, 

as it was shown in publication A2, leads to a disorder of BS synthesis which is correlated with changed 

concentration of BS in the small intestine, alteration of the efficiency of the lipolysis process, and development 

of disease state.  

 

1.7. Effect of changing microbiota on BSH 
Intestinal microbiota plays a crucial role in our organism by ensuring a healthy balance (Shreiner et al. 2015). 

One of its main roles is the deconjugation process of BS. The deconjugation process is known as the removal of 

the amino acid side chain and as a result, the secondary BS are created (Begley et al. 2005). The formation of 

secondary BS is catalyzed by bile salt hydrolase (BSH). Most of the bacteria with the ability to promote the 

deconjugation process are gram-positive bacteria: Lactobacillus, Enterococcus, Bifidobacterium, Clostridium, 
and Bacteroides spp (Urdaneta and Casadesús 2017) with the exceptions of two strains of gram-negative 

Bacteroides (Begley et al. 2006).  

There is a strong relationship between BS and gut microbiota composition, as one of the roles of BS is to control 

gut microbiota composition and the intestinal microflora influence the BS pool size (Sayin et al. 2013). For this 

reason, the alteration of BS-microflora homeostasis may result in the alteration of BS composition and the 

development of dysbiosis. Overgrowth of bacterial species not possessing BSH over another one may lead to a 

change in the ratio of conjugated/unconjugated BS. Therefore, modification of gut microbiota species may 

influence the concentration of BS. One of the most common reasons for overgrowth the of bacterial species 

without BSH over another one is antibiotics. 

 

1.8. Antibiotics and gut microbiota 
Consumption of antibiotics has become a global trend (Klein et al. 2018). In 2000-2015 using of antibiotics 

increased up to 65% globally (Nandi et al. 2023). Poland is a country with one of the highest rates of antibiotic 

consumption (Wojkowska-Mach et al. 2018). Antibiotic utilization was shown to reduce microbial diversity 

(Ianiro et al. 2020). Results presented by Palleja et al. (Palleja et al. 2018). have shown that consumption of 

antibiotics by adults results in an increased concentration of Enterobacteriaceae and a reduced concentration 

of Bifidobacterium Therefore, it is important to note that antibiotics by themselves do not necessarily decrease 

the overall number of bacteria but they lead to alteration of their diversity (Duvallet et al. 2017). Bacteria which 

are sensitive to antibiotics may be eliminated and antibiotic-resistant bacteria can multiply and replace them.  

Moreover, BSH activity can be reduced by the administration of antibiotics(Wang et al. 2012). Smith et al. (Smith 

et al. 2014) have shown the impact of different antibiotic classes on the potential to inhibit BSH. Recent studies 

have revealed that the concentration of Lactobacillus, the main bacteria strain possessing BSH in our small 

intestine was reduced in the presence of antibiotics (Dumonceaux et al. 2006; Guban et al. 2006). Khodakivskyi 

et al. (Khodakivskyi et al. 2021) examined the alteration of BSH  based on bioluminescence image due to 

deconjugation of BS. The result revealed the potential of antibiotics to reduce BSH of about 30% of gut 

microbiota.  Furthermore, antibiotics, by changing gut microflora composition, were linked to the development 

of obesity (Vallianou et al. 2021). Antibiotics are also used as therapeutic agents. Children with malnutrition are 

treated with amoxicillin which results in weight gain (Francis et al. 2023). Studies performed on mice concerning 

transferring microbiota from obese adult twins to germ-free mice resulted in weight gain of mice (Lange et al. 
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2016).  Antibiotics are external factors, which may influence the composition of the gut microflora and 

consequently, indirectly influence the BS composition, leading to disturbance of the enterohepatic recirculation 

system. 

 

1.9. BS and obesity 
The research covers the topic of the digestion process of food. However the diet is a key parameter as it may 

lead to the development of disease, therefore we should control the process of food modulation in our 

organism. Obesity appears to be a worldwide problem that negatively influences our body development. The 

diet was considered as a direct factor influencing weight profile. High-fat diet enhances obesity development, 

while a diet rich in vegetables results in a healthy homeostasis (Sakamaki et al. 2005). Diet was also proven to 

impact the gut microbiota diversity and complexity, by changing intestinal environmental conditions and 

influencing the BS composition (Scott et al. 2013).  

Except for diet, obesity may be also promoted by changes in microbiota composition, induced for example by 

taking antibiotics or the development of disease (Li et al. 2021). Antibiotics were considered to reduce the 

composition of gut microflora and decrease the activity of BSH. (Guban et al. 2006). This reduces the 

concentration of deconjugated BS and increases the C/U ratio.  

Results presented in publication A1 have shown that conjugated BS enhance the lipolysis process to a higher 

extent than unconjugated BS. The formation of high concentrations of conjugated BS over unconjugated ones 

may result in the unbalanced process of lipid digestion. Conjugated BS, as it was shown in publication A3, has a 

faster adsorption rate on the oil droplet than unconjugated BS results in greater surface area and ensures a more 

effective lipolysis process. Moreover, conjugated BS may more effectively remove lipolysis products through the 

desorption process than unconjugated BS, which gives more space for another BS to adsorb to the oil droplet 

and continue the digestion of lipids. Excessive lipolysis rate promoted by conjugated BS may result in the 

development of obesity. Exorbitant conjugation levels may be considered as a factor contributing to the obesity 

problem due to the enhanced lipolysis process. Moreover, excessive concentration of conjugated BS may disrupt 

BS synthesis resulting in reduced BS concentration. Unbalanced BS concentration and disturbed BS synthesis, as 

shown in publication A2, results in the development of diseases, such as gallstone formation or 

choledocholithiasis. 

  

Several factors induce changes in BS concentration, by affecting intestinal microbiota, which are responsible for 

lipolysis efficiency. Therefore, it can be concluded that BS play an important role as a factor controlling the 

development of obesity by modulating the calorie uptake.  

 

1.10. Role of BS in the lipolysis process 
Digestion of lipids takes place in the stomach by hydrolysis of lipids driven by gastric lipase, however, this process 

was estimated to occur to a limited extent (10-30%). Predominantly (70-90%) lipolysis process takes place in the 

small intestine due to the hydrolysis of lipids by lipase (Maldonado-Valderrama et al. 2011). Therefore, the 

research covers the lipid digestion process in the small intestine. 

Lipolysis is a well-known and broadly studied process. Its efficiency is mostly measured in the form of FFA 

releases. It has been previously shown that different compositions of emulsion influence the final FFA release 

(Wilde et al. 2019). Different forms of BS have also been shown to promote lipolysis efficiency to various extents 

(Pabois et al. 2020). Previously it was concluded that lipolysis is controlled by three main parameters: 1. 

Adsorption of BS/lipase to the oil interphase, 2. Emulsification of lipid droplets and 3. Desorption and 

solubilization of lipolysis products by BS micelles ;GŽůdŝŶg aŶd WŽŽƐƚeƌ ϮϬϭϬ͖ BeůůeƐŝ aŶd PŝůŽƐŽf ϮϬϮϭ͖ ŁŽǌŝŷƐŬa 
and Jungnickel 2021). Taking into consideration the influence of BS on each aspect of lipolysis, it can be assumed 

that these parameters are too general. Therefore, based on previous assumptions, there were proposed six 

separate factors, including five unique parameters ( as shown in publication A1 and publication A3) of which 

lipolysis consists. First (1), BS adsorb on the oil interface, promoting the emulsification process, removing surface 

materials such as proteins or emulsifiers and facilitating adsorption of the pancreatic lipase/colipase. Higher 

adsorption of the BS on the oil surface may suggest that they can facilitate the lipolysis process by enhancing 

pancreatic lipase/colipase to adsorb. Moreover, the higher the ability of the BS to break down the fat droplet 

(surface tension of oil droplet) into smaller droplets, the higher the surface area would be available for 

lipase/colipase to adsorb (2). Next, lipase/colipase promotes the hydrolysis of triglycerides into FFA and 

monoglycerides, which stay at the interface of the oil droplet, inhibiting further digestion by blocking the contact 

of lipase/colipase with the oil interface (3). BS create small aggregates called mixed micelles, which act as 
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vehicles for lipolysis products. BS can incorporate those products, remove them from the interphase and further 

transport them (4). After solubilizing lipolysis products into their structures BS desorb from the soil surface (5). 

CMC displays the minimum concentration of the substance to create those aggregates. Therefore, a lower CMC 

of the BS would indicate a lower concentration necessary for starting agglomeration which may be beneficial for 

lipid digestion. A smaller aggregation number of the BS would mean that a lower number of surfactants is 

required for micelle creation. Thus, within the same concentration of the BS, assuming that conjugated forms of 

the BS reveal smaller CMC and aggregation numbers, a greater number of the micelle might be created in 

comparison to unconjugated BS. Moreover, the ability of the BS to incorporate lipolysis products into mixed 

micelles is evaluated by the MSR of the compound. The higher the MSR, the greater amount of the substance 

would be incorporated, therefore more lipolysis products might be removed from the oil surface, providing more 

space for lipase/colipase to adsorb. The final rate of the lipolysis will be measured by the FFA released. The 

greater the number of the FFA released, the higher the extent of the lipolysis may be achieved.  

 

1.11. Adsorption of BS  
The ability of the lipase to adsorb to the lipid droplet is assisted by BSs, and therefore the  BS adsorption kinetics 

(Pilosof 2017). First, the ability of the BS to adsorb at the oil/water interface would indicate their potential to 

remove the surface materials and facilitate lipase adsorption. It is a rate-limiting step influencing the lipolysis 

efficiency.  The number and position of the hydroxyl group were shown to affect the adsorption profile of BS, as 

shown by Castillo-Santaella et al. (del Castillo-Santaella and Maldonado-Valderrama 2023). The results pointed 

out that NaTC would yield the highest surface tension at air/water interphase, concerning other investigated BS: 

NaGCDC and NaGDC, due to its highly hydrophilic nature. The study conducted by Parker et al. (Parker et al. 

2014) allowed us to distinguish two groups characterized by different adsorption behaviour. The first group 

demonstrates reversible adsorption behaviour (NaGDC, NaTDC), while the second group displays a significant 

degree of irreversibility (NaTC, NaGC, NaGCDC). The study demonstrated that the adsorption behaviour follows 

the micellization properties. Faster desorption was represented by BS which had low CMC and large aggregation 

numbers and high CMC and low aggregation numbers promoted irreversibility adsorption.  

Secondly, the interaction between the BS-lipase complex may give the information about potential of the BS to 

change lipase structure. To better understand the influence of the type of BS on the lipolysis process, the 

conformational structural changes of lipase introduced by BS were investigated, which may further reflect the 

potential of lipase adsorption. The molecular dynamic simulation performed by Haque et al. (Haque and Prakash 

Prabhu 2018) revealed the alterations in the interfacial activity of pancreatic lipase. The binding of NaTC to 

porcine pancreatic lipase resulted in changing the structure of the lipase. Moreover, this interaction prevents 

the loss of helical structure. The binding of NaTC prevents against conformation and induces an open-

conformation (Haque and Prabhu 2016). Open conformation helps lipase to stay active without the co-lipase. 

Thus, the interaction between BS and lipase complex may induce conformational changes in the lipase, influence 

the lipase activity and stimulate the lipid digestion process. 

Stronger adhesion of the BS may facilitate adsorption of the lipase/co-lipase to the surface of the lipid, which 

may promote lipolysis. However, reduction of the residence time at the interface can decrease the adhesion of 

the lipase/colipase but at the same time can facilitate displacement of lipolysis products from the surface. 

Therefore, the examination of BS behaviour at the interface is a key aspect considering their role in the lipolysis 

process. 

 

1.12. Emulsification of fat droplet 
Lipolysis efficiency was strongly correlated with particle size of the emulsion. Greater particle size was observed 

to reduce FFA release, which is correlated with a smaller surface area available for BS/lipase complex for the 

adsorption (Wilde et al. 2019). The smaller particle size of the initial emulsion was shown to promote higher 

lipolysis efficiency than the emulsion with a bigger particle size (Sarkar et al. 2016). The composition of digested 

emulsion may also influence the final FFA release due to the interaction of components of emulsions with BS. 

Wilde et al. (Wilde et al. 2019) examined the effect of phytosterol, a known component to reduce blood 

cholesterol levels (Dumolt and Rideout 2017) on the lipid digestion process. The results show that phytosterol 

accumulates at the surface of the oil, reducing space for BS to adsorb at the interphase, therefore reducing FFA 

release. Recently, plant-based diets gained popularity due to health and environmental concerns and animal 

welfare (Alcorta et al. 2021). Dietary fibres, the components of plant-based diets, were shown to trap BS in an 

aggregated structure during the digestion process and reduce the FFA release (Bellesi et al. 2018). The properties 

of emulsions, both composition and size of emulsion influence the lipid digestion process. 
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1.13. Micellization of BS 
BS forms small aggregates in the aqueous solutions when their concentration exceeds CMC. The formation of 

micelles allows BS to complete their roles during the lipolysis process. It ensures the solubilization of lipolysis 

products into their structures and removal them from the oil interphase, which gives a greater surface for the 

BS/lipase complex to adsorb (Holm et al. 2013). Moreover, micelles play an important role as transport vehicles. 

Thanks to them lipolysis products can be delivered to our organism, which would be impossible due to their 

hydrophobic nature.  

 
Figure 4 Arrangement of BS micelles into A. Primary structures, resulting from hydrogen interactions. Aggregation number 
was estimated to vary between 2-10. B. Secondary structures resulting from hydrogen bonding. The aggregation number was 
estimated to vary between 10-100. The scheme was prepared according to Moghimpour et al. (Moghimipour et al. 2015). C. 
Aggregation number in respect to the concentration of different BS. Aggregation number increases with increasing 
concentration of BS. PC BS (NaTC) had the lowest aggregation number. D. Aggregation number with respect to CMC of BS. 
The increasing CMC did not result in a decreasing aggregation number. The results of CMC and aggregation number were 
taken from the meta-analysis. The data of aggregation numbers fƌŽm C͘ and D͘ ǁeƌe ƉƌeǀiŽƵƐlǇ ƉƵbliƐhed bǇ ŁŽǌińƐka eƚ͘ al͘ 
;ŁŽǌŝŷƐŬa aŶd JƵŶgŶŝcŬeů ϮϬϮϭͿ. NaC ʹ sodium cholate, NaTC ʹ sodium taurocholate, NaTDC ʹ sodium taurodeoxycholate, 
NaGC ʹ sodium glycocholate, NaGDC ʹ sodium glycodeoxycholate, NaDC ʹ sodium deoxycholate, CMC ʹ critical micelle 
concentration. 

Over the years various techniques have been used to determine CMC (surface tension, dye solubilization, light-

scattering, fluorescent, conductivity, and potentiometry). Each of the techniques is characterized by different 

selectivity and sensitivity. Moreover, CMC depends on BS type. Maestre et al. (Maestre et al. 2014) indicated 

that the higher number of hydroxyl groups and more hydrophilic character will contribute to higher CMC 

concentration due to greater water solubility of the molecule. Roda et al (Roda et al. 1983)  observed that the 

CMC values of BS increase with an increasing number of hydroxyl groups. Trihydroxy BS have less hydrophobic 

character than dihydroxy BS which results in a lower CMC value of dihydroxy BS (Mukherjee et al. 2016). I Partay 

et al. (Pártay et al. 2007) indicated that the CMC of SC dihydroxy BS ʹ NaDC was smaller than that of PU 

trihydroxy BS- NaC. 

CMC of BS is one of the key parameters controlling the rate of lipolysis. The formation of micelles by BS is 

preceded by the creation of small aggregates such as dimers and trimers. (Duane and Gilboe 1995) Micelles are 

not only responsible for solubilizing lipolysis products, therefore allowing them to be removed from the oil 

interphase during the lipid digestion process but also ensure the safe transport of digested components through 

our body. Adsorption of BS was mentioned to be the most influential factor in controlling the process of lipid 

digestion (Macierzanka et al. 2019). However, the attention was also directed to the presence of unadsorbed 

BS, which inside the mixed micelles could effectively influence the lipolysis processes by solubilizing and 

removing products from the oil interface (Sarkar et al. 2016).   

The formation of micelles of BS has multiple roles during the lipolysis process. It serves as aggregates in which 

lipolysis products can be incorporated and removed from oil interphase by the desorption process, which 

influences lipolysis efficiency and it also ensures the safe transport of necessary for our body components. 

Therefore, the tendency of BS to form micelles was studied by meta-analysis, for all types of BS, and 

experimental approach, for specific BS, in publication A1 and publication A3. 
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1.14. Desorption of BS 
The ability to desorb from the lipid surface plays an essential role in the lipolysis process (Maldonado-Valderrama 

et al. 2014). Adsorption-desorption process is a rate-limiting step controlling the rate of the lipolysis. Increasing 

the surface tension of the surface layer indicates the depletion of the BS and it is desorption from the surface. 

The study performed by Maldonado-Valderrama et al. (Maldonado-Valderrama et al. 2014) showed different 

desorption properties of two conjugated forms of BS. While NaGDC fully desorbs from the surface within the 

whole concentration range, the NaTC tends to form irreversibly adsorbed structures at the interface. Desorption 

of NaTDC at lower concentrations was linked to reduced lipolysis efficiency (Pabois et al. 2020).  

Desorption of BS from the oil interphase is a key parameter ensuring the removal of lipolysis products from the 

interphase and providing free space for BS/lipase to adsorb and continue the lipid digestion process. Finally, the 

desorption of BS ensures the incorporation of lipolysis products and delivers them to our bodies.  

 

1.15. The solubilisation function of  BS 
Lipolysis products are solubilized by BS into created aggregates. BS forms vehicles that facilitate the 

transportation of lipolysis products. (Pigliacelli et al. 2023). Hofmann and Borgstrom (Hofmann and Borgstrom 

1962) performed an ultracentrifugation experiment on human lipid digestion products, where they 

demonstrated that it consists of an oily phase and a solubilized BS mixed micellar phase. The studies comparing 

the effect of the ratio of BS and surfactant concentration (cationic, anionic, nonionic) on lipid digestion were 

performed, showing that the nature of surfactant plays an important role in the lipolysis process (Vinarov et al. 

2012).   

Formation of the micelles and solubilization of lipolysis end products is known as the process that completes the 

digestion of lipids. Created micelles transport lipid-digested products by absorption through enterocytes (Leal-

Calderon and Cansell 2012). This requires micelles to diffuse through the protective layer of intestinal mucus. 

The small intestinal mucus is known as a complex colloidal system that protects the intestinal epithelium from 

exposure to luminal contents by creating a protective layer for the entire intestinal epithelium (Macierzanka et 

al. 2019). The mucus layer is a natural filter, that prevents epithelium against pathogenic microorganisms and 

ensures absorption of nutrients, so they can reach enterocytes (Cone 2009). Intestinal mucus is composed of a 

range of organic compounds, among which are two major ones that create a coherent network: gel-forming 

biopolymers, MUC2 mucin glycoprotein, and extracellular DNA (Hansson 2012; Macierzanka et al. 2014). The 

intestinal epithelium is composed of goblet cells that produce and secrete mucin (Zhang and Wu 2020). 

Viscoelasticity and strength of the gel depend on many factors such as concentration of mucin, DNA, size of 

pores, and level of entanglement (Macierzanka et al. 2019). Peristaltic movements cause a decreasing thickness 

of the mucus layer by inducing shear force. Penetration through a thinned mucus layer is possible only by 

diffusion (Cone 2009). Because lipids are insoluble in water they require transportation by BS in micelles. 

 

1.16. Intestinal absorption 

 
  Figure 5 Intestinal absorption of BS. The jejunum and colon allow only for passive absorption, whereas the ileum transport 
BS through passive and active transportation mechanisms.  

At the end of the enterohepatic recirculation mechanism, 5 % of BS is excreted from our body and 95% of BS is 

transported back to the liver through intestinal absorption. The intestinal transport mechanism of conjugated 

and unconjugated BS is a crucial process, ensuring the enterohepatic recirculation flow. The BS present in the 

small intestine can be reuptake by both active transport and passive ionic and nonionic transport mechanisms.  

Based on the BS features they may be transported in three main ways: by passive absorption in the jejunum, 

active and passive mode in the ileum, and passive mechanism in the colon, as shown in   Figure 5. The active 

transport plays an essential role in the reabsorption of BS from the ileum.  Tyor et al. (Tyor et al. 1971) concluded 
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that the majority of the BS present in the small intestine is transported back to the liver In the ileum. They also 

pointed out that limited absorption of BS may appear in other parts of the intestinal tract. The ionized and 

conjugated form of the BS reduces its absorption ability to the ileum transport mechanism and potential 

absorption by brush border membrane limits the action of a transporter (Dawson and Karpen 2015). However 

passive transport system was proved to exhibit good absorption ability for unconjugated or secondary 

conjugated BS. Passive absorption is based on the concentration gradient rule. Unconjugated BS can be absorbed 

at any level in the small intestine by passive absorption. 

Aldini et al. compared the transport concentration of BS in the jejunum and ileum (Roda et al. 1983; Aldini et al. 

1996). The mechanism of absorption for conjugated and unconjugated BS was examined. They noticed that 

unconjugated BS undergo passive transport in both the jejunum and ileum, the taurocholate was more likely to 

be absorbed in the ileum by an active transport system, while glycol-conjugated BS possessed an ability to 

undergo jejunum and ileum passive absorption as well as the ileum active absorption. Glycine-conjugated BS 

were examined to have a more hydrophobic nature than taurine-conjugated BS (Podda et al. 1990). Moreover, 

Merkus et al. pointed out that the conjugation of BS reduces the hydrophobicity of the created BS (Merkus et 

al. 1996). This process ensures maintaining the ionized form of BS, which prevents undergoing the absorption 

process before the fat absorption (Heaton 1969), which also indicates that the diffusion rate of BS in the small 

intestine depends on its form. Tyor et al. (Tyor et al. 1971) pointed out that the absorption concentration of the 

BS depends on the presence of specific microorganisms with the capability to deconjugate BS present in the 

small intestine. An important aspect is connected with the fact that conjugated BS possess a stronger ability to 

be absorbed, thanks to their enhanced water solubility, than their deconjugated forms, which are more likely to 

undergo an excretion process (McHugh et al. 2004). 

 

So far there has been no clear investigation of how individual forms of BS may impact each of the mentioned 

parameters about lipolysis efficiency. There were performed individual studies of the physiochemical functions 

of BS, including CMC, aggregation number, solubilization, adsorption and desorption properties (Heuman 1989; 

Nagadome et al. 2001; Maestre et al. 2014; Maldonado-Valderrama et al. 2014; Mukherjee et al. 2016), as well 

as physiological functions such as FFA release ;BeůůeƐŝ aŶd PŝůŽƐŽf ϮϬϮϭ͖ ŁŽǌŝŷƐŬa aŶd JƵŶgŶŝcŬeů ϮϬϮϭͿ. However, 

based on the existing research, it is impossible to determine the rate-limiting step during the lipolysis process. 

BS performs its action simultaneously, therefore, investigation of all parameters concerning the lipolysis process 

may be sufficient for fully understanding the impact of BS on the digestion process. Imbalance in the BS 

concentration, caused by various diseases, non-healthy diet, environmental stress, etc, may inhibit the lipid 

digestion process and promote weight imbalance, as well as further development of diseases. Therefore, the 

investigation of the influence of BS in the lipolysis process was further developed in the publication A1 and may 

give a perspective to modulate the lipolysis process in a controlled way. 

 

1.17. Physiological function of BS 
In addition to their role in the lipolysis process BS are multifunctional biosurfactants. They act as anti-microbial 

agents in the small intestine, towards gram-positive bacteria (Hagey et al. 2010). The anti-microbial activity was 

related to oxidative DNA damage, disrupting cell membranes and cellular homeostasis (Moghimipour et al. 

2015).  BS act as signalling molecules, they regulate activation of G-protein coupled receptor and FXR.and they 

are responsible for stimulating lipid, glucose and energy metabolism (Da Silva et al. 2013).  BS also regulate the 

secretion of lipoproteins from hepatocytes (Torchia et al. 2001), and colonic mucosal growth and stimulates the 

proliferation of colonic epithelium (Strauch et al. 2003). BS are responsible for the stimulation of intestinal 

immunity and regulating immune cells in the mucosa (Keating and Keely 2009; Soroka and Boyer 2014). BS also 

are responsible for removing toxins and excessive concentrations of cholesterol, preventing the formation of 

gallstones (Krupa et al. 2021). 

 

1.18. Methods of measuring the lipolysis process 
The increasing interest and awareness of the importance of digestion in the human body contributed to the 

search for a way to measure the effectiveness of the digestion process. To represent physiological conditions 

during digestion, both in-vitro and in-vivo techniques have been developed. In-vitro static models are commonly 

used as they may reflect the biochemistry of specific regions of the gastrointestinal tract, are easy to use and 

cheap. Single compartment pH stat model requires cheap and easily accessible equipment but it does not 

consider processes in the stomach, for example, gastric emptying, gastric and intestinal phases have to be 

performed separately and transferring the sample requires pre-conditioning (Lee et al. 2018). To overcome the 
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limitations two-compartment model can be used as they simulate both the gastric and the intestinal phase and 

connection by peristaltic pump ensures transportation of gastric medium to the intestinal vessel (Huang et al. 

2021). In-vitro static techniques are well-standardized models and allow capturing the individual key parameters 

bƵƚ ƚheǇ caŶ ŶŽƚ ƌefůecƚ ƚhe cŽŵƉůeǆŝƚǇ Žf ƚhe ŝŶƚeƐƚŝŶaů ŵŝcƌŽbŝŽƚa͕ dŽŶ͛ƚ ŵŝŵŝc the peristaltic movement and 

do not reflect the shape of the specific organ of the body (Huang et al. 2021). In-vitro dynamic models were 

developed to overcome multiple limitations of static techniques and ensure the reflection of digestion kinetics 

of the gastrointestinal tract and reproduction of the gastrointestinal environment. However dynamic models are 

very complicated, time-consuming, and not standardized and they do not focus on a simple parameter, but 

rather on the complexity of biochemical changes in the gastrointestinal tract therefore their accessibility is much 

lower than static models (Mulet-Cabero et al. 2020). Another alternative in-vitro method is a pendant drop 

surface film balance implemented with multi-subphase exchange(Maldonado-Valderrama et al. 2014). This 

method uses a single droplet immersed in the oil phase to simulate in-vitro digestion of emulsion. The droplet 

solution is exchanged with simulated digestive media that mimics the lipolysis process. 

Due to the complexity of the process, reflection of lipolysis with a validation level comparable to our digestion 

system is a huge challenge. Recently, due to increasing interest and awareness of the importance of the digestion 

process, several in-vivo noninvasive and invasive methods have been developed. Magnetic resonance imaging 

is a non-invasive technique used to visualise changes in meal composition in the gastrointestinal tract, mainly in 

the stomach (Mariani et al. 2004). Another technique that allows following the gastric emptying process and 

uptake of nutrients is stable isotope breath testing with MS. This technique allows following the meal by using 

specific compounds that depend on the tested material (Golding and Wooster 2010). In-vivo invasive techniques 

may give a greater range of information. These studies are mainly performed with clinical assessment, for 

example, blood tests (Degen et al. 2007).  The main aim of developing the in-vitro techniques is to ensure the 

appropriate validation level, reflecting in-vivo actions. In our research, we were using non-invasive techniques, 

which effectively reflect the complexity of the lipolysis process. 

 

1.18.1. Static in-vitro digestion model 
Digestion models are used to measure the efficiency of the lipolysis process, based on the formation of the final 

product however, they cannot measure the efficiency of each step of the lipolysis. The main advantage of this 

model is that they are cheap, non-complicated to use have good reproducibility, easy to use. The most popular 

and widely used model is the Brodkorb model (Brodkorb et al. 2019) based on a systematized in-vitro digestion 

model. Unfortunately, static models do not reflect the multi-complexity of biochemical reactions, absorption, 

secretion, peristaltic movements and emptying.  We used the Brodhorb model, as its standardized method was 

created due to over three years of cooperation between the INFOGEST group, allowing results to be easily 

comparable between each other, to compare the efficiency of the lipolysis process in the presence of two 

different forms of BS: NaTC and NaDC. 

 

1.18.2. OCTOPUS technique 
We used the pendant drop technique which allows us to measure digestion efficiency in a single droplet. The 

work of OCTOPUS is based on a subphase device that allows to replacement of digestive media. Experiments 

performed on in-vitro static digestion models allowed us to compare the efficiency of lipid digestion in the 

presence of different forms of BS by measuring the final FFA release as an indicator of the efficiency of the 

lipolysis process. These experiments proved that the form of BS modulates lipid digestion and showed that NaTC 

increases the final FFA release, leaving us with the question ʹ why does NaTC promotes higher FFA release? 

Lipolysis is a process consisting of cumulative effects. The pendant drop technique was used to determine the 

continuous evolution (changes in interfacial tension and dilatational modulus) of the interface during the 

lipolysis process, considering the influence of NaTC and NaDC.  BS during the lipolysis process has to adsorb on 

the surface of the oil to allow lipase and co-lipase to perform the emulsification process and has to also desorb 

from the oil surface, ensuring removal of lipolysis products from the interface. The desorption process is also 

important because if the accumulated lipolysis products would not be removed from the oil interface, further 

digestion would be blocked due to a lack of place for the adsorption of the BS-lipase complex. Therefore, 

interfacial properties would strongly affect the extent and rate of lipolysis and were further examined in our 

research.  
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2. Purpose and scope of the work 
The PhD thesis aimed to determine the effect of two predominant forms of BS: NaTC and NaDC on the process 

of lipolysis by identifying their influence on individual processes of mechanism of lipolysis. Lipolysis mainly takes 

place in the duodenum, which consists of PC forms of BS, and SU, ones due to the deconjugation process 

(Corstens et al. 2017). 

The scope of the doctoral dissertation includes (1) the identification of predominant forms of BS influencing the 

lipid digestion process, (2) the investigation the potential of which different BS influence the specific parameter 

(CMC, Na, and MSR), (3) determine factors disturbing BS synthesis and its effect on BS composition, (4) establish 

influence of choledocholithiasis, cholangiocarcinoma and pancreatic neoplasm towards changes in BS 

composition and its potential to disturb lipid digestion process, (5) identification the processes of lipolysis 

mechanism, (6)  determination the influence of predominant forms of BS in our small intestine: NaTC and NaDC 

on each process of lipolysis,  (7) assessment the impact of BS action on the lipolysis efficiency, (8) identification 

the rate-limiting process of lipolysis. 

The results of the PhD work allowed us to reveal the potential to control the lipolysis mechanism via the action 

of BS. The influence of BS on each lipolysis process was experimentally measured and the final rate of lipolysis 

was asses.  
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3. Discussion of scientific literature results 
This part of the work presents the results of the research included in the doctoral dissertation in the form of a 

series of three original scientific publications on the presented research issues, published in two journals from 

the JCR list with a total IF = 17.954. A short description of the works is presented below. 
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3.1. Publication 1 -A1 
ŁŽǌŝŷƐŬa N͕ JƵŶgŶŝcŬeů C͘ IŵƉŽƌƚaŶce Žf CŽŶũƵgaƚŝŽŶ Žf ƚhe Bŝůe Saůƚ ŽŶ ƚhe MechaŶŝƐŵ Žf LŝƉŽůǇƐŝƐ͘ Molecules. 

2021; 26(19):5764. DOI: 10.3390/molecules26195764. 

 

3.1.1. Objective of research 
Publication A1 was focused on meta-analysis and statistical analysis of three parameters covering aggregation 

properties of BS: (1) micellization properties (CMC, E parameter), (2) aggregation number and (3) MSR.  

The second aim of the publication A1 was to determine the influence of two predominantly present forms of BS 

in our small intestine: PC NaTC and SU NaDC, on digestion efficiency. The goal was to use a standardized, easy 

method which results will be, in the future, comparable with other experiments. Therefore, the static in-vitro 

digestion model, according to the Brodkorb protocol, was used to determine the progress of digestion by 

measuring FFA release. 

 

3.1.2. Reason for undertaking the research problem 
The main research problem that encouraged undertaking work on publication A1 was that there was a poor 

understanding of the relation between  BS, aggregation properties (CMC, aggregation number, MSR) and 

lipolysis efficiency.  

 

The type and concentration of BS determine its effect of action on lipolysis parameters. Alterations of those 

parameters may impact the role of BS in the lipid digestion process and modulate the final rate of lipolysis. 

Moreover, the nature of BS influences the processes modulating lipolysis efficiency. Increasing hydrophilicity of 

BS was correlated with the reduction of CMC, which is contradictory to linear surfactants. The factor responsible 

for this difference was no of BS-water hydrogen bonds. Therefore, an investigation effect of the simultaneous 

action of those parameters on the lipolysis process had to be performed.  

The meta-analysis of experimental data has revealed that there is a limited number of data points from 

experiments performed under physiological conditions. 

Lipolysis experiments are often performed under various, changeable conditions (type of oil, conc of BS, particle 

size of emulsion etc.) which limits comparability between each other.  Moreover, it could be observed that there 

is a limited number of studies on the influence of the BS ratio on lipolysis efficiency.  

 

Meta-analysis of CMC of BS showed a high variation of data for a single BS. The results strongly depend on the 

technique used to determine CMC. Some of the techniques with high sensitivity, allowed to detect the primary 

CMC and techniques with low sensitivity were only able to detect secondary micelles. The review of the 

literature data (Roda et al. 1983; Astrup 2001) revealed that dihydroxy BS may form both primary and secondary 

micelle, while trihydroxy BS mostly forms primary micelles. Dihydroxy BS forms primary micelles at a 

concentration of n 10-50mM and secondary micelles at a concentration above 100mM (Mishra et al. 2019). The 

formation of secondary micelles for trihydroxy BS was reported to be above the 300mM (Pártay et al. 2007). For 

this reason, only experiments that were carried out within the intestinal composition of BS, 10mM ;ŁŽǌŝŷƐŬa eƚ 
al. 2024) were taken into consideration. This approach allowed to solve the problem with the high variation of 

CMC data, especially for dihydroxy BS such as NaDC. Moreover, the divergence of the CMC data was also 

connected with the year of the performed experiments, CMC increased with time, probably due to the increased 

purity of BS. 

 

Analysis of ɴ of different BS: BS systems revealed two occurring effects within the systems: antagonistic (with 

high CMC, positive ɴ) and synergistic (with low CMC, negative ɴ). In our research, we assumed the individual 

effect of BS on lipolysis efficiency taking into consideration only the CMC of the single BS. However, during the 

digestion process are present different types of BS and we decided to expand our research to two questions: (1) 

why does the antagonistic effect occur and (2) what is the reason for the synergistic effect? Moreover, the 

research revealed that the system composed of the PC and the SU BS balances the impact. 

 

The increasing hydrophilicity of BS resulted in lower CMC, which was contradictory to the behaviour of linear 

surfactants. A similar situation appeared in the case of the BS: BS systems, where both the antagonistic and the 

synergistic effects could be observed, while systems created by linear surfactants mainly result in synergistic 

effects. The contradictory behaviour of BS towards linear surfactants resulted from their planar polarity.  
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To assess the level of difference of influence on the lipolysis process by two BS: NaTC and NaDC, stable and 

uniform emulsion had to be designed. When an emulsion with high particle size was created the emulsion met 

the conditions of establishment but the difference of FFA between NaTC and NaDC was very low (2%). When 

the emulsion with the smaller particle size was tried to be created the final emulsion was uniform with low PDI 

index. Moreover, the long work of the sonicator with high frequency resulted in the destabilization of the 

emulsion due to the high temperature of the end of the sonicator. Lower frequencies of work of the sonicator 

were not efficient enough to create an emulsion with a smaller particle size. Changes introduced at the 

formation of pre-emulsion ʹ replacing vortexing with homogenization - allowed to decrease in the particle size 

of the emulsion and obtained a uniform and stable emulsion. Formed emulsion allowed to obtain a difference 

in FFA release between NaTC and NaDC of 15%. 

 

 
Figure 6 Schematic representation of the role of BS during the lipolysis process. The role of BS can be reflected by its influence 
on different parameters. The impact of each of the processes influences the final rate of lipolysis.  CMC ʹ critical micelle 
concentration, MSR ʹ molar solubilisation ratio, FFA ʹ free fatty acids, NaTC ʹ sodium taurocholate, NaDC ʹ sodium 
deoxycholate. 

 

3.1.3. Main outcomes and conclusions 
x The deconjugation process affects the physiochemical properties of BS in GIT 

x NaDC have lower CMC than NaTC 

x NaDC showed greater emulsification properties of oil droplets than NaTC 

x The higher hydrophilic character of NaTC allows them to desorb easier from the surface of the emulsion 

x LogKOW showed a negative contribution towards MSR 

x NaTC enhances FFA release to a higher extent than NaDC. 

x The interface activity of NaDC is higher than NaTC, indicating that lipolysis is dominated by other factors 
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3.1.4. Graphical abstract of publication A1 
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Abstract: We aim to advance the discussion on the significance of the conjugation of bile salts (BS)
in our organism. We hypothesize that conjugation influences the rate of lipolysis. Since the rate of
lipolysis is a compound parameter, we compare the effect of conjugation on four surface parameters,
which contribute to the rate. Since deconjugation is due to gut microbiota, we hypothesize that
microbiota may affect the rate of lipolysis. A meta-analysis of literature data of critical micelle
concentration, �, aggregation number, and molar solubilization ratio has been performed for the
first time. In addition, critical micelle concentration (CMC), interfacial tension, and lipolysis rate
measurements were performed. It was found that the unconjugated BS in mixed micelles increases
the antagonism between the BS, therefore, increasing the CMC. This correlated with the effect of
unconjugated BS on the solubilization capacity of mixed micelles. The collected literature information
indicates that the role of the BS and its conjugation in our organism is a key factor influencing the
functioning of our organism, where too high levels of unconjugated BS may lead to malabsorption
of fat-soluble nutrients. The experimental lipolysis results irrevocably showed that conjugation is a
significant factor influencing the rate.

Keywords: bile salts; lipolysis; CMC; aggregation number; MSR

1. Introduction

Bile salts (BS) are planar surfactants, which have methyl groups on the convex side
and hydroxyl groups on the concave ↵-side [1]. These rigid amphiphiles [2] lack the typical
flexibility of linear surfactants, which results in occasional flipping of the molecules so that
the hydrophilic parts may remain inside the core, while hydrophobic parts may remain in
water [3]. Self-assembly of BS is driven both by induced dipole interaction and hydrogen
bonding between the BS molecules.

BS plays a crucial role in the digestion and absorption of nutrients, extraction of waste
products from our body and are known to function as steroid hormones regulating nutrient
metabolism [4]. The compounds originate as bile acids (BA) that are synthesized from
cholesterol in the liver and stored in our gallbladder [5]. BA are conjugated in hepatocytes
with either a molecule of glycine or taurine at the C-24 carboxyl group by amino acid N
acyltransferase [4,6]. Conjugation is possible due to the conversion of the bile acids to their
coenzyme (CoA) thioester [7]. Conjugation reduces the pKa of the formed BS and increases
their hydrophilicity. The pKa value was measured to be 6 for the unconjugated BA, 4.5
for glycine conjugated BA, and 1.5 for taurine conjugated BA [8]. The conjugated form of
the BA present in our gastrointestinal tract is therefore called bile salts (BS), as they are
commonly deprotonated [9].

BS plays many important roles in our organism. One of these is their ability to create
mixed micelles, which act as vehicles for a variety of molecules, including cholesterol in the
liver, thereby becoming the major path of removal of cholesterol from our body [10]. In the
small intestine, bile salt is responsible for decreasing the surface interfacial tension of lipid
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droplets, which promotes the emulsification of oil droplets [11]. Moreover, BS contributes
to the adsorption/desorption process of lipase [12]. BS are responsible for the removal
of the lipolysis products from the interphase, solubilizing them in the mixed micelles,
which allows for transport from intestinal lumen across into the intestinal mucosa to the
gastrointestinal epithelium (enterocytes) [13–15]. They are removed from the bloodstream
by the active transporters on the sinusoidal membrane of hepatocytes and are secreted
back into the bile [16]. After entering the bloodstream, BS are transported to the liver.

In addition, BS regulates the composition of gut microbiota [17] with their known
antimicrobial activity. Part of the BS undergo deconjugation and create secondary BA:
deoxycholic acid and lithocholic acid, due to bacterial action [4]. They also act as a signaling
molecule by modulating the BS receptors FXR and TGR5 [16]. In the ileum, BS are absorbed
and transported back by the portal vein to the liver. In the small intestine, the flow and
reabsorption of the BS and secondary BA through our body is known as the enterohepatic
recirculation process [18]. Emulsification, formation of mixed micelles, regulating gut
microbiota, and binding to the Farnesoid X receptor (FXR) are influenced by the level
of conjugated BS [19]. FXR signaling reduces the expression of cholesterol 7↵-hydrolase
(CYP7a1), a rate-limiting enzyme in bile acid synthesis, and as a consequence, primary
BA synthesis is reduced when its level is already high [20]. Unconjugated BS will have a
higher affinity to the FXR than conjugated [21], and this will consequently inhibit new BS
synthesis [22].

However, the concentration and type of the BS present in our gastrointestinal tract
depend on many different factors, acting simultaneously. The most significant factor
controlling the level of conjugation of BS is the intestinal flora [23]. These bacteria, mostly
Gram-positive (such as Lactobacillus, Enteroccocus, Bifidobacterium, Clostridium), as well
as some Gram-negative (Bacteroides spp.) possess bile salt hydrolase (BSH) [20], which
catalyze the deconjugation of the BS. There are five known transformation mechanisms of
conjugated BS by intestinal bacteria: dehydroxylation, dehydration, and epimerization, and
most reported recently, the amide conjugation of the cholate backbone with phenylalanine,
tyrosine, and leucine [24] and deconjugation of the amino acids glycine or taurine [24,25].
Deconjugation is investigated here since it is the most well-studied transformation and is a
prerequisite for further transformation with CYP7a1 [26,27].

It has been suggested that the disruption of the composition of the intestinal microflora
will result in a change in the BSH activity [28]. This, in turn, leads to a number of diseases.
Weight gain may result from the change in lipolysis, which is enhanced by the dysregulation
of BA homeostasis, and consequent reabsorption of BS [29]. Higher levels of BS in the
colon will lead to the development of colon cancer [30–32]. Cholelithiasis may form with
higher levels of unconjugated bile by reducing the removal of cholesterol from the liver [33],
resulting in gallstones, among others [16].

The aim of this paper, therefore, is to analyze the effect that changing conjugation has
on the lipolysis rate, which is commonly expressed graphically. Therefore, we investigate
four interface parameters, which directly influence the lipolysis rate. These parameters
are CMC, MSR, BS interaction, and aggregate number. The analysis will lead to a better
understanding of why changes in the level of conjugation of bile salts have such profound
effects on our bodies. In addition, we will show experimentally how the level of conjugation
influences the rate of lipolysis in in-vitro digestion experiments.

2. Results

Conjugation changes of bile salts in the small intestine, as shown in Table 1. As
can be seen, the range of the average ratio of conjugated to unconjugated is 94:5% in the
duodenum, 93:7% in the jejunum, and 82:18% in the ileum. This change in the ratio is due
to the higher presence of BSH, which is found in Gram-positive bacteria that commonly
reside in the ileum [34].
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Table 1. BS composition in the small intestine. Composition of the BS in the small intestine in respect to the concentration
of their conjugated and unconjugated forms. The BS appears in its conjugated form in the duodenum and jejunum; the
deconjugation process is mostly observed in the ileum.

Duodenum Jejunum Ileum

Conjugated

[%]

Unconjugated

[%]
Ref.

Conjugated

[%]

Unconjugated

[%]
Ref.

Conjugated

[%]

Unconjugated

[%]
Ref.

99.70 0.30 [35] 100.00 0.00 [35] 88.00 11.79 [36]

94.20 5.00 [35] 96.50 3.50 [35] 75.00 25.00 [37]

91.00 9.00 [37] 84.00 15.50 [37]

2.1. Micellization
Micellization of BS is a representative and often measured parameter, which provides

information on which concentration of BS micelle will form, where a lower CMC would
indicate a lower concentration of BS is required to form micelles.

Not much CMC data exists in literature dating back to 1962. Performing a meta-
analysis on CMC data is hindered by the large variety of methods that are used to determine
the CMC (such as potentiometric, calorimetric, or conductometric) and measurements
being performed in various conditions. For this analysis, we assumed that each method
was equally valid, and we looked only at sodium cholate and sodium chenodeoxycholate
and their transformation products, measured at 298.25 K. Even though the temperature
dependence of the CMC is weak [3], including another variable (such as temperature) into
a meta-analysis will reduce the strength of conclusions that can be drawn.

Figure 1A shows the results of the CMCs determined by other groups. It can be seen
that primary unconjugated sodium cholate and sodium chenodeoxycholate generally have
the highest CMC, whereas the conjugated form, with the addition of a taurine or glycine
reduces the CMC. Interestingly, the addition of more hydrophilic groups to the molecule
reduces the CMC (as shown in Figure 1B). This behavior is contradictory to the usual linear
surfactants, where a higher hydrophobicity results in a lower CMC [38]. This evident
decrease in the CMC with the conjugated BS is due to the stabilization of the micelle due
to the hydrogens bonds on the amino residue [39]. The hydrogen bonds between these
groups result in added induced dipole interactions of the hydrophobic sections. This has
been shown by molecular dynamics simulations [40,41]. Conjugated BS offers additional
sites for H-bond formation, especially between the peptide amino group and the steroid
hydroxyl groups. Hydrogen bonds were found to be missing in unconjugated primary
BS. In addition, the flipped molecules might serve to further stabilize the aggregate by
offering more sites for hydrogen bond formation [3]. Comparing primary to secondary
BS, dihydroxy secondary unconjugated BS create micelles in a smaller concentration than
trihydroxy primary unconjugated BS [42], which follows the usually expected influence of
hydrophobicity. After primary micelles are formed, the micelles may further aggregate to
form secondary micelles, which are held together by hydrogen bonds [43,44].

The primary unconjugated CMCs had the largest standard deviation (� = 2.33) because
it is the most frequently measured (N = 28) and thus was determined with the largest
variety of methods (conductivity, fluorescence, light-scattering, potentiometry, and surface
tension), whereas secondary unconjugated BS had the lowest standard deviation (� =
0.68) since it was determined with a lower variety of methods (tensiometry, conductivity,
light-scattering, and conductometry).

In addition, the CMC was shown to change over the years of publication, as shown
in Figure S2, where it is evident that the CMC of the measured BS actually increases with
time, specifically for the BS sodium deoxycholate increased from ~3.92 mM in the 1960s to
1970s to an average of ~4.16 mM from 2010 to 2020. The only reasonable justification is the
increased purity of the tested BSs, which removed a synergistic contaminant.

These results clearly indicate that the level of conjugation is a significant factor influ-
encing the properties of the BS (as shown in Figure 2). However, it should be noted that BS
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do not exist as pure compounds in the human body, but as a mixture of primary/secondary
and conjugated/unconjugated. Therefore, the interactions of BS in these mixtures still need
to be understood.
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Figure 2. (A) The most influential parameters (with VIP larger than 1) affecting the CMC are the type of the BS, specifically
the primary unconjugated and the secondary conjugated BS. (B) The primary unconjugated BS: cholic and chenodeoxycholic
acids showed a positive impact on the creation of the micelles. The location of the OH group at positions 3↵ and 7↵ of
NaCDC and 3↵, 7↵, and 12↵ of NaC promote micellar growth. The same orientation of the OH groups enhances the micelle
formation. The location of the OH group and its position can be recognized as the most influential factor promoting micelle
formation [3].
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2.2. Analysis of b Parameter
The interactions of surfactants are characterized by �, as described by Rosen [46].

The beta values were taken from three publications, looking at the synergism or antag-
onism of mixed micelles of BS systems. All BS were categorized into primary conju-
gated/unconjugated, and secondary conjugated/unconjugated. The effect of conjugation
is shown in Figure 2. However, to determine the contribution of each of the factors (con-
jugation/deconjugation) to the �, the data were analyzed by partial least squares (PLS)
regression, which allowed us to extract the variable importance, as shown in Figure 3.
The various categories were included as “one hot encoded” variables. Temperature was
included as the degree of counter-ion binding changes with temperature [47].
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Figure 3. (A) The plot of � parameter for different BS:BS mixed systems. A positive � indicates the antagonistic effect and
thus a higher CMC, and a negative � indicates a synergistic effect, and thus a lower CMC. The system composed of two
conjugated forms of the BS showed the most synergism. The graph was created using six different BS systems. The system
composed only of conjugated forms of the BS (PC:SC) showed to be statistically different from almost all other investigated
systems, composed of at least one unconjugated form of the BS. (B) The most significant factor affecting the BS:BS mixed
system was the secondary conjugated form of the BS. The synergistic effect was enhanced in the systems composed of the
secondary conjugated aggregates. The p-value of PC:SC and SU:PC were calculated to be 0.02.

It can be seen that conjugated secondary BS has the strongest contribution to the
� value of mixed BS micelles. The effect is negative, which means a synergistic effect
reduces the CMC. Both the primary conjugated, as well as primary unconjugated, have
small antagonistic effects. This synergism is due to the lack of the additional hydroxyl
group, making the molecule more hydrophobic and enhancing its insertion into the micelle,
while the conjugated chain allows for more hydrogen bonds with other molecules, thereby
stabilizing the molecule inside the micelle. This can be seen when comparing the number of
hydrogen bonds with water, where both GDCH and TDCH have on average 14 hydrogen
bonds, compared to 16.5 for conjugated primary BS. The number of hydrogen bonds
between conjugated primary and secondary BS is the same.

It clearly shows that conjugation, especially in conjunction with secondary conjugated
BS is an important synergistic factor enhancing the micellization of the BS.

When comparing the � values of mixtures of traditional linear surfactants and bile
salts, mixtures of linear surfactants generally have synergistic effects due to better pack-
ing of a variety of tails lengths into the core of the micelle [7]. This synergistic effect is
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evident also in the BS mixtures of the same type (conjugated/conjugated and unconju-
gated/unconjugated), as it can be observed in Figure 3A, and Table 2. However, interest-
ingly mixtures of conjugated/unconjugated (e.g., PC:SU or PU:PC) exhibit an antagonistic
effect. This is the result of the columbic repulsion between the negative charge of the
carboxyl group of the unconjugated BS with the slightly electro-negative ester of the amino
acid. The action of BSH and formation of unconjugated BS, therefore, reduces the ability of
the bile to form micelles.

Table 2. The binary mixtures of the cationic/cationic, anionic/anionic and BS/BS surfactants at 298.15 K. The common
linear surfactants showed a synergistic effect, while BS yielded both synergistic and antagonistic effect. Exemplary data for
BS is given, where a complete BS mixture data set is given in Table S3.

Type of Surfactant Composition CMC [mM] � References

NaC/NaTC 0.2 6.1 1.33 [48]

(PU:PC)
0.4
0.6
0.8

8.1
9.18
9.93

2.19
1.39
1.48

[48]

NaC/NaDC 0.2 3.6 –0.40 [48]

(PU:SU)
0.4
0.6
0.8

4.15
4.8

5.41

�0.31
�0.41
�0.84

[48]

C12TAB/C10TAB 0.3 25.00 �1.4 [49]

C14TAB/C10TAB 0.3 8.00 �4.7 [49]

C14TAB/C12TAB 0.3 6.00 �1.4 [49]

C16TAB/C10TAB 0.3 3.00 �7.7 [49]

C16TAB/C12TAB 0.3 3.00 �5.1 [49]

C16TAB/C14TAB 0.3 2.00 �1.5 [49]

C16Br/C16BzCl

0.10
0.25
0.5

0.75
0.90

13.20
9.33

10.70
22.90
24.10

�4.24
�4.83
�2.95
�1.27
�1.79

[50]

SOS/SAE2S �4.98 [51]

2.3. Aggregation Number
Aggregation number indicates the number of the molecules present in the individual

micelle created by the surfactant. To analyze the effect of conjugation on the aggregate
number, we have collated both experimental (11 papers with 64 datapoints) and molecular
dynamics calculations (4 papers with 14 datapoints). The aggregation number of the
individual BS can be observed on the Figure 4A,B; raw data is provided in Table S2. The
aggregate number is a crucial parameter considering the amount of surfactant incorporated
in the aggregate. Factor influencing aggregation number at 303 K are shown in Figure 5.
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Figure 4. (A) Increasing concentration of the BS increases the aggregation number. The lowest aggregation number was 
seen in primary conjugated BS. (B) The data of aggregation number were collected via meta-analysis, and for CMC, we 
used the averaged CMC from our meta-analysis at temperature range 283.15–323.15 K. The results showed that the aggre-
gation number does not decrease with increasing CMC, which is in contradiction to Madenci et al. [3]. The lack of CMC 

Figure 4. (A) Increasing concentration of the BS increases the aggregation number. The lowest aggregation number
was seen in primary conjugated BS. (B) The data of aggregation number were collected via meta-analysis, and for CMC,
we used the averaged CMC from our meta-analysis at temperature range 283.15–323.15 K. The results showed that the
aggregation number does not decrease with increasing CMC, which is in contradiction to Madenci et al. [3]. The lack of
CMC dependence of the aggregation number is due to the H-bond interaction between the BS molecules and the formation
of secondary micelles. The aggregation number of classical surfactants, however, depends on CMC, where the aggregate
number increases with increasing CMC [52].
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The results from the PLS regression, shown in Figure 6, represent the contribution of 
different parameters to the aggregation number. The VIP indicated that the type of the BS 
was the most meaningful parameter affecting the aggregation number. For the conditions 
of the experiments, the temperature had a higher significance than pH since temperature 
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Figure 5. (A) The most influential factors influencing the aggregation number are types of the BS, and the temperature.
CMC of the BS tends to decrease with increasing temperature up to 303 K, beyond which the CMC starts to increase,
leading to an increasing aggregation number [47]. (B) Conjugated forms of the BS have a tendency to have lower CMC than
their unconjugated forms, therefore, the aggregate number for the conjugated BS should be smaller than for unconjugated
ones. The primary conjugated BS showed a high negative correlation towards aggregation number. Conjugated forms of
the BS are stabilized not only by the hydrophobic interaction but also by the hydrogen bonding, which means that they
require fewer molecules than their unconjugated forms. The positive relation of the concentration [mM] of BS towards
aggregation number yields the relation that with increasing BS concentration, the number of the incorporated molecules
will increase [42].

Bile salts may form both primary and secondary micelles, as originally stated by Small
and Kawamura [43,44]. Primary aggregates which are spherical or slightly oblate in shape,
are created by the hydrophobic interaction [53,54], and those aggregates may interact with
hydrogen bonds when linked together by the outwardly directed hydrophilic part of the
ion constituents, result in the formation of various, complex shapes of secondary micelles
such as flattened or rod-like objects known as secondary aggregates [40]. The creation
process of the primary and secondary micelles was confirmed by the molecular dynamics
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simulations [40,42,55,56]. The mechanism of the formation of the micelles was noticed to
be different for deoxycholate (di-hydroxy BS) and cholate (tri-hydroxy BS) [40] specifically
a micelle created by the cholate remains a dimer even at 30 mM, which are linked by
H-bonds, while the deoxycholate creates primary micelles by hydrophobic interaction and
the secondary micelles by hydrogen bonding [40]. Cholate, due to the presence of the three
hydroxyl groups, possessed a more hydrophobic character than the deoxycholate, which is
mainly characterized by hydrophilic edge [40]. It should be noted that in the human body,
the concentration of the BS in the gallbladder varies between 10–50 mM [57], where BS are
not favorable to form the secondary micelles.

The results from the PLS regression, shown in Figure 6, represent the contribution
of different parameters to the aggregation number. The VIP indicated that the type of
the BS was the most meaningful parameter affecting the aggregation number. For the
conditions of the experiments, the temperature had a higher significance than pH since
temperature predominately affects the formation of large aggregates (Na � 10). The
increasing temperature balances two opposite effects: the repulsion between anionic polar
heads and hydrophobic interaction, ensuring the stability of the small aggregates (primary
micelles Na < 10). It has previously been shown that increasing temperature decreases the
size of secondary BS micelles [58], which is due to the structure of the secondary aggregates,
where hydroxyl groups are hidden inside the micelle and the anionic amino acid residue
predominates on the outside of the micelle. pH was shown to have the positive contribution
towards the aggregation number since acidification of sodium glycodeoxycholic acid
promotes the formation of the helical aggregates [58,59]. Additionally, increasing pH may
result in dehydration of nonionic moiety and the formation of hydrogen bonding between
nonionic polar parts, allowing larger micelles to form [60].
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2.4. Molar Solubilization Ratio
The molar solubilization ratio is known as the ratio of the molecules solubilized inside

the aggregate. For bile salts, the MSR has a crucial meaning, as it is the size of the MSR that
will dictate the efficiency of removal of the lipolysis products from the lipid droplet.
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We may observe in Figure 6B that the logKow has a negative contribution to the
MSR, which is the result of the correlation between the logKow of the solubilizate and its
molecular volume (Pearson correlation for the 21 solubilizates analyzed here was 0.990,
p < 0.0001). Therefore, more hydrophobic solubilizates in our analysis resulted in a lower
MSR due to their larger volume. The meta-analysis of six papers for the first time highlights
the effect of conjugation on the MSR. Both primary and secondary unconjugated BS have
a negative contribution to the MSR. That is, the higher is the level of the unconjugated
forms of the BS the lower will be MSR for a given substance. In addition, the MSR is
also influenced by the locus of solubilization within the micelle. Steroid compounds
were found to be more effectively incorporated into the NaDC than NaC due to the less
hydrophilic character of the NaC molecule [61]. Aromatic compounds not only have the
ability to solubilize inside the hydrophobic interior, but also occupy external positions
on BS micelles, as determined by Kolehmainen et al. [62]. Unconjugated BS was more
favorable to incorporate fatty acids into their structure than their glycine conjugates [63].
Therefore, vitamins undergo lipolysis before they are absorbed by the BS micelles.

2.5. Measurements of Interfacial Tension at Oil/BS Interface
The ability of the two different BS NaTC and NaDC to decrease the surface tension of

the oil droplets was investigated to determine their role in the lipolysis process. Surface
tension reduction of BS follows a similar trend as shown by the CMC. A higher CMC of
NaTC (Figure 1A) indicates a lower ability of surface tension reduction of the oil droplet
at physiological conditions (Figure 7). NaDC showed a greater ability to reduce the oil
droplets’ surface tension and may therefore better reduce the droplet size during the
lipolysis process.
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Figure 7. The surface tension of sunflower oil droplets with 10 mM of the two BS, NaDC and
NaTC, measured at 310.15 K. Surface tension of PC NaTC showed to be statistically significant
lower compared to the SU NaDC. The average surface tension was determined to be 6.45 ± 0.01
for NaDC and 13.17 ± 0.08 for NaTC. The control sunflower oil droplet had a surface tension of
30.64 ± 0.13 mN/m.

2.6. Impact of Conjugation Form of the BS on the Lipid Digestion
To show that the changes in the proposed surface parameters actually affect the rate of

lipolysis as hypothesized above, we have conducted experiments to show the significance
of the conjugation of the BS. In essence, the rate of lipolysis was determined in in-vitro
experiments with both PC and SU bile salts. The results are shown in Figure 8. It is shown
that conjugated NaTC shows a faster rate of release of FFA (i.e., lipolysis) as compared to
the same concentration of the unconjugated counterpart NaDC.
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Figure 8. (A) FFA released over time from WPI-stabilized emulsion in respect to two different forms of BS: NaTC and NaDC
at 10mM under physiological conditions at 310.15 K. Experimental results of CMC of NaTC and NaDC at 310.15 K with
errors are also shown. The CMC of NaTC and NaDC have been shown to be statistically significant, p < 0.0001, and are
comparable to previously determined values (5–20% of FFA after 60 min for NaTC and NaTDC at 10 mM and 50 mM,
methylcellulose stabilized emulsion [64], 10–13% of FFA after 60 min for mix BS at 9.7 mM, WPI-stabilized emulsion [65],
6.5–15% of FFA after 60 min. for mix BS at 10 mM [66]. (B) Statistical significance was calculated by using the t-sample t-test.
The magnitude of the %FFA is in line with results from other researchers who also digested sunflower oil/WPI, or other
protein emulsions, with similar emulsion sizes [64,65,67]. p < 0.0001 indicates that the values are statistically significant.

Previously it was pointed out that the interfacial process of lipolysis involves three
key steps [68]. However, we are showing that the release of the FFA from the emulsion
(as shown schematically in Figure 9) is linked to five factors. First, the ability of the BS to
further break down the emulsified lipid droplets, which promotes a larger surface area
onto which the enzyme can adsorb [9]. Second, the adsorption kinetics of the BS onto the
emulsion. Third, assisting the lipase/co-lipase complex to attach to the emulsion surface.
Fourth, is the removal of lipolysis products from the oil/water interface, and finally, the
desorption kinetics from the emulsion [65,69].
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Figure 9. The role of BS during the lipolysis process. 1. Bile salt adsorbs at the oil droplet, leading to the removal of surface
materials (proteins, emulsifiers) and promote adsorption of the lipase. 2. BSs break down larger lipid droplets into smaller
ones ensuring efficient lipolysis 3. BS will assist lipase and co-lipase in the sorption onto the emulsion. 4. BS incorporates
lipolysis products into mixed micelles, ensuring the transport of valuable components into the body.
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In our case, it could be observed that the conjugated form of the BS, NaTC, favored the
release of FFA to a higher extend than SU form of the BS. From the five factors mentioned
above, we hypothesize from Figure 6 that the enhanced MSR of the primary conjugated
aids the removal of the lipolysis products from the emulsion, with a small number of BS
molecules in the micelle (Figure 5), in addition, the added BS–water hydrogens bonds
(as shown in Table 3) allow the primary conjugated BS to desorb easier from the surface
of the emulsion. Thus, the lower CMC of NaDC (with less BS–water hydrogens bonds)
(Figure 1) would yield a lower release of FFA (Figure 5) as in comparison to NaTC [70].
Interestingly, as shown in Figure 7, the interface activity of the unconjugated BS is higher
than the conjugated, which therefore indicates that lipolysis is dominated by other fac-
tors. BS have previously been shown to have different ability to adsorb at the oil–water
interface [64,71], and thus to reduce the interfacial tension of the droplet. Micellar state
affects the BS adsorption [72]. NaDC showed a better ability to reduce interfacial tension
on the adsorbed droplet (Figure 7), thus promoting a greater surface area for lipase and
co-lipase adsorption. However, accumulated products on the emulsion interface and the
lower ability of SU BS to remove surface materials may interrupt adsorption of the lipase
and co-lipase and, therefore, can result in lower FFA release for SU BS. In the future, more
detailed adsorption/desorption studies of BS behavior at oil interface should be performed
to better understand their role in the lipolysis process, as well as to determine which of the
five factors dominate the lipolysis process.

Table 3. The number of BS-BS hydrogen bonds and number of BS–water hydrogen bonds of four
groups of BS [41]. Secondary unconjugated BS could be characterized by the smallest number of
BS-BS HBs and number of BS–water HBs, while the primary conjugated has the highest number of
BS–water HBs.

Molecule No. of BS–BS HBs No. BS–Water HBs

Primary unconjugated 0.08 ± 0.13 15.00 ± 1.41
Primary conjugated 0.305 ± 0.35 16.50 ± 1.41

Secondary unconjugated 0.06 ± 0.11 13.00 ± 1.41
Secondary conjugated 0.305 ± 0.30 14.00 ± 1.41

In summary, the significantly lower release of FFA obtained by NaDC indicates that
deconjugation of the BS affects lipid metabolism. It, therefore, follows that excessive micro-
biota with BSH may impact on the efficiency of lipid digestion. Moreover, the reduction
of digestion performance by NaDC suggests that the bacterial action and composition of
gut microflora in our organism have an important impact on our health and are therefore
indirect factors regulating the lipolysis process.

3. Materials and Methods

3.1. Meta-Analysis
To analyze the importance of BS conjugation, a meta-analysis was performed on exper-

imental data that analyzed the critical micelle concentration (CMC), molar solubilization
ratio (MSR), and aggregate numbers of bile salts. This was collected from scientific articles
ranging from 1962 to 2019, where Google Scholar was used [73] with the following key-
words for CMC: “bile salts, critical micelle concentration, mixed micelle”; for aggregation
number: “bile salts, aggregation number”; for MSR: “bile salts, molar solubilization ratio”.
This has resulted in 205 unique datapoints of CMC of pure compounds from 27 publica-
tions, in 33 datapoints of CMC of mixed systems from 3 publications, 166 datapoints of
aggregation number from 9 publications, and 53 datapoints of MSR from 5 publications.

All units were standardized. Additional parameters were noted and included; for
CMC temperature and method of determination, for aggregate number temperature, the
concentration of BS, CMC, pH and salt concentration, and for MSR, the solubilizate, and
temperature, and the salt concentration were noted. The logKow and molecular volume
(nm3) of the solubilizate were determined using Molinspiration Cheminformatics. Direct
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comparisons were only made for systems of the same temperature unless stated otherwise.
� and MSR, if not presented, were calculated using the CMC values provided by each
author.

3.2. Critical Micelle Concentration Determination
The CMC of NaDC (from Sigma Aldrich, St. Louis, MO, USA, 97.0%) and NaTC (from

Sigma Aldrich; 97.0%) at physiological temperature (310.15 K) were assessed by using con-
ductivity measurements using an auto titrator (Cerko Lab System CLS/M/07/06, Gdynia,
Poland) equipped with a microconductivity electrode (Eurosensor, EPST-2ZAM, Gliwice,
Poland). The temperature was maintained using a thermostatic water bath (PolyScience
9106, Niles, IL, USA). The breakpoint determination in the conductivity curves was done
using the Phillips method as previously described by Łuczak et al. [74]. The data are given
in the Supplementary Materials, Table S1.

3.3. Emulsion
Oil in water (O/W) emulsion (oil to water 20:75% w/w) and whey protein isolate (WPI)

concentration of 0.5% (w/w) was prepared by dissolving WPI in saline buffer (150 mM NaCl
and 0.02% w/w NaN3). The mixture was stirred with a magnetic stirrer until dissolution.
Sunflower oil, which was previously treated with florisil (Taufkirchen, Sigma, F9127), was
used as the oil phase [75]. The mixture of sunflower oil and protein dispersion was further
vortexed for 3 min to obtain a coarse emulsion. The pre-emulsion was sonicated with an
ultrasound generator (Sonics VCX 500, Sonics & Materials Inc., Newtown, CT, USA) with a
0.13 cm diameter titanium probe with an amplitude of 80%, pulse duration of 5 s on/10 s
off for 3 min. Lipolysis results were carried out on split samples, one-half for each bile salt.

3.4. Droplet Size
A zetasizer (Zetasizer Nano, Malvern Instruments Ltd., Malvern, UK) was used to

determine mean droplet diameter by using dynamic light scattering. Water was used
as a dispersant (refractive index of 1.330). The absorbance value of the oil droplets was
0.001 (refractive index of 1.467) [76]. The results of particle size were recorded as the
Z-average mean diameter, which is calculated from the particle size distribution [77]. The
2 µL emulsions were diluted in 7 mL of the saline buffer to avoid back-scattering. Each
sample was measured in quadruplicate. Exemplary particle size distribution is provided in
the Figure S1

3.5. Interfacial Tension Measurements
Drop shape analysis was done by measuring interfacial tension using a drop shape

analyzer (Kr
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ss Drop shape analyzer DSA 10, Hamburg, Germany). The measurements
were performed as described previously by Szumała et al. [75] with some modifications.
Specifically, the measuring cell was filled with 10 mM BS. Subsequently, the oil drop was
formed and BS adsorbed on the oil/water interface and interfacial tension was measured.
Each drop was allowed to equilibrate with the BS for 10 min before the surface tension was
recorded. All measurements were made at 310.15 K, with five repetitions.

3.6. In Vitro Duodenal Digestion
In-vitro lipolysis [78] was used to simulate the environmental condition of the small

intestine (duodenum). 0.8 mL of the simulated intestinal fluid and 0.375 mL of the emulsion
were added to the vessel. After gently mixing with a magnetic stirrer (1500 rpm), 0.3 mL of
10 mM BS (NaTC or NaDC) and 3 µL of 0.3 M CaCl2 were pipetted, and the pH was set to
7.0 using 0.1 M HCl. Finally, with the addition of 1.0 mL of freshly prepared pancreatin
(80 U/mg of oil) the titration was started.

The reaction vessel was continuously stirred and thermostatically controlled to main-
tain 310.15 K. All lipolysis experiments were carried out in triplicate.
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The extent of the lipolysis was measured by continuous titration with an autotitra-
tor (Cerko Lab System CLS/M/07/06, Gdynia, Poland) of free fatty acids (FFA) with
0.1 M NaOH.

3.7. Statistical Analysis
PLS was applied to determine the most significant influence of the descriptor on the

dependent variable. The PLS can be used for qualitative as well as for quantitative data,
therefore, the PLS analysis was done according to Łozińska et al. [79], and p-values were
determined by (one-tailed) students t-test. The aim of the analysis of the data was to
investigate the potential of which different descriptors influence the specific parameter
(CMC, �, Na, and MSR). Therefore, we were looking to which extent each descriptor impact
on the parameter. The complete data is given in the Supplementary Materials, as Table S1
for the CMC data, Table S2 for � values, Table S3 for aggregation numbers, and Table S4
for the MSR. Statistical analysis was done using XLSTAT (version 2020.1.3.65326) [80]. The
workflow for the analysis is schematically represented in Figure 10. Statistical significance
is shown in Figures if p was determined to be less than 0.05.
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4. Conclusions

To assess the importance of the level of conjugation, this paper represents the meta-
analysis of four phenomenological parameters (CMC, �, Na, and MSR).

The conjugated BS will form micelles with a lower concentration than their unconju-
gated forms. It was shown by molecular dynamic simulations [42,44,56,57] that the lower
CMC of the conjugated BS is a result of the hydrogen bonds on the amino acid residues [39].
Secondary conjugated BS showed the greatest contribution to promote the synergistic
effect in combination with other BS. Conjugated BS requires fewer molecules to create
aggregates, which means that with the same amount of substance, the conjugated BS will
promote the formation of more micelles than their unconjugated forms [3]. Although the
deconjugation process promoted by BSH will lead to decreasing the CMC of the existing
BS, mixed BS systems composed of unconjugated forms of the BS will be characterized by
an antagonistic effect, resulting in a higher CMC of the mixed system [48]. Finally, fewer
compounds would be solubilizing inside the micelle of the unconjugated BS, which may
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promote the deficiency of the beneficial compounds in our organism, such as vitamins, fats,
and sterols [81].

To prove the importance of conjugation, we have measured the in-vitro digestion
of an emulsion with both conjugated and unconjugated bile salts, and we show for the
first time experimentally that these changes in lipolysis can be modulated by variation of
BS conjugation level. That means that an exemplary decrease in BSH activity (by taking
antibiotics, for example) may lead to a potential increase in conjugation, and thus an
increase in lipolysis and could cause obesity over a longer period [82], which will, in turn,
result in bile saturation [83] and can lead to gallstone formation [84]. On the other hand,
overactivity of BSH will result in lowering the level of conjugated BS, which binds strongly
to the FXR to reduce bile acid synthesis and result in malnutrition.

Supplementary Materials: The following are available online, Table S1: CMC data, Table S2: �

values of binary mixtures of bile salts, Table S3: Aggregation numbers of BS, Table S4: MSR, Figure
S1: Particle size distribution of O/W emulsion, and Figure S2: CMC of NaDC change with years.
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Importance of conjugation of the bile salt on the mechanism of lipolysis 
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Table S1 CMC data. NaC ʹ  sodium cholate, NaCDC ʹ  sodium chenodeoxycholate, NaDC ʹ  sodium deoxycholate, NaTC ʹ  sodium 
taurocholate, NaGC ʹ sodium glycocholate, NaTCDC -sodium taurochenodeoxycholate, NaGCDC ʹ sodium 
glycochenodeoxycholate, NaTDC ʹ sodium taurodeoxycholate, NaGDC ʹ sodium glycodeoxycholate, CMC ʹ critical micelle 
concentration 

Bile salt CMC Temperature [K] Reference 

NaC 10.80 283.15 (15) 

NaC 12.50 283.15 (15) 

NaC 17.90 283.15 (18) 

NaC 8.80 283.15 (11) 

NaC 8.02 293.15 (22) 

NaC 7.78 293.15 (15) 

NaC 8.25 293.15 (15) 

NaC 8.02 293.15 (7) 

NaC 14.40 293.15 (10) 

NaC 8.67 298.15 (22) 

NaC 9.70 298.15 (18) 

NaC 9.00 298.15 (1) 

NaC 9.00 298.15 (14) 

NaC 10.00 298.15 (4) 

NaC 11.30 298.15 (4) 

NaC 6.20 298.15 (17) 

NaC 12.90 298.15 (3) 

NaC 12.78 298.15 (3) 

NaC 12.90 298.15 (3) 

NaC 12.73 298.15 (3) 

NaC 16.00 298.15 (25) 

NaC 10.20 298.15 (27) 

NaC 13.00 298.15 (21) 

NaC 11.10 298.15 (20) 

NaC 8.67 298.15 (7) 

NaC 14.10 298.15 (10) 

NaC 7.98 298.15 (12) 

NaC 6.20 298.15 (13) 

NaC 11.00 298.15 (16) 

NaC 10.20 298.15 (11) 

NaC 9.10 298.15 (19) 

NaC 8.80 298.15 (19) 

NaC 5.18 303.15 (5) 

NaC 9.12 303.15 (5) 

NaC 7.22 303.15 (5) 

NaC 9.06 303.15 (22) 

NaC 5.89 303.15 (15) 

NaC 7.35 303.15 (15) 
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NaC 9.06 303.15 (7) 

NaC 14.00 303.15 (10) 

NaC 6.10 310.15 (15) 

NaC 18.80 310.15 (18) 

NaC 7.50 310.15 (15) 

NaC 9.40 310.15 (11) 

NaC 14.30 313.15 (10) 

NaC 17.50 323.15 (18) 

NaC 19.10 323.15 (11) 

NaCDC 3.00 298.15 (17) 

NaCDC 9.00 298.15 (21) 

NaCDC 4.60 298.15 (16) 

NaCDC 5.80 298.15 (19) 

NaCDC 5.50 298.15 (19) 

NaDC 2.95 283.15 (26) 

NaDC 6.30 283.15 (18) 

NaDC 4.65 283.15 (15) 

NaDC 5.82 283.15 (15) 

NaDC 6.60 283.15 (11) 

NaDC 3.35 283.15 (26) 

NaDC 3.24 283.15 (26) 

NaDC 2.30 283.15 (13) 

NaDC 3.55 293.15 (26) 

NaDC 3.47 293.15 (26) 

NaDC 1.50 293.15 (2) 

NaDC 2.95 293.15 (22) 

NaDC 3.80 293.15 (15) 

NaDC 5.36 293.15 (15) 

NaDC 2.95 293.15 (7) 

NaDC 6.00 293.15 (10) 

NaDC 4.10 298.15 (6) 

NaDC 2.00 298.15 (24) 

NaDC 4.30 298.15 (18) 

NaDC 7.94 298.15 (26) 

NaDC 1.70 298.15 (26) 

NaDC 4.20 298.15 (14) 

NaDC 4.50 298.15 (5) 

NaDC 2.40 298.15 (13) 

NaDC 4.00 298.15 (16) 

NaDC 2.40 298.15 (17) 

NaDC 6.00 298.15 (25) 

NaDC 4.30 298.15 (3) 

NaDC 4.25 298.15 (3) 
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NaDC 4.16 298.15 (3) 

NaDC 3.02 298.15 (7) 

NaDC 4.30 298.15 (3) 

NaDC 4.25 298.15 (3) 

NaDC 2.90 298.15 (12) 

NaDC 3.02 298.15 (7) 

NaDC 3.07 298.15 (20 

NaDC 5.56 298.15 (4) 

NaDC 5.74 298.15 (4) 

NaDC 4.50 298.15 (11) 

NaDC 5.40 298.15 (10) 

NaDC 4.50 298.15 (27) 

NaDC 3.25 298.15 (1) 

NaDC 3.97 303.00 (5) 

NaDC 2.75 303.00 (5) 

NaDC 7.94 303.00 (5) 

NaDC 4.80 303.00 (26) 

NaDC 4.57 303.00 (26) 

NaDC 3.11 303.15 (22) 

NaDC 3.02 303.15 (15) 

NaDC 4.05 303.15 (15) 

NaDC 3.11 303.15 (7) 

NaDC 5.10 303.15 (10) 

NaDC 8.20 310.15 (11) 

NaDC 8.20 310.15 (18) 

NaDC 6.10 313.15 (26) 

NaDC 3.16 313.15 (15) 

NaDC 4.32 313.15 (15) 

NaDC 5.90 313.15 (10) 

NaDC 10.20 323.15 (11) 

NaDC 10.10 323.15 (18) 

NaGC 13.60 283.15 (11) 

NaGC 12.80 283.15 (18) 

NaGC 6.80 298.15 (11) 

NaGC 4.20 298.15 (24) 

NaGC 6.30 298.15 (18) 

NaGC 7.00 298.15 (14) 

NaGC 12.00 298.15 (21) 

NaGC 10.00 298.15 (16) 

NaGC 14.70 310.15 (11) 

NaGC 14.10 310.15 (18) 

NaGC 16.00 323.15 (11) 

NaGC 15.00 323.15 (18) 
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NaGCDC 6.00 298.15 (21) 

NaGCDC 2.30 298.15 (18) 

NaGCDC 7.00 298.15 (21) 

NaGCDC 7.00 298.15 (21) 

NaGCDC 2.40 298.15 (16) 

NaGCDC 2.10 310.15 (18) 

NaGDC 5.80 283.15 (11) 

NaGDC 5.60 283.15 (18) 

NaGDC 6.00 298.15 (21) 

NaGDC 3.30 298.15 (18) 

NaGDC 2.12 298.15 (8) 

NaGDC 1.10 298.15 (24) 

NaGDC 1.90 298.15 (24) 

NaGDC 2.20 298.15 (16) 

NaGDC 3.43 298.15 (11) 

NaGDC 6.00 310.15 (11) 

NaGDC 5.80 310.15 (18) 

NaGDC 6.60 323.15 (11) 

NaGDC 6.10 323.15 (18) 

NaTC 6.79 283.15 (15) 

NaTC 7.92 283.15 (15) 

NaTC 4.00 283.15 (23) 

NaTC 8.30 283.15 (18) 

NaTC 3.20 283.15 (2) 

NaTC 8.80 283.15 (11) 

NaTC 2.80 293.15 (2) 

NaTC 4.25 293.15 (7) 

NaTC 4.25 293.15 (22) 

NaTC 6.68 293.15 (15) 

NaTC 7.30 293.15 (15) 

NaTC 4.70 298.15 (21) 

NaTC 4.50 298.15 (22) 

NaTC 4.50 298.15 (7) 

NaTC 5.00 298.15 (18) 

NaTC 4.70 298.15 (1) 

NaTC 6.00 298.15 (14) 

NaTC 5.60 298.15 (11) 

NaTC 4.75 303.15 (22) 

NaTC 4.75 303.15 (7) 

NaTC 6.14 303.15 (15) 

NaTC 6.81 303.15 (15) 

NaTC 3.10 303.15 (2) 

NaTC 13.70 310.15 (11) 
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NaTC 12.60 310.15 (18) 

NaTC 6.36 313.15 (15) 

NaTC 7.20 313.15 (15) 

NaTC 3.00 313.15 (2) 

NaTC 3.30 323.15 (2) 

NaTC 14.10 323.15 (18) 

NaTC 15.00 323.15 (11) 

NaTDC 2.01 283.15 (15) 

NaTDC 2.21 283.15 (15) 

NaTDC 4.50 283.15 (18) 

NaTDC 1.80 283.15 (2) 

NaTDC 4.56 283.15 (11) 

NaTDC 1.88 293.15 (15) 

NaTDC 2.62 293.15 (15) 

NaTDC 1.50 293.15 (2) 

NaTDC 6.00 298.15 (5) 

NaTDC 3.05 298.15 (8) 

NaTDC 2.87 298.15 (8) 

NaTDC 2.30 298.15 (18) 

NaTDC 4.07 298.15 (21) 

NaTDC 4.00 298.15 (9) 

NaTDC 2.30 303.15 (5) 

NaTDC 3.98 303.15 (5) 

NaTDC 4.07 303.15 (5) 

NaTDC 2.43 303.15 (15) 

NaTDC 2.90 303.15 (15) 

NaTDC 1.80 303.15 (2) 

NaTDC 2.88 313.15 (15) 

NaTDC 3.50 313.15 (15) 

NaTDC 2.10 313.15 (2) 

NaTDC 4.53 310.15 (11) 

NaTDC 4.50 310.15 (18) 

NaTDC 2.10 323.15 (2) 

NaTDC 5.30 323.15 (11) 

NaTDC 5.20 323.15 (18) 

TCDC 2.30 298.15 (18) 

TCDC 7.00 298.15 (21) 

TCDC 2.10 310.15 (18) 
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Table SϮ ɴ values of binary mixtures of bile salts͘ PC ʹ primary conjugated, PU ʹ primary unconjugated, SC ʹ secondary 
conjugated, SU ʹ secondary unconjugated 

System Temperature [K] β from literature data Reference 

PU:PC 283.15 0.43 (2) 

PU:PC 293.15 0.89 (2) 

PU:PC 298.15 1.32 (1) 

PU:PC 298.15 2.19 (1) 

PU:PC 298.15 1.39 (1) 

PU:PC 298.15 1.48 (1) 

PU:PC 303.15 1.14 (2) 

PU:PC 313.15 0.28 (2) 

PU:SC 283.15 -0.84 (2) 

PU:SC 293.15 -0.56 (2) 

PU:SC 303.15 -2.51 (2) 

PU:SC 313.15 -1.76 (2) 

PU:SU 283.15 -1.71 (2) 

PU:SU 293.15 -1.36 (2) 

PU:SU 298.15 -0.41 (1) 

PU:SU 298.15 -0.31 (1) 

PU:SU 298.15 -0.41 (1) 

PU:SU 298.15 -0.85 (1) 

PU:SU 303.15 -0.03 (2) 

PU:SU 313.15 0.84 (2) 

SU:PC 283.15 0.31 (2) 

SU:PC 293.15 -0.90 (2) 

SU:PC 303.15 0.77 (2) 

SU:PC 310.15 -0.54 (3) 

SU:PC 313.15 0.64 (2) 

PC:SC  283.15 -0.60 (2) 

PC:SC  293.15 -3.08 (2) 

PC:SC  303.15 -3.46 (2) 

PC:SC  313.15 -2.36 (2) 

SC:SU 283.15 0.28 (2) 

SC:SU 293.15 0.71 (2) 

SC:SU 303.15 -0.16 (2) 

SC:SU 313.15 1.10 (2) 
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Table S3 Aggregation numbers of BS. BS ʹ bile salts, temp ʹ temperature, CMC ʹ critical micelle concentration, NaCl- sodium 
chloride, NaGC- sodium glycocholate, NaTC ʹ sodium taurocholate, NaC ʹ sodium cholate, NaDC ʹ sodium deoxycholate, 
NaTDC ʹ sodium taurodeoxycholate, NaGDC ʹ sodium glycodeoxycholate, ref - references 

BS Temp [K] Concentration [mM] CMC NaCl pH Aggregate number  Ref 

NaGC 283.15 12.80 13.20 0.00 7.00 4.10 (9) 

NaGC 291.15 11.70 7.54 0.00 7.00 4.60 (9) 

NaGC 298.15 6.30 7.72 0.00 7.00 4.10 (9) 

NaGC 298.15 20.00 7.72 150.00 7.50 8.70 (5) 

NaGC 310.15 10.00 14.40 120.00 7.00 5.60 (8) 

NaGC 310.15 14.10 14.40 0.00 7.00 6.70 (9) 

NaGC 323.15 15.00 15.50 0.00 7.00 6.10 (9) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.42 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.44 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.46 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.52 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.54 (2) 

NaTC 273.15 18.00 6.40 0.00 7.00 2.59 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.65 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.68 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.69 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.69 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.77 (2) 

NaTC 283.15 8.30 6.50 0.00 7.00 2.70 (9) 

NaTC 291.15 7.40 5.02 0.00 7.00 3.80 (9) 

NaTC 298.15 5.00 5.00 0.00 7.00 3.00 (9) 

NaTC 298.15 20.00 5.00 150.00 7.50 6.00 (5) 

NaTC 298.20 5.00 5.00 0.00 7.00 5.00 (7) 

NaTC 310.00 10.00 13.50 120.00 7.00 4.50 (8) 

NaTC 310.15 12.60 13.50 0.00 7.00 5.00 (9) 

NaTC 323.15 14.10 10.80 0.00 7.00 7.30 (9) 

NaC 273.15 19.70 5.02 0.00 7.00 3.09 (2) 

NaC 283.15 17.90 12.50 0.00 7.00 5.50 (9) 

NaC 283.80 12.60 12.50 0.00 7.50 4.70 (3) 

NaC 284.30 12.50 12.50 100.00 7.50 5.50 (3) 

NaC 291.15 14.40 9.24 0.00 7.00 6.20 (9) 
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NaC 298.15 4.00 4.07 0.00 7.00 3.00 (4) 

NaC 298.15 9.70 4.07 0.00 7.00 4.80 (9) 

NaC 298.15 20.00 4.07 0.00 7.00 7.00 (6) 

NaC 298.15 20.00 4.07 0.00 7.00 8.00 (4) 

NaC 298.15 9.00 4.07 0.00 7.00 9.00 (1) 

NaC 310.00 10.00 8.20 120.00 7.00 4.80 (8) 

NaC 310.15 18.80 8.20 0.00 7.00 6.20 (9) 

NaC 323.15 17.50 10.15 0.00 7.00 5.20 (9) 

NaC 327.90 14.00 10.30 100.00 7.50 5.40 (3) 

NaC 328.10 18.30 10.30 0.00 7.50 6.10 (3) 

NaGDC 291.15 4.40 2.80 0.00 7.00 6.00 (9) 

NaGDC 298.15 3.30 2.86 0.00 7.00 7.60 (9) 

NaGDC 310.15 5.80 5.90 0.00 7.00 7.40 (9) 

NaGDC 323.15 6.10 6.35 0.00 7.00 6.60 (9) 

NaTDC 273.15 3.00 2.95 0.00 7.00 2.92 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 4.87 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 4.96 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 5.15 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 5.28 (2) 

NaTDC 273.15 7.00 2.95 0.00 7.00 5.42 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 5.44 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 5.61 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 5.79 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 6.01 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 6.22 (2) 

NaTDC 283.15 4.50 3.02 0.00 7.00 7.00 (9) 

NaTDC 291.15 3.00 2.97 0.00 7.00 5.20 (9) 

NaTDC 298.15 2.30 3.72 0.00 7.00 6.70 (9) 

NaTDC 298.20 3.72 372.00 0.00 7.00 9.00 (7) 

NaTDC 310.15 4.50 13.15 0.00 7.00 8.00 (9) 

NaTDC 323.15 5.20 4.20 0.00 7.00 7.10 (9) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.78 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.79 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.80 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.80 (2) 

NaDC 273.15 13.00 4.30 0.00 7.00 5.82 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.84 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.85 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.85 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.86 (2) 
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NaDC 273.15 4.24 4.30 0.00 7.00 5.86 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 6.74 (2) 

NaDC 283.15 5.10 4.40 0.00 7.00 5.10 (9) 

NaDC 285.80 4.40 4.43 0.00 7.50 7.00 (3) 

NaDC 291.15 7.10 3.67 0.00 7.00 7.10 (9) 

NaDC 298.15 3.10 4.07 0.00 7.00 3.10 (9) 

NaDC 298.15 2.00 4.07 0.00 7.00 6.00 (4) 

NaDC 298.15 20.00 4.07 0.00 7.00 10.00 (6) 

NaDC 310.15 7.00 8.20 0.00 7.00 7.00 (9) 

NaDC 323.15 6.40 10.15 0.00 7.00 6.40 (9) 

NaDC 327.80 4.00 10.30 100.00 7.50 7.30 (3) 

NaDC 328.20 10.15 10.30 0.00 7.50 5.40 (3) 

NaGC 283.15 12.80 13.20 0.00 7.00 4.10 (9) 

NaGC 291.15 11.70 7.54 0.00 7.00 4.60 (9) 

NaGC 298.15 6.30 7.72 0.00 7.00 4.10 (9) 

NaGC 298.15 20.00 7.72 150.00 7.50 8.70 (5) 

NaGC 310.15 10.00 14.40 120.00 7.00 5.60 (8) 

NaGC 310.15 14.10 14.40 0.00 7.00 6.70 (9) 

NaGC 323.15 15.00 15.50 0.00 7.00 6.10 (9) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.42 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.44 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.46 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.52 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.54 (2) 

NaTC 273.15 18.00 6.40 0.00 7.00 2.59 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.65 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.68 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.69 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.69 (2) 

NaTC 273.15 6.30 6.40 0.00 7.00 2.77 (2) 

NaTC 283.15 8.30 6.50 0.00 7.00 2.70 (9) 

NaTC 291.15 7.40 5.02 0.00 7.00 3.80 (9) 

NaTC 298.15 5.00 5.00 0.00 7.00 3.00 (9) 

NaTC 298.15 20.00 5.00 150.00 7.50 6.00 (5) 

NaTC 298.20 5.00 5.00 0.00 7.00 5.00 (7) 

NaTC 310.00 10.00 13.50 120.00 7.00 4.50 (8) 

NaTC 310.15 12.60 13.50 0.00 7.00 5.00 (9) 

NaTC 323.15 14.10 10.80 0.00 7.00 7.30 (9) 

NaC 273.15 19.70 5.02 0.00 7.00 3.09 (2) 

NaC 283.15 17.90 12.50 0.00 7.00 5.50 (9) 

NaC 283.80 12.60 12.50 0.00 7.50 4.70 (3) 
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NaC 284.30 12.50 12.50 100.00 7.50 5.50 (3) 

NaC 291.15 14.40 9.24 0.00 7.00 6.20 (9) 

NaC 298.15 4.00 4.07 0.00 7.00 3.00 (4) 

NaC 298.15 9.70 4.07 0.00 7.00 4.80 (9) 

NaC 298.15 20.00 4.07 0.00 7.00 7.00 (6) 

NaC 298.15 20.00 4.07 0.00 7.00 8.00 (4) 

NaC 298.15 9.00 4.07 0.00 7.00 9.00 (1) 

NaC 310.00 10.00 8.20 120.00 7.00 4.80 (8) 

NaC 310.15 18.80 8.20 0.00 7.00 6.20 (9) 

NaC 323.15 17.50 10.15 0.00 7.00 5.20 (9) 

NaC 327.90 14.00 10.30 100.00 7.50 5.40 (3) 

NaC 328.10 18.30 10.30 0.00 7.50 6.10 (3) 

NaGDC 291.15 4.40 2.80 0.00 7.00 6.00 (9) 

NaGDC 298.15 3.30 2.86 0.00 7.00 7.60 (9) 

NaGDC 310.15 5.80 5.90 0.00 7.00 7.40 (9) 

NaGDC 323.15 6.10 6.35 0.00 7.00 6.60 (9) 

NaTDC 273.15 3.00 2.95 0.00 7.00 2.92 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 4.87 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 4.96 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 5.15 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 5.28 (2) 

NaTDC 273.15 7.00 2.95 0.00 7.00 5.42 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 5.44 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 5.61 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 5.79 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 6.01 (2) 

NaTDC 273.15 3.00 2.95 0.00 7.00 6.22 (2) 

NaTDC 283.15 4.50 3.02 0.00 7.00 7.00 (9) 

NaTDC 291.15 3.00 2.97 0.00 7.00 5.20 (9) 

NaTDC 298.15 2.30 3.72 0.00 7.00 6.70 (9) 

NaTDC 298.20 3.72 3.72 0.00 7.00 9.00 (7) 

NaTDC 310.15 4.50 13.15 0.00 7.00 8.00 (9) 

NaTDC 323.15 5.20 4.20 0.00 7.00 7.10 (9) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.78 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.79 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.80 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.80 (2) 

NaDC 273.15 13.00 4.30 0.00 7.00 5.82 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.84 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.85 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.85 (2) 
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NaDC 273.15 4.24 4.30 0.00 7.00 5.86 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 5.86 (2) 

NaDC 273.15 4.24 4.30 0.00 7.00 6.74 (2) 

NaDC 283.15 5.10 4.40 0.00 7.00 5.10 (9) 

NaDC 285.80 4.40 4.43 0.00 7.50 7.00 (3) 

NaDC 291.15 7.10 3.67 0.00 7.00 7.10 (9) 

NaDC 298.15 3.10 4.07 0.00 7.00 3.10 (9) 

NaDC 298.15 2.00 4.07 0.00 7.00 6.00 (4) 

NaDC 298.15 20.00 4.07 0.00 7.00 10.00 (6) 

NaDC 310.15 7.00 8.20 0.00 7.00 7.00 (9) 

NaDC 323.15 6.40 10.15 0.00 7.00 6.40 (9) 

NaDC 327.80 4.00 10.30 100.00 7.50 7.30 (3) 

NaDC 328.20 10.15 10.30 0.00 7.50 5.40 (3) 
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Table S4 MSR values for BSs with given solubilizates. BS ʹ bile salts, temp- temperature, Na+ - sodium cation, vit. ʹ vitamin,  
MSR ʹ molar solubilisation ratio, ref ʹ references, TDC ʹ taurodeoxycholate, TCDC ʹ taurochenodeoxycholate, TC ʹ 
taurocholate, GDC ʹ glycodeoxycholate, GCDC ʹ glycochenodeoxycholate, GC ʹ glycocholate, C- cholate,  DC ʹ deoxycholate. 

BS Solubilizate logKow Volume Temp [K] pH Na+ [M] MSR Ref 

TDC Azobenzene 4.13 174.56 310.15 6.30 15.00 0.04 (1) 

TCDC Azobenzene 4.13 174.56 310.15 6.30 15.00 0.03 (1) 

TC Azobenzene 4.13 174.56 310.15 6.30 15.00 0.02 (1) 

GDC Azobenzene 4.13 174.56 310.15 6.30 15.00 0.05 (1) 

GCDC Azobenzene 4.13 174.56 310.15 6.30 15.00 0.04 (1) 

GC Azobenzene 4.13 174.56 310.15 6.30 15.00 0.02 (1) 

TDC Monoolein 6.61 386.27 310.15 6.30 0.15 1.41 (1) 

TCDC Monoolein 6.61 386.27 310.15 6.30 0.15 1.58 (1) 

TC Monoolein 6.61 386.27 310.15 6.30 0.15 0.84 (1) 

GDC Monoolein 6.61 386.27 310.15 6.30 0.15 1.76 (1) 

GCDC Monoolein 6.61 386.27 310.15 6.30 0.15 1.90 (1) 

GC Monoolein 6.61 386.27 310.15 6.30 0.15 1.42 (1) 

GDC vit. K 8.80 483.87 298.15 7.00 0.00 0.03 (4) 

GC vit. K 8.80 483.87 298.15 7.00 0.00 0.02 (4) 

GDC vit. K 8.80 483.87 298.15 7.50 0.00 0.03 (4) 

GC vit. K 8.80 483.87 298.15 7.50 0.00 0.02 (4) 

GDC cholestrol 7.62 423.13 310.15 7.00 0.00 0.46 (5) 

TDC cholestrol 7.62 423.13 310.15 7.00 0.00 0.37 (5) 

GC cholestrol 7.62 423.13 310.15 7.00 0.00 0.36 (5) 

GCDC cholestrol 7.62 423.13 310.15 7.00 0.00 0.29 (5) 

TC cholestrol 7.62 423.13 310.15 7.00 0.00 0.27 (5) 

TCDC cholestrol 7.62 423.13 310.15 7.00 0.00 0.23 (5) 

C Benzene 1.94 84.04 298.00 7.00 0.00 0.90 (2) 

C Fluorobenzene 2.10 88.97 298.00 7.00 0.00 0.45 (2) 

C Hexafluorobenzene 2.63 113.63 298.00 7.00 0.00 0.55 (2) 

C Toluene 2.39 100.60 298.00 7.00 0.00 0.45 (2) 

C p-Fluorotoulene 2.55 105.54 298.00 7.00 0.00 0.45 (2) 

C Styrene 2.79 111.78 298.00 7.00 0.00 0.60 (2) 

C propenylbenzene 3.04 128.02 298.00 7.00 0.00 0.40 (2) 

C Anisole 1.99 109.59 298.00 7.00 0.00 0.50 (2) 

C Fluoroanisole 2.11 114.52 298.00 7.00 0.00 1.00 (2) 

C Acetophenone 1.84 119.59 298.00 7.00 0.00 0.80 (2) 

C Fluoroacetophenone 1.98 124.52 298.00 7.00 0.00 0.50 (2) 

C Nitrobenzene 1.90 107.38 298.00 7.00 0.00 0.25 (2) 

C Mesitylene 3.21 133.73 298.00 7.00 0.00 0.35 (2) 

C Tetraline 3.15 140.41 298.00 7.00 0.00 1.30 (2) 

C Veatrole 1.61 135.13 298.00 7.00 0.00 1.45 (2) 

DC Benzene 1.94 84.04 298.00 7.00 0.00 0.81 (2) 

DC Fluorobenzene 2.10 88.97 298.00 7.00 0.00 0.76 (2) 

DC Fluorotoluene 2.50 105.54 298.00 7.00 0.00 0.72 (2) 
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DC Fluoroanisole 2.11 114.52 298.00 7.00 0.00 0.96 (2) 

DC vit. K 8.80 483.87 298.15 7.00 0.00 0.05 (4) 

C vit. K 8.80 483.87 298.15 7.00 0.00 0.03 (4) 

DC vit. K 8.80 483.87 298.15 7.50 0.00 0.05 (4) 

C vit. K 8.80 483.87 298.15 7.50 0.00 0.02 (4) 

C Cholesterol 7.62 423.13 310.15 10.00 0.00 0.04 (3) 

C Stigmasterol  7.87 450.33 310.15 10.00 0.00 0.02 (3) 

C 
Cholesterol+Stigmastero

l 7.70 426.73 310.15 10.00 0.00 0.04 (3) 

C cholestanol 7.80 429.34 310.15 10.00 0.00 0.03 (3) 

DC Cholesterol 7.62 423.13 310.15 10.00 0.00 0.07 (3) 

DC Stigmasterol  7.87 450.33 310.15 10.00 0.00 0.04 (3) 

DC 
Cholesterol+Stigmastero

l 7.70 436.73 310.15 10.00 0.00 0.08 (3) 

DC Cholestanol 7.80 429.34 310.15 10.00 0.00 0.06 (3) 
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Figure S1. Particle size distribution of O/W emulsion with 0.5% WPI. Numbers: 1,2,3,4 corresponds to each number of run. 
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Figure S2. CMC of NaDC at 298.15K increased from 3.92 mM in the 1960-70s to an average of ~4.16 mM in the 2010-2020. 
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3.2. Publication 2 -A2 
KƌƵƉa͕ ŁƵŬaƐǌ͕ RŽbeƌƚ SƚaƌŽŷ͕ DŽƌŽƚa DƵůŬŽ͕ Naƚaůia ŁŽǌiŷƐŬa͕ AůaŶ R͘ MacŬie͕ Neiů M͘ RigbǇ͕ Adaŵ MacieƌǌaŶŬa͕ 
Aleksandra Markiewicz, and Christian Jungnickel. 2021. "Importance of Bile Composition for Diagnosis of Biliary 
Obstructions" Molecules 26, no. 23: 7279. https://doi.org/10.3390/molecules26237279 
 

3.2.1. Objective of research 
The main aim of the research was to determine the importance of BS as the disease indicator. Development of 
the disease state may change the BS concentration, which may lead to alteration of the BS synthesis, which was 
hypothesized to result in a reduced health state. Therefore, the main objective was to identify BS as a biomarker 
for specific diseases. BS undergo specific changes, which allows them to work as disease indicators. The research 
presented the hypothesized mechanism of changing BS composition concerning the disease state.  
 

3.2.2. Reason for undertaking the research problem 
Besides BS͛Ɛ role in the lipid digestion process, they are responsible for stimulating receptors and controlling 
their synthesis.  
The development of gallstones and cholangiocarcinoma may be responsible for the alteration of BS 
concentration and its synthesis.  
There are only a few scientific works that characterized the BS profile in plasma or serum in cholangiocarcinoma 
and pancreatic neoplasm. Therefore, it was important to analyze those reports and compare them to 
experimental results for a better understanding of the mechanism under which BS concentration changes. 
There is no clear information on how specific diseases alter BS profiles. To reveal new disease indicators, it is 
valuable to understand the mechanism of changing BS concentration and its ratio 
The disease state indirectly induces changes in BS composition, which may consequently influence the rate of 
the lipolysis process.  
Experiments considering different variations of predominant forms of BS in our gastrointestinal tract would be 
dominant in assessing the efficiency of the lipid digestion process. This would provide us with information on 
how the disease state and its corresponding BS can influence the lipolysis process.  
 

 
Figure 7 A. The healthy state ensures the normal flow of the BS. B. Formation of gallstones results in reduction of BS flow and 
dysbiosis which influence the composition of BS in the small intestine. C. Blockage of the common bile duct results in reduced 
BS flow and promotes dysbiosis in the small intestine. BS ʹ bile salts, BA ʹ bile acids, BAAT - BA CoA: amino acid N-
acyltransferase 
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3.2.3. Main outcomes and conclusions 
x BS showed a potential to work as a disease indicator of gallstones cholangiocarcinoma, and 

choledocholithiasis. However, the changes in BS concentration were not sensitive enough to identify 
them as disease indicators. We did not have enough data and knowledge to specify if the alteration of 
BS concentration was only related to the development of disease. A pathogenic state could result in a 
change of BS concentration but probably BS concentration could be a result of a different factor (for 
example change in BS synthesis) and therefore result in the development of disease. The process is very 
complicated and should be investigated in separate research only focused on BS synthesis and 
concentration. 

x Experimental data and literature data collected by meta-analysis of disease state showed to be 
statistically significant from the reference value of the healthy state, indicating alteration of BS conc 
with development of disease 

x Development of cholangiocarcinoma, choledocholithiasis and pancreatic neoplasm tend to increase the 
C/U BS ratio from 2.54 in healthy patients to respectively 35.90, 56.03 and 46.45 in experimental data 
and 135.35, 79.49 and 43.57 of literature data 

x The gallstones formed in the gallbladder may reduce the flow of the BS and lead to blockage of the 
cystic duct and common bile duct leading to dysbiosis in the small intestine and affecting the 
deconjugation process. 
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Abstract: Determination of the cause of a biliary obstruction is often inconclusive from serum analysis
alone without further clinical tests. To this end, serum markers as well as the composition of bile of
74 patients with biliary obstructions were determined to improve the diagnoses. The samples were
collected from the patients during an endoscopic retrograde cholangiopancreatography (ERCP). The
concentration of eight bile salts, specifically sodium cholate, sodium glycocholate, sodium tauro-
cholate, sodium glycodeoxycholate, sodium chenodeoxycholate, sodium glycochenodeoxycholate,
sodium taurodeoxycholate, and sodium taurochenodeoxycholate as well as bile cholesterol were
determined by HPLC-MS. Serum alanine aminotransferase (ALT), aspartate transaminase (AST),
and bilirubin were measured before the ERCP. The aim was to determine a diagnostic factor and
gain insights into the influence of serum bilirubin as well as bile salts on diseases. Ratios of conju-
gated/unconjugated, primary/secondary, and taurine/glycine conjugated bile salts were determined
to facilitate the comparison to literature data. Receiver operating characteristic (ROC) curves were
determined, and the cut-off values were calculated by determining the point closest to (0,1). It was
found that serum bilirubin was a good indicator of the type of biliary obstruction; it was able to differ-
entiate between benign obstructions such as choledocholithiasis (at the concentration of >11 µmol/L)
and malignant changes such as pancreatic neoplasms or cholangiocarcinoma (at the concentration
of >59 µmol/L). In addition, it was shown that conjugated/unconjugated bile salts confirm the
presence of an obstruction. With lower levels of conjugated/unconjugated bile salts the possibility
for inflammation and, thus, neoplasms increase.

Keywords: bilirubin; conjugated/unconjugated bile salts; biliary obstruction; pancreatic neoplasm;
cholangiocarcinoma; choledocholithiasis

1. Introduction
Biliary obstruction refers to a blockage of any duct that carries bile from the liver and

from the gallbladder to the small intestine. This can occur at any of the levels of the biliary
system. The symptoms of biliary obstruction result from the accumulation of bilirubin
in the blood. Biliary obstructions may be caused by benign or malignant diseases of the
alimentary tract. The main cause of benign biliary obstruction is choledocholithiasis due
to gallstone formations [1]. Other benign causes include strictures post cholecystectomy,
inflammatory stricture formation secondary to cholangitis, pancreatitis, and idiopathic
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causes. Other rarer causes of nonmalignant obstructions are choledochal cysts, primary
sclerosing cholangitis, and Mirrizi syndrome [2]. In addition, liver transplantation may
cause biliary track dysfunction in 13–35% of patients [3].

The malignant process also promotes the formation of biliary strictures [4]. Malignant
obstructions are most commonly caused by cholangiocarcinoma and pancreatic cancer.
Other causes are gallbladder cancer, compression by malignant lymph nodes, and metas-
tasis [5,6]. The differentiation between malignant and benign causes is very important
for clinicians as most malignant obstructions, like those caused by cholangiocarcinoma
and pancreatic cancer, are unresectable at the time of diagnosis, and treatment options are
restricted to palliative management, which typically involves stent insertion as a main-
stay of treatment. The survival of patients with malignancies affecting the biliary duct
varies between 3–10 months [7]. In cases of pancreatic cancer, the median survival time is
8 months [8]. Inoperable tumors decrease the survival potential further [9].

Types of bile duct strictures are difficult to differentiate by noninvasive methods [10],
such as radiological imaging alone. The noninvasive radiological modalities for evaluation
of these patients include ultrasonography, contrast-enhanced CT scans, MRI, and magnetic
resonance cholangiopancreaticography (MRCP). These noninvasive diagnostic methods
may provide information about the level of obstruction, the extent of biliary dilatation,
and the presence of a mass or distant metastasis [11,12] and are crucial for further treat-
ment of the patient. On the other hand, endoscopic retrograde cholangiopancreatography
(ERCP), percutaneous transhepatic cholangiography (PTC), and endoscopic ultrasound
(EUS) are invasive tests, which provide additional imaging information and allow tissue
sampling and treatment during the same session. One of the commonly used methods for
biliary stricture diagnosis and treatment is ERCP, which provides histopathological tissue
diagnosis in 35% of cases and shows a 100% specificity rate for the malignancy diagnosis
(pancreatic cancer, biliary cancer, cancer of the ampulla of Vater, metastatic diseases involv-
ing bile ducts, and other rare causes) [13]. Techniques providing the tissue for cytological
or histological diagnosis include the collection of bile [14], brush cytology [15], or forceps
biopsy [16], and direct cholangioscopy.

Despite the advances in imaging modalities and new endoscopic techniques, differen-
tiating between benign and malignant causes of biliary obstructions remains challenging.
Endoscopic techniques of tissue acquisition such as biopsies, brushings, and fine needle
aspiration (FNA) may provide a definitive tissue diagnosis; however, the combined sen-
sitivity of these techniques is in the region of 60% [17,18]. The sensitivity of endoscopic
ultrasound (EUS) and FNA for the diagnosis of a malignant biliary obstruction ranges
widely from 43% to 86% [19–21]. The combination of ERCP and EUS may improve the
rate of histological confirmation of malignancy. All the endoscopic tests are invasive and
associated with risks from complications. The initial diagnosis is based on a review of
clinical, biochemical, and radiological features.

Although biliary strictures present a diagnostic challenge and are hard to differentiate,
the laboratory parameters may help to indicate the types of strictures [22]. The laboratory
values of the liver function tests in the serum and current tumor marker levels lack sufficient
specificity to determine the precise cause of a biliary obstruction [23–25]. Serum bilirubin
levels are a strong predictor of biliary malignant diseases, with the optimum sensitivity
and specificity for malignancy at bilirubin levels of >100 µmol/L [26]. Patients with
cholangiocarcinoma had elevated bilirubin levels (60–470 µmol/L) [27]. Raised bilirubin
levels were also associated with the development of pancreatic cancer [28] and the increased
risk of gallstone formation [29].

Bile salts (BSs) may play an important role in the determination of the cause of
stricture formation. BSs are synthesized from cholesterol in the liver and stored in the
gallbladder [30]. Cholic acid and chenodeoxycholic acid are two primary bile acids (BAs)
synthesized in the human liver. BAs undergo modification by the liver and are conjugated
with the glycine or taurine molecule by BA-CoA amino acid N-acyltransferase (BAAT)
to form BSs [31]. This process ensures lowering the pKa value of the formed BSs [32].
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Thus, at the physiological pH, the conjugated BSs appear in the ionized form. BSs are
transported across the canalicular membrane to the gallbladder, from where they are
secreted in the bile to the duodenum after meal intake [33]. In the duodenum and onwards,
the formation of deconjugated BSs, deoxycholic acid, and lithocholic acid can occur due
to the presence of intestinal bacteria that secrete the bile salt hydrolase (BSH), an enzyme
responsible for this conformational change. The secondary BSs may be further conjugated
with glycine and taurine molecules to form secondary conjugated BSs. Bile salts are natural
ligands for the nuclear BA receptor, Farsenoid X receptor (FXR), and are responsible
for the activation of FXR [34]. Activated FXR inhibits the expression of the CYP7A1
enzyme which is responsible for the synthesis of the BSs from cholesterol in the liver [35].
Therefore, BSs are able to control their own synthesis. FXR supresses the CYP7A1 gene
expression by induction of the hepatic small heterodimer partner (SHP, NROB2), which
inhibits activity of the tissue specific liver receptor homolog 1 (LRH-1), which is responsible
for controlling the expression of the CYP7A1 enzyme, and via the induction of the ileal
hormone fibroblast growth factor 19 (FGF19) in humans and FGF15 in mice [34,36,37].
Moreover, expression of the hepatic BA transporters is also controlled by FXR. The BA
transporters, the Na+ taurocholate cotransporting polypeptide (NTCP), the bile salt export
pump (BSEP), the apical sodium-dependent BA transporter (ASBT), and the organic solute
transporter OST↵-OST� are responsible for controlling the absorption rate of BSs, the
enterohepatic circulation, and the removal of BSs from the body [38]. FXR is also responsible
for regulation of BAAT [39].

BSs are transported down from the liver and through the biliary tree to the gallblad-
der [40]. After the BSs have contributed to food digestion and nutrient absorption, the
majority (>90%) are reabsorbed by active transport at the terminal ileum [40] to the liver in
a process known as enterohepatic circulation [41]. This signifies that BSs can be obtained
from either de novo synthesis or can be recycled from enterohepatic circulation. The
transport of the BSs from the blood to the hepatocytes takes place with assistance from
sodium-dependent cotransporters [42].

It has been known since 1939 that BSs act as potential carcinogens [43] with a cyto-
toxic effect on hepatocytes and enterocytes [44] and negatively affect the mucosa of the
stomach, intestine, and gallbladder [45]. Specifically, secondary unconjugated BSs, due to
their higher hydrophobicity, are more toxic than their primary forms [44]. They promote
oxidative/nitrosative stress, cause DNA damage, and promote apoptosis and mutation [46].
Conversely, Dai et al. [47] have indicated that unconjugated BAs promote cell apoptosis
and reduce the growth of cholangiocarcinoma cells, whereas conjugated BSs promote cell
growth. This would indicate that the exact nature of the role of BAs in cancer formation
is as yet poorly understood. However, it is clear that an interaction exists, as it has been
shown that the concentration of conjugated BSs in benign biliary diseases has been shown
to be statistically lower than in cholangiocarcinoma patients [48]. Zhang et al. [49], as one
of the only reports on BAs in serum, have proposed BAs as the biomarkers for cholangiocar-
cinoma since the ratio of conjugated to unconjugated BAs in cholangiocarcinoma patients
was shown to be reduced. Therefore, the imbalance of the BA composition was indicated
to play a crucial role in the development of cholangiocarcinoma [50]. Transporters located
in the canalicular membrane allow for the secretion of BSs from hepatocytes. Inhibition of
the BS secretion results in the pathophysiologic concentration of BSs named cholestasis.
How these cause cancer has been postulated through investigation using cultured rat
hepatocytes [51]. Jaeschke et al. postulated that elevated BS concentrations cause the
translocation of the intracellular Fas ligand (can induce apoptosis and is a tumor necrosis
factor) to the cell membrane and trigger cell death [51]. Lower in the biliary tree, BAs have
been suggested to be a key factor influencing the development of pancreatic cancer [52–54].
Rees et al. [55] have compared the level of BAs in patients with pancreatic cancer and with
benign disease. Increased concentrations of the unconjugated BAs in the malignant group
may be explained by the bacteria proliferation in and around the common bile duct.
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Therefore, an alteration in the conjugation level and an obstruction-induced reduction
of BS concentration in the small intestine may change the BS synthesis via action of FXR
and promote excessive BA synthesis. Imbalance in the BA composition can be caused by
a number of factors, e.g., 1. altered synthesis due to FXR promotion or inhibition [47,56];
2. change in the function of BAAT; 3. change in the function of the BA transporters [57];
4. change in the external concentration of the BS due to a blockage [58–60]; 5. changed
function of BSH [58–60].

Therefore, the aim of this study was to analyze the significance of serum bilirubin
as an indicator for biliary obstructions as well as to analyze the causal and diagnostic
significance of bile salts in biliary obstructions. To achieve this aim, we have collected
and analyzed human bile from 150 patients diagnosed with various biliary obstructions
occurring at different levels of the biliary tree.

2. Results and Discussion
2.1. Bilirubin as an Indicator of Neoplasm

The importance of bilirubin levels in diseases is shown in Figure 1, which clearly dif-
ferentiates neoplasms (cholangiocarcinoma and pancreatic cancer) from the nonmalignant
diseases (choledocholithiasis and stricture).
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Figure 1. Comparison of the bilirubin levels in the serum of patients with different conditions
resulting in biliary blockage. It can clearly be seen that the bilirubin levels in the case of a neoplasm
(either cholangiocarcinoma or pancreatic) is significantly higher compared to benign strictures or
choledocholithiasis. p-values were determined using the Kruskal-Wallis test with the Dunn post hoc
nonparametic comparison.

2.2. Importance of BSs as Indicators of Biliary Obstruction
Table 1 shows the average levels of measured compounds with the standard deviation

in each of the four classified pathologies. The ratios are calculated as a relative ratio,
relative to the number of items. The concentrations of different BSs measured in the
bile and blood of 63 patients with pathological biliary obstructions were compared to
11 patients with benign strictures (postinflammatory, postsurgical, iatrogenic, idiopathic),
since it is not ethical to extract bile from healthy patients. However, literature values for
healthy patients are shown indicatively. Figure 2 shows the cholesterol and liver functions
of the recorded patients.
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Table 1. Summary of the data from the 74 cases of biliary obstruction. Shown are the average levels of measured compounds
with the standard deviation in each of the four classified pathologies. The ratios are calculated as a relative ratio, relative
to the number of items. When comparing literature values of serum and bile levels, it was shown that the ratios of
conjugated/unconjugated, primary/secondary, and taurine/glycine conjugated BSs did not differ between the serum of
healthy patients and the collected bile of patients (with p values of 0.221, 0.053, and 0.355, respectively).

Cholangiocarcinoma Choledocholithiasis Pancreatic
Neoplasm Stricture

Number of patients 5 43 15 11

Age (years) 72.6 ± 13.74 67.14 ± 17.96 71.00 ± 14.40 70.36 ±14.94

BS concentrations:
Chenodeoxycholic acid (mmol/L) 0.16 ± 0.18 0.31 ± 0.17 0.31 ± 0.17 0.14 ± 0.14
Glycodeoxycholic acid (mmol/L) 5.00 ± 7.03 5.36 ± 8.53 2.02 ± 3.78 7.31 ± 13.23

Glycochenodeoxycholic acid (mmol/L) 11.17 ± 16.02 20.70 ± 17.57 26.81 ± 50.63 25.25 ± 24.28
Glychocholic acid (mmol/L) 6.41 ± 9.98 9.54 ± 6.71 10.46 ± 13.09 15.49 ± 10.91

Taurodeoxycholic acid (mmol/L) 4.11 ± 5.63 2.61 ± 3.72 1.12 ± 1.66 2.18 ± 3.11
Taurochenodeoxycholic acid (mmol/L) 4.80 ± 6.56 7.30 ± 6.77 6.50 ± 5.63 6.20 ± 4.10

Taurocholic acid (mmol/L) 6.25 ± 9.17 9.73 ± 9.36 9.46 ± 8.87 9.27 ± 5.97

Calculated ratios from literature:
ALT/AST

Conjugated/Unconjugated BS 112.56–158.14 [61,62] 2.14–156.85 [62–65] 19.2–43.57 [55,62]
Primary/Secondary BS 14.27–62.69 [61,62,66] 2.91–17.71 [59,62–64,66–71] 2.79–13.17 [55,62]

Taurine/Glycine conjugated BS 0.66–1.13 [49,61,62] 0.23–0.9 [62–64,69,70] 0.41–1.45 [55,62]

Healthy patients (literature): Measured from serum Measured from bile
ALT/AST U/L 1.42 ± 0.02 [72] N/A

Bilirubin (µmol/L) 12.6 [73] N/A
Conjugated/Unconjugated BS 1.28–1.60 [49,74] 2.54 [64]

Primary/Secondary BS 0.72–2.95 [49,59,66,74,75] 2.47–3.60 [64,69,70]
Taurine/Glycine conjugated BS 0.27–2.40 [49,52,74,75] 0.26–0.30 [64,69]
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Figure 2. AST/ALT ratio (A) and cholesterol levels (B) measured in bile collected from patients 
with different malignancies. A. Traditional liver diagnostic tests. AST/ALT ratio were not able to 
successfully differentiate the biliary blockages. B. Cholesterol levels of the bile were not signifi-
cantly different in any of the disease groups; however, the highest cholesterol levels were found 
for the choledocholithiasis patients. 

  

Figure 2. AST/ALT ratio (A) and cholesterol levels (B) measured in bile collected from patients with different malignancies.
(A). Traditional liver diagnostic tests. AST/ALT ratio were not able to successfully differentiate the biliary blockages.
(B). Cholesterol levels of the bile were not significantly different in any of the disease groups; however, the highest
cholesterol levels were found for the choledocholithiasis patients.

2.2.1. Choledocholithiasis
Our results have shown that BS concentration may function as the potential indicators

of choledocholithiasis (when a gallstone blocks the bile duct). The patients with diagnosed
choledocholithiasis have shown elevated primary/secondary (P/S) ratios compared to
pancreatic neoplasms and elevated conjugated/unconjugated (C/U) ratios of BSs when
compared to benign strictures as shown in Figure 3B,C. Blockage resulting from the gall-
stone formation inhibits the flow of the BSs from the gallbladder to the small intestine
leading to dysbiosis and, therefore, a reduction in BSH [58–60]. Depletion of BSH leads to
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suppression of the deconjugation process. Conjugated BSs are better ligands for FXR than
their unconjugated forms [56]. Therefore, alterations in the conjugation levels and reduced
concentrations in the small intestine due to obstructions may change BS synthesis via action
of FXR and promote excessive BA synthesis. Those alterations of the expression of the FXR
result in the increased expression of CYP7A1, which promotes the excessive synthesis of
the BSs and consequently leads to the changed composition of the BA pool size [76]. Those
alterations of BA synthesis result in a predominant concentration of primary BSs in patients
with cholestasis [59], as can be observed in Figure 3C. The accumulated primary synthe-
sized BSs may be excessively conjugated by the BA-CoA:amino acid N-acyltransferase
(BAAT) enzyme, which is reflected by the elevated C/U ratio observed in Figure 3B. Disor-
ders caused by the reduced flow of BSs and excessive BA synthesis lead to the formation of
conjugation forms of BSs, which then may be responsible for the development of cholan-
giocarcinoma [47]. Interestingly, the cholesterol in the bile was not found to be significantly
elevated compared to the other diseases (Figure 2B). The cholesterol level was shown to be
correlated with the level of the C/U ratio of BS (Pearson test, p < 0.001, r = 0.303). Therefore,
excessive levels of the chenodeoxycholic acid (Figure 3A), responsible for the solubilization
of cholesterol, may explain the insignificant elevation of cholesterol levels.
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Figure 3. (A). Changes of CDC with respect to disease type. The statistical difference between strictures and pancreatic
neoplasms as well as choledocholithiasis was indicated. Concentrations of CDC are altered with the development of
gallstones and pancreatic cancer. (B). Conjugated/unconjugated ratios of BSs in patients with different malignancies.
Elevated ratios indicate increasing conjugated forms of the BSs and simultaneous depletion of unconjugated forms.
(C). Primary/secondary ratios of BSs. The ratios were most influenced by the presence of biliary stones. (D). Taurine/glycine
ratios do not show any changes with disease types.
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2.2.2. Cholangiocarcinoma
Strom et al. [77] noticed the differences in the BA compositions among control groups,

subjects with gallstones, and subjects with bile duct cancer. Depletion of deoxycholic and
lithocholic acids was noticed for biliary tract cancer [66]. The reduction in the secondary
unconjugated BS level was due to the limited flow of the primary BSs to the small intestine.
Hence, the decreased level of reabsorbed BSs increase activation of CYP7A1. Increased BS
synthesis results in elevated levels of primary over secondary BSs, which can be observed
in Figure 3C. Moreover, after reabsorption to the liver, the secondary unconjugated BSs
may be conjugated with taurine or glycine, which are catalyzed by BAAT. Reduced flow
of the BSs and their excessive accumulation not only change the action of the BS enzymes
but also promote the creation of elevated conjugated forms of the BSs, which is reflected
in the elevated C/U ratio (Figure 3B). Disorders caused by reduced flow of the BSs and
excessive BA synthesis lead to the formation of elevated conjugation forms, which may be
responsible for the development of cholangiocarcinoma [47]. Increased ratios of C/U BSs
in patients with cholangiocarcinoma were also observed by Zhang et al. [49].

2.2.3. Pancreatic Neoplasms
Increased production of secondary BSs may be correlated with the induction of tumors

at the head of the pancreas, which leads to bile duct obstruction as was suggested by Rees
et al. [55]. Moreover, elevated secondary BS levels promote the generation of reactive
oxygen species and induce DNA damage and cell disruption.

Pancreatic neoplasms have shown different P/S ratios than choledocholithiasis, as
can be observed in Figure 3C. Decreased concentrations of secondary BSs can be a result of
reduced flow of the primary BSs, caused by the obstruction. Therefore, lower amounts of
the primary BSs can be transported to the small intestine and undergo the deconjugation
process. The reabsorbed BSs will be further conjugated in the liver to the secondary
conjugated (SC) BSs. Moreover, lower concentrations of absorbed BSs may result in
the higher activation of the CYP7A1 enzyme and increased BA synthesis as well as the
increased production of more primary BSs. Therefore, previously accumulated and newly
synthesized BSs may undergo the conjugation process, which may result in excessive
conjugation levels, as reflected in Figure 4B by the elevated C/U ratios. The P/S ratios were
shown to be statistically different between cholangiocarcinoma and pancreatic neoplasms
(Figure 4). The differences could result from the location of the cancer and more efficient
blockage of the BS flows.

The schematic representation of possible changes in BS composition due to the devel-
opment of diseases is shown in Figure 4. Under normal conditions, the BAs are synthesized
in the liver and transported to the gallbladder (Figure 4A). They are released to the small
intestine during the consumption of a meal, and after fulfilling their roles they are reab-
sorbed by the liver, and induce the expression of FXR, which inhibits activation of CYP7A1
and regulates BA synthesis. Strictures created during the benign state of disease lead to
accumulation of the synthesized BSs and reduce the flow of the BSs to the small intestine
(Figure 4B). The gallstones formed in the gallbladder may accumulate and form bigger
aggregates in the common bile duct, which lead to decreased BS flow to the small intestine.

As can be seen in Figure 2A, patients with biliary obstructions and completely normal
liver function tests (LFTs) are unlikely to have malignant pathologies, where only choledo-
cholithiasis shows elevated AST/ALT ratios, albeit without statistical significance [78].

When analyzing the heatmap (Figure 5), BA ratios were visibly altered for choledo-
cholithiasis compared to the other pathologies.
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Figure 4. (A). The normal flow of the BSs from the liver, through the hepatic duct, cystic duct, gallbladder, and common bile
duct to the small intestine. BSs are retransported back to the liver after fulfilling their role. They control their own synthesis
by inducing expression of FXR. (B). As a result of gallstone formation, the flow of BSs is reduced. (C). Blockage of the BS
flow caused by the development of cholangiocarcinoma. Decreased levels of reabsorbed BSs reduce the FXR signalling and
promote activation of CYP7A1 enzyme leading to increased BA synthesis.
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2.3. Diagnosis of Biliary Obstruction
When looking at the diagnostic significance of individual markers in receiver oper-

ating characteristic (ROC) curves (Figure 6), only serum bilirubin shows an appreciable
diagnostic relevance, with AUC = 0.793, p < 0.001. None of the other values showed the
same significance. However, the results indicate that there is a correlative relationship
between the BS composition (as represented by the C/U ratio) and the various diseases.
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Figure 6. (A). ROC curves for the determination of diagnostic values of various markers to discriminate neoplasms
(pancreatic cancer or cholangiocarcinoma) vs. nonmalignant changes (stricture and choledocholithiasis). Only bilirubin
(AUC 0.793 with a p < 0.001). was statistically significant (B). Sensitivity and Specificity curve for bilirubin concentration
clearly indicates a specificity of close to 77% if serum level is over 55 µmol/L.

Figure 7 clearly indicates the importance of bilirubin as an indicator of malignant
biliary obstruction, where the cut-off value for bilirubin concentration serves as an indicator
for the type of disease (i.e., above 11 µmol/L choledocholithiasis is likely, and above
59 µmol/L a neoplasm may be suspected). This is in line with the previous model of the
less complete closure caused by the cholestasis [79]. The ratio of conjugated to unconjugated
BSs was found to be a significant indicator for healthy patients (thus the line is below the
diagonal [80]) when compared with cholestasis and neoplasm patients, with a ratio of
80.3 and 48.7, respectively. It indicates that neoplasms are characterized by almost a 50%
reduction in the amount of conjugated BSs in the biliary tract (as shown in Figure 3B
average C/U changes from ~50 for malignant strictures to ~120 for benign strictures). This
could be due to the lower hepatic recycling of the BSs since all the conjugated as well as
unconjugated BSs measured derived from a primary synthesis. The only unconjugated BAs
included in our test set was a primary bile salt (sodium chenodeoxycholate). Therefore,
the stronger the stricture the less bile can recirculate. This can also be seen when grouping
bilirubin levels into three categories (as a result of the ROC analysis), low (110 µmol/L),
medium, and high (�59 µmol/L), and grouping these (using the Kruskal Wallis test with a
Dunn post hoc test) with the three bile salt ratios (C/U, P/S, and T/G). The only correlation
was found for C/U at low and medium bilirubin levels (with p values < 0.001, the p values
for P/S, T/G and cholesterol where 0.242, 0.192, and 0.647 respectively).

This would indicate that the presence of unconjugated BSs increase the risk of a
pathological indication. This is in line with the previous effect of unconjugated BSs on
tissue (i.e., cytotoxicity and inflammation). The presence of unconjugated BSs present
a higher cellular stress and may result in an inflammatory response. In fact, all biliary
diseases are related to rates of inflammation in biliary tissue [81,82]. This indicates that
blockage of the biliary tract can lead to self-propagating inflammation, resulting from the
increased synthesis of BSs, and a loss of function of BA-CoA:amino acid n-acyltransferase
(BAAT). The loss of BAAT is thought to be due to 4-hydroxynonenal (4HNE) in a dose-
dependent relationship [83]. 4HNE is a well-studied aldehyde that has been shown to be
directly related to oxidative stress [84].
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tissue (i.e., cytotoxicity and inflammation). The presence of unconjugated BSs present a 
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Figure 7. (A–D) ROC curves comparing neoplasms (both cholangiocarcinoma and pancreatic, (A,C)) and choledocholithiasis
cases (B,D) to the benign stricture cases using two indicators: serum bilirubin and the ratio of conjugated/unconjugated
BSs. In three cases (p-value marked in bold), the ROC curve presented a statistically significant indicator. The corresponding
cut-off values (E–H) are given under each ROC curve.

3. Materials and Methods
3.1. Sample Collection

The collection and study of human bile (HB) samples were approved by the ethics
committee of the Regional Medical Chamber in Rzeszów, Poland (certificate 15/B/2016).
All methods were planned and conducted in accordance with the ethical principles outlined
in the Declaration of Helsinki.

Samples of HB were collected at the Department of Gastroenterology and Hepatology
(Teaching Hospital No. 1, Rzeszów, Poland) during an endoscopic retrograde cholangio-
pancreatography (ERCP). ERCP is an endoscopic procedure which involves the assessment
and therapy of the bile ducts and/or pancreatic ducts.

For the purpose of our study, we included patients for whom therapeutic procedures
on bile ducts were indicated. After insertion of a duodenoscope into the second part of
the duodenum, the ampulla of Vater was identified. The ampulla is located at the major
duodenal papilla. All patients who undergo the ERCP procedure must have evidence
of biliary or pancreatic duct obstruction. This was confirmed by imaging tests such as:
transabdominal ultrasound (USS, computed tomography, magnetic resonance imaging
(MRI), or endoscopic ultrasound (EUS)). We recruited 150 patients who were qualified
for the ERCP procedure due to imaging evidence of biliary obstruction over the period
of 4 months. In order to minimize the risk of complications during the procedure, we
decided that a bile aspiration attempt could not take longer than 60 s. In the case of difficult
procedures such as the need for a contrast injection before cannulation of the bile duct
or the need for a precut or prolonged aspiration attempt, the procedure was completed
without bile aspiration. Out of 150 patients recruited for the study, bile from 74 subjects
was collected.

As a routine part of ERCP, the ampulla is selectively cannulated with a dedicated
sterile catheter, which was inserted selectively over the guide-wire into the bile duct.
The position of the catheter was confirmed under fluoroscopy (X-ray guidance).

A syringe was attached to one end of the catheter. The assisting endoscopy nurse per-
formed the aspiration of the bile by applying a gentle suction with a syringe. The catheter
was moved back and forward from the extrahepatic bile ducts to the intrahepatic bile ducts.
Approximately 2–3 mL of fluid was aspirated. Immediately after aspiration, the samples
were sealed and instantly immersed in liquid nitrogen for snap freezing. Samples were
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stored at �80 �C prior to further examination. The ERCP procedure was completed as
planned according to indications.

Serum alanine aminotransferase (ALT), aspartate transaminase (AST), and bilirubin
were measured before the ERCP procedure.

3.2. HB Analysis
The BS compositions of all HB samples were analyzed using an Agilent 1260 HPLC

system coupled to an AB Sciex 4000 QTrap triple quadrupole MS (Sciex, Cheshire, UK).
An aliquot of HB (10 µL) was diluted with 0.9% NaCl (990 µL). Diluted HB (50 µL) was trans-
ferred into a HPLC vial and mixed with 50 µL methanol. The MS analysis was carried out
according to the method described previously [85]. The following BS reference standards
were used: sodium cholate (C; C6445, Sigma-Aldrich, Dorset, UK), sodium glycocholate
(GC; G7132, Sigma-Aldrich), sodium taurocholate (TC; 86339, Sigma-Aldrich), sodium
glycodeoxycholate (GDC; G9910, Sigma-Aldrich), sodium chenodeoxycholate (CDC; C8621,
Sigma-Aldrich), sodium glycochenodeoxycholate (GCDC; G0759, Sigma-Aldrich), sodium
taurodeoxycholate (TDC; T0875, Sigma-Aldrich), and sodium taurochenodeoxycholate
(TCDC; T6260, Sigma-Aldrich). The workflow is shown in Figure 8.
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Figure 8. Flowchart from sample collection to analysis and statistical evaluation.

3.3. Statistical Analysis
From the 74 patients, 6 patients had incomplete ALT, AST, and serum bilirubin data.

The missing data was imputed using MICE with five imputations. The exact procedure for
MICE has been described by Łozińska et al [85].

The Kruskal Wallis test with the Dunn post hoc analysis for comparison of continu-
ous variables in multiple groups was used, using XLSTAT (version 2020.1.3.65326). The
heatmap and dendrogram were created using GenePattern Version v3.9.11-rc.5 b234 [86].
Raw data were log2-transformed, Pearson correlation was used as a distance measure
in columns and row clustering. Data were row-centered by subtracting the row mean
from all the values in each row. A summary of the measured data is provided in Table 1.
Receiver operating curves (ROC) [87] were generated using the easyROC (v1.3.1), where
the cut-off criteria was determined by minimizing the distance to the corner 0,1. 59 µmol/L.
Ratios of conjugated/unconjugated (C/U), primary/secondary (P/S), and taurine/glycine
conjugated (T/G) BSs were calculated using the average values of both the denominator
and numerator.
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4. Conclusions
After analyzing serum and bile markers in 74 patients presenting a biliary or pancreatic

obstruction, we show that the level of serum bilirubin can be used as an initial simple,
noninvasive screening test for predicting whether the obstruction is likely to be malignant
or benign. In addition, we have analyzed the BS composition. Even though BSs play an
important role in disease initiation and progression, the changes in composition are not
specific enough to serve as markers.

Monitoring changes in the bile composition might allow for possible novel treatment
strategies of the disease. For example, patients with cholangiocarcinoma were shown
to exhibit significant imbalances in the ratios of conjugated to unconjugated BSs. This
might be partially due to the (self-stimulated) excessive BA synthesis, promoted by the
reduction of bile flow and the increased activation of the CYP7A1 enzyme, resulting in
an elevated level of conjugated BSs. Inhibiting BS synthesis with FXR antagonists such as
guggulsterone [47] may present a promising method to reduce inflammation and thereby
inhibit the self-propagating disease development.

With the development of diseases, the BSs undergo specific changes. It is important,
therefore, to follow the concentration changes for further development of new markers of
the diseases. We recognize the limited cohort size of this study; however, the indications
that disruption of BS homeostasis leads to the development of cholangiocarcinoma is a
clear conclusion from our work. Furthermore, detailed studies, including high throughput
metabolomic profiling are therefore required. Even though the lack of healthy controls
is a clear issue with the analysis, obtaining aspirated bile from healthy patients raises
ethical questions.
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3.3. Publication 3 -A3 
ŁoǌińƐka͕ N͕͘ Maldonado-Valderrama, J., Del Castillo-Santaella, T., Zhou, Y., Martysiak-ŻƵƌoǁƐka͕ D͕͘ LƵ͕ Y͕͘ Θ 
Jungnickel, C. (2024). Bile conjugation and its effect on in vitro lipolysis of emulsions. Food Research 
International, 184, 114255. 
 

3.3.1. The objective of the research 
x The main aim of this research was to determine five processes influencing the efficiency of the lipolysis 

process.  
x Set measurable parameters for each process. 
x Experimentally measure the changes in each parameter concerning the changing ratio of C/U BS. 
x Perform meta-analysis on lipolysis data. 
x Determine the most influential process affecting lipolysis efficiency.  

 
3.3.2. Reason for undertaking the research problem 

Lack of studies on changing lipolysis parameters concerning changing concentration of conjugated and 
unconjugated BS. 
There is no clear understanding of to what extent changes in lipolysis parameters affect the FFA release from oil 
emulsion. 
MSR is mainly measured for substances not related to the digestion process (PAH, drugs), therefore lipolysis 
products should be investigated to understand the importance of solubilization properties. MSR may indicate 
the ability of the BS to incorporate lipolysis products into their aggregates concerning the product type, which 
is a rate-limiting step influencing the efficiency of lipolysis. 
Changes in IT and dilatational modulus for individual BS during the lipolysis process may determine their 
behaviour at the interphase. For now, the previously performed experiments considered IT changes concerning 
changes in BS concentration. Therefore, there were very limited results presenting changes in IT measurements 
at the physiological concentration of BS. Moreover, SU BS was not previously tested, limiting the conclusions 
only to the behaviour of conjugated forms of BS.  
Many data covering the lipolysis experiments exist. However, there are a lot of changing variables that may 
influence the final result, which makes them hard to compare and uneasy to decide on the most predominant 
factor. The unification of data and the creation of the lipolysis modelling can give us perspective to foresee the 
final FFA release by controlling the individual factors of the process. Moreover, it would also allow us to 
determine the most predominant factor affecting the lipolysis process.  
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Figure 8 Lipolysis was determined to depend on five dominant processes: 1. Adsorption of BS, 2. Emulsification, 3. Co-
adsorption of lipase, 4. Desorption, 5. Removal of lipolysis products. Each of the processes was described as a mathematical 
function, with parameters influencing its efficiency. Each of the parameters can be experimentally measured concerning the 
form of the BS.  BS ʹ bile salts, IFT ʹ interfacial tension, NaTC ʹ sodium taurocholate, NaDC ʹ sodium deoxycholate, HLB ʹ 
hydrophilic lipophilic balance, FFA ʹ free fatty acids, CMC ʹ critical micelle concentration, MSR ʹ molar solubilisation ratio. 

 
3.3.3. Main outcomes and conclusions 

x Lipolysis efficiency depends on five processes 
x NaDC more significantly reduces particle size during the lipolysis process. 
x Increasing the concentration of conjugated over unconjugated BS increases interfacial tension and 

dilatational modulus during the adsorption and desorption step.  
x FFA release is enhanced by increasing the concentration of conjugated BS. 
x MSR is not affected by conjugation. 
x Emulsification is a rate-limiting step of lipolysis 
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3.3.4. Graphical abstract of publication A3 
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Bile conjugation and its effect on in vitro lipolysis of emulsions 

Natalia Łozińska a, Julia Maldonado-Valderrama b, Teresa Del Castillo-Santaella c, Yanija Zhou a, 
Dorota Martysiak-Żurowska d, Yuanqi Lu e, Christian Jungnickel a,* 

a Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk 80-233, Poland 
b Department of Applied Physics, Faculty of Sciences, University of Granada, Campus de Fuentenueva sn, 18071 Granada, Spain 
c Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Campus de Cartuja sn, 18071 Granada, Spain 
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A R T I C L E  I N F O   
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A B S T R A C T   

Bile Salts (BS) are responsible for stimulating lipid digestion in our organism. Gut microbiota are responsible for 
the deconjugation process of primary conjugated to secondary unconjugated BS. We use two structurally distinct 
BS and characterize the rate of lipolysis as a compound parameter. A static in-vitro digestion model as well as 
meta-analysis of literature data has been performed to determine the most influential factors affecting the lipid 
digestion process. The results demonstrate that lipolysis of emulsions using conjugated BS (NaTC, FFA = 60.0 %, 
CMC in SIF = 5.58 mM, MSR of linoleic acid = 0.21, rate of adsorption = -0.057 mN/m.s) enhances the release of 
FFA compared to deconjugated BS (NaDC, FFA = 49.5 %, CMC in SIF = 2.49 mM, MSR of linoleic acid = 0.16 
rate of adsorption = -0.064 mN/m.s). These results indicate that conjugation plays an important role in con-
trolling the rate of lipolysis in our organism which can be in turn, tuned by the microflora composition of our gut, 
ultimately controlling the rate of deconjugation of the BS.   

1. Introduction 

Elucidating the influence of gut microbiota on the human digestion 
process is an important goal for the development of ideas to control the 
lipid digestion process. Bile acids (BA), which support these processes, 
are bio-surfactants, synthesized from cholesterol in the liver in hepato-
cytes. Arimary BA (cholic and chenodeoBycholic acid) are conjugated 
with either glycine and taurine to form primary conjugated BAs taur-
ocholic, glycocholic, taurochenodeoBycholic and glycochenodeoB-
ycholic acid and are stored in our gallbladder (Boyer, 201C). These 
conjugated BA are transported to the small intestine, becoming primary 
conjugated bile salts (BS) (here we refer to the bile acid-bile salts tran-
sition to occur at the ampulla of Vater) (Di Ciaula et al., 2017). Sec-
ondary unconjugated bile salts including deoBycholic acid and 
lithocholic acid, are created through the process of deconjugation, 
which removes amino acid residues from the primary conjugated BS. 
The formation of secondary unconjugated BS is catalyzed by a bacterial 
enzyme known as bile salt hydrolase (BSD). Gram-positive and gram- 

negative intestinal flora such as Lactobacillus, Enterococcus, and Bacter-
oides spp possess BSD activity (Erdaneta & CasadesFs, 2017). A resulting 
eBcessive deconjugation would generate a higher concentration of sec-
ondary unconjugated BS, which will elicit a cellular toBic response (De 
Boever et al., 2000). Alterations in the concentration of secondary un-
conjugated BS may lead to the development of diseases such as gallstone 
formation, cholangiocarcinoma, and pancreatic neoplasm (Grupa et al., 
2021). Additional effects may be diarrhea, mucosal inflammation, or 
colon cancer, due to disruption of the gut microbiota composition 
(Salminen, 1996). It should be noted that BSD activity controls micro-
biota composition, whereas microbiota regulates BS pool size. There-
fore, disruption of the BS-microbiota homeostasis may lead to the 
development of pathogenicity (CoB, Lundgren, Nath, & Thaiss, 2022). 

The administration of antibiotics in adults reduces gut microbial 
diversity, which may promote the growth of pathobionts, such as toBins 
from Clostridioides difficile and Enterobacteriaceae as well as reduce the 
level of Bifidobacterium and butyrate-producing species (Aalleja et al., 
2018). It is crucial to point out that the usage of antibiotics eliminates 

Abbreviations: BS, bile saltsH C, conjugatedH DI, deionizedH IFT, interfacial tensionH MICE, multiple imputation by chained equationsH MSR, molar solubilization 
ratioH NaDC, sodium deoBycholateH NaTC, sodium taurocholateH ACA, principal component analysisH E, unconjugated. 
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bacteria that are sensitive to them and increases the number of 
antibiotic-resistant bacteria (Duvallet, Gibbons, Gurry, Irizarry, & Alm, 
2017). Therefore, antibiotics by themselves do not decrease the overall 
number of bacteria but decrease their diversity. Bifidobacterium is one of 
the many species possessing BSD activity. Thus, antibiotic use will lead 
to changes in BS composition (Wei et al., 2020). 

There are Kve transformation mechanisms of conjugated BS driven 
by intestinal bacteriaJ (1) dihydroBylation, (2) dehydration, (C) epime-
rization, (4) deconjugation, and the most recently reported (5) amide 
conjugation of the cholate backbone with the amino acids phenylala-
nine, tyrosine, and leucine (Luinn et al., 2020). 7α/β-dehydroBylation 
converts primary bile salts into secondary bile salts (deoBycholic and 
lithocholic acid), which occurs mainly in the small intestine. The 
deconjugation process is the most well-studied transformation and is a 
rate-limiting process for further BS transformation. 

BS differ from standard amphiphilic surfactants, by displaying a bi- 
facial amphiphilic structure, in which conveB and concave surfaces are 
located on the opposite sides of the four steroid rings. The conveB side 
displays methyl groups and the concave side consists of 1–C hydroByl 
groups (C-C, C-7, C-12) and amino groups ( Maldonado-Valderrama, 
Wilde, Macierzanka, & Mackie, 2011). Conjugation reduces the pGa 
from 6 for primary unconjugated BS to 4.5 for glycine-conjugated BS and 
1.5 for taurine-conjugated BS (Goto, Mano, & Goto, 2004). This process 
allows BS to eBist in the fully ionized form at physiological pD, which 
enhances the amphiphilic function of BS. Moreover, the ionized form of 
conjugated BS prevents nonionic passive absorption of the BS in the 
small intestine and ensures absorption by an active transport system 
after the completion of their roles. Enconjugated forms of primary 
conjugated BS show similar pGa values (Goto et al., 2004). Conjugated 
BS are more hydrophilic than their unconjugated forms, due to 

Fig. 1. A. Structure and properties of sodium taurocholate (NaTC), and sodium deoBycholate (NaDC) (Deuman 1989H Łozińska and Jungnickel, 2021). The BSD- 
mediated deconjugation process increases the hydrophobic character of SC BS, by losing the –OD group at the 7α position. DLB (hydrophilic-lipophilic balance), 
hydrophobicity indeB, and BS-water DBs taken from, (Deuman 1989), and (Mustan et al., 2015) respectively. B. The ratio of conjugated to unconjugated BS (C/E) 
during various segments of the small intestine (Łozińska and Jungnickel, 2021). C. Lipolysis depends on Kve dominant processes. Lipolysis efKciency is measured by 
FFA(free fatty acids) release D. Each of the processes can be described as a function of several measured parameters. In this paper, we have analyzed each process 
(1–5), in terms of the measured parameters. Bile salts (BS), critical micelle concentration (CMC), interfacial tension (IFT), and molar solubilization ratio (MSR). 

N. Łozińska et al.                                                                                                                                                                                                                               
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additional hydroByl groups at position 7 (Fig. 1A). The higher hydro-
philic character results in a higher critical micelle concentration (CMC) 
of primary conjugated BS. The deconjugation process enhances the 
formation of aggregates at a lower concentration (in this paper we are 
only reporting primary micelles formation as secondary BS micelles 
formed from primary micelles held together by D-bonding occur at 
biologically irrelevant concentrations (Euston, 2017)). The planar po-
larity of the BS results in two main biological functionsJ 1. Formation of 
small miBed aggregates responsible for transportation of the lipolysis 
products in the small intestine, and 2. Interface modiKcation such as 
emulsiKcation of the lipid droplet, facilitating adsorption of the lipase/ 
colipase compleB, and displacing protein and lipolysis products from the 
interface ( Maldonado-Valderrama et al., 2011). 

In this paper, we discuss lipolysis as an interfacial process strictly 
related to the behavior of BS at the oil interface, such as adsorption, co- 
adsorption of lipase, and desorption, as shown in Fig. 1C. Consequently, 
the interfacial properties of BS can modulate this lipolysis process. 
Therefore, investigating these interface properties represents a chal-
lenge, due to the dynamic nature of the digestion process, where 
mimicking the process in a single oil–water interface offers an oppor-
tunity to study the effect of the contributions of the different BS miBtures 
to lipolysis. 

The importance of BS conjugation has been widely studied with 
respect to their physiochemical function such as CMC, molar solubili-
zation ratio (MSR), aggregation number, adsorption, desorption prop-
erties, etc (Deuman, 1989bH Maestre, Guardado, & Moyá, 2014H J. 
Maldonado-Valderrama, Muros-Cobos, Dolgado-Terriza, & Cabrerizo- 
VMlchez, 2014H Mukherjee, Dar, Bhat, Moulik, & Das, 2016H Nagadome, 
Okazaki, Lee, Sasaki, & Sugihara, 2001). Arevious works established the 
impact of BS conjugation on their physiological functions such as free 
fatty acid release (FFA) (Bellesi & Ailosof, 2021H Łozińska & Jungnickel, 
2021). Although it can be observed that lipolysis is controlled by 
different parameters acting simultaneously, the rate-limiting factor has 
not yet been determined. Arevious studies have analyzed BS during 
lipolysis-related processes such as their adsorption/desorption dynamics 
(Aarker, Rigby, Ridout, Gunning, & Wilde, 2014), aggregation proper-
ties (Aabois et al., 2021), and Knal FFA release for different BS con-
centrations (Aabois et al., 2020), however, these studies have been 
limited to only conjugated forms of BS. Therefore, the speciKc effect of 
deconjugation on these processes and in turn, in lipolysis is not known. 
To answer these questions, we have separated Kve distinct processes 
(Bellesi & Ailosof, 2021H Łozińska & Jungnickel, 2021) that may regu-
late lipolysis as shown in Fig. 1CJ emulsiKcation, adsorption of BS/co- 
adsorption of lipase/desorption at the oil–water interface, and solubi-
lization of lipolytic products. 

Each process is dependent on the number of measurable parameters, 
as shown in Fig. 1D. It should be noted that previously published 
research by Bellesi et al. (Bellesi & Ailosof, 2021) limited the lipolysis 
process to three key compleB steps but these were not linked to eBper-
imental values. 

The aim of the paper, therefore, is to determine the change in the Kve 
processes that modulate the lipolysis process with changing ratios of 
conjugated and unconjugated bile salts. We hypothesize that NaTC and 
NaDC (due to their different D-bonds, hydrophobicities, etc.) will have 
varying effects on each of these Kve processes. We aim to determine the 
most influential and rate-limiting factor resulting in different Knal FFA 
releases from emulsions. To aid the eBperimental conclusions, we will 
compare the eBperimental data with a meta-analysis of lipolysis data. 
This will allow us to determine the importance of deconjugation in the 
overall lipolysis process and design future strategies to control lipolysis 
by regulating the conjugation of BS. 

2. Methodology 

2.1. Materials 

NaNC (S2002), florisil (46C85), NaDC (D6750), NaTC (86CC9), 
linoleic acid (LO7949), cholesterol (C8667), diazotized procaine 
(A9879), pancreatin (A1750) were purchased from Sigma Aldrich 
(Schnelldorf, Germany), toluene was purchased from Ośrodek 
Badawczo-Rozwojowy Arzemysłu RaKneryjnego, Ałock, Aoland. 

SIF was prepared according to Brodkorb et al. (Brodkorb et al., 2019) 
and was composed of 0.5 M GCl, 0.5 M GD2AO4, 5 M NaCl, and 0.15 M 
MgCl2·6D20 with ionic strength of 0.1C mM. All chemicals were pur-
chased from Sigma Aldrich (Schnelldorf, Germany). 

2.2. Emulsion preparation 

Emulsions were prepared according to Łozińska et al. (Łozińska & 
Jungnickel, 2021). Oil in water (O/W) emulsion (oil to water 20J75 % 
(w/w), or 10J85 % (w/w), (Emulsions S2, S7)) were prepared by dis-
solving whey protein isolate ((WAI) JE051-9–420, Le Seur, ESA, con-
centration of 0.5 % (w/w) in saline buffer (150 mM NaCl (AOCD, 
Gliwice Aoland) and 0.02 % (w/w) NaNC). Sunflower oil (bought at a 
local market), which was previously puriKed with florisil, as described 
in previous studies (Del Castillo-Santaella, SanmartMn, Cabrerizo-VMl-
chez, Arboleya, & Maldonado-Valderrama, 2014) was used as the oil 
phase. The miBture of puriKed sunflower oil and protein dispersion was 
vorteBed for C min or homogenized for 2 min to obtain a pre-emulsion. 
The pre-emulsion was sonicated with an ultrasound generator (Sonics 
VCN 500, Sonics & Materials Inc., Newtown, CT, ESA) with a titanium 
probe (outer diameter 0.1C cm). Lipolysis eBperiments were carried out 
on split samples, one-half for each BS. The conditions for emulsions’ 
preparation are presented in Table S1. 

To prepare emulsion S1 the high-speed d (M1CC/1281–0, Biospec 
Aroducts Inc., Basel, Switzerland) was used for two minutes. A mem-
brane homogenizer (eBternal pressure type micro kit from SAG Tech-
nology Co. Ltd, Japan) with a 4 μm pore diameter was used. The 
emulsion has passed three cycles of 5000 kAa and 10 cycles of 10000 kAa 
(Torcello-Gómez, Maldonado-Valderrama, MartMn-RodrMguez, & 
McClements, 2011). The emulsions were prepared in duplicates. The 
stability of the emulsions over 48 h has been eBamined by using Tur-
biscan LabEBpert. ADI around 0.9 indicates a highly polydisperse 
emulsion (Garmakar, 2019). 

2.3. Emulsion droplet size measurement 

The mean particle diameter and particle size distribution of the 
emulsion were measured using a laser light scattering instrument 
(Metasizer 2000, Malvern Instruments Ltd, Malvern, EG). The absor-
bance value of the oil droplets was 0.001 (refractive indeB of 1.467) 
(Micic et al., 2015). The results of particle size were recorded as the Z- 
average mean diameter, which is calculated from the particle size dis-
tribution (Li et al., 2019). 

2.4. Lipolysis of emulsions 

A modiKed INFOGEST in-vitro lipolysis model (Brodkorb et al., 2019) 
was used to simulate the environmental condition of the duodenum. 
SpeciKcally, 0.8 mL of the SIF and 0.C75 mL of the emulsion were added 
to the thermostatted vessel. After miBing with a magnetic stirrer (1500 
rpm), 0.C mL of 10 mM BS (NaTC or NaDC) and C μL of 0.C M CaCl2 were 
pipetted, and the pD was set to 7.0 using 0.1 M DCl. Finally, with the 
addition of 1.0 mL of freshly prepared pancreatin (75 mg at 80 E/mg) 
the titration was started. 

The reaction vessel was continuously stirred and thermostatically 
controlled to maintain C10.15 G. The eBtent of the lipolysis was 
measured by continuous titration with an autotitrator (Cerko Lab 
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System CLS/M/07/06, Gdynia, Aoland) of free fatty acids (FFA) with 
0.1 M NaOD. All lipolysis eBperiments were carried out in duplicate. 
EBemplary results are shown in Fig. 2D. The rate of lipolysis/surface 
area (SA) was calculated by dividing the slope from lipolysis eBperi-
ments within the Krst C min by the total emulsion surface area. The 
surface area was calculated assuming a spherical shape of the emulsion 
particle. The size of the emulsions was previously determined. The 
number of emulsion particles was determined by the volume and the 
composition of each emulsion. 

2.5. In-vitro lipolysis experiments 

In-vitro lipolysis of adsorbed protein layers at the oil–water interface 
was measured in OCTOAES by sequential adsorption comprising three 
stepsJ Step1- protein, Step2- lipolysisJ BS, BS + lipase or BS + lipase +
inhibitor, and Step C- desorptionJ replacement of bulk solution by SIF 
(Maldonado-Valderrama et al., 2014). Briefly, OCTOAES is a pendant 
drop surface Klm balance where a normal capillary tip was substituted 
by an arrangement of two coaBial capillaries allowing a fully automated 
subphase eBchange of the drop content (Cabrerizo-VMlchez, Wege, 
Dolgado-Terriza, & Neumann, 1999). OCTOAES is computer-controlled 
by the software DINATEN (Eniversity of Granada). The pendant drop is 
formed into the oil phase inside a glass cuvette (Dellma, Jena, Ger-
many), which is kept in an eBternally thermostated cell at C10.15 G for 
all of the eBperiments, simulating body temperature. The interfacial 
tension is recorded at a constant interfacial area (2C mm2) throughout 
the adsorption and desorption cycles and/or until the interfacial tension 
reaches a stable value. 

The schematic representation of the sequential lipolysis is presented 
in Fig. 2A and B with an eBemplary eBperimental output of sequential 
adsorption (for Step2) present in in Fig. 2C. First, a droplet of 0.1 g/L 

WAI was formed and the adsorption of the protein layer was recorded for 
one hour at constant interfacial. Once the protein layer had stabilized, 
the bulk solution was eBchanged by Step2 70 times to ensure complete 
replacement (Maldonado-Valderrama et al., 2014). The interfacial ten-
sion was recorded during the eBchange with Step 1 and one additional 
hour to allow for the stabilization of the lipolytic interfacial layer. 
Replacement by lipolytic media (Step 2) causes a decrease in the inter-
facial tension owing to interfacial adsorption and lipolysis while 
replacement with SIF causes an increase in the interfacial tension owing 
to desorption caused by the concentration gradient between the inter-
face and the bulk solution (Fig. 2B). 

EBperiments were performed in duplicate. The OCTOAES recorded 
the interfacial tension every 2–C s. EBperiments, which had a drop 
interfacial tension at time 140–––160 s of 18.C ± 0.5 OmN/mP were 
classiKed as repeatable. To determine the Knal interfacial tension of 
each of the phases, the average of the last C0 points was used. As shown 
in Fig. 2C, the lipolysis began with a reduction in the interfacial tension, 
which could be observed in all BS systems during Step2. 

In-vitro lipolysis at the interface was also recorded in the presence of 
lipase inhibitor orlistat in order to provide a negative control of lipolysis, 
adsorption of BS in the presence of lipase, etc. Orlistat (60 mg, GlaB-
oSmithGline, London, EG) is used as an inhibitor of lipase activity (Del 
Castillo-Santaella et al., 2021, 2015). Orlistat forms a covalent bond 
with the active site of lipase, with serine, which prevents the lipid 
digestion process (Gondrashina et al., 202C). 

Due to small inter-measurement variations in the initiation of the 
subphase change, the time of the measurements for each eBperiment has 
been normalized as shown in the supporting information Fig. S1A and B. 
Adsorption rate and desorption have been calculated during Step2 and 
StepC eBchange respectively for NaTC/NaDC measurements ranging 
from 0.00 to 1.00 for BS, and BS + lipase NaTC/NaDC indicates the 

Fig. 2. A. The schematic representation of OCTOAES eBperiments. First, the protein (whey protein isolate (WAI)) adsorbs onto the oil–water interface, and then the 
liquid inside the drop (subphase) is eBchanged with three types of fluids (eBperiments 1–C). B, Knally the liquid inside is eBchanged by Step2 and StepC. The progress 
of the eBperiment is monitored by the changes in interfacial tension of the drop. C. Representative curve for the eBperimental output of in vitro lipolysis with bile salts 
(BS) + lipase performed on OCTOAES. Simulated intestinal fluid (SIF), Interfacial tension (IFT), time (t), sodium taurocholate (NaTC), sodium deoBycholate (NaDC), 
measurement (meas.). 
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fraction composition of the total BS concentration in a solution for a 
given eBperiment. Rates were calculated from the slope of the interfacial 
tension versus time obtained for periods of C786 – C8C0 s and 
7812–7869 s for adsorption and desorption phases respectively, divided 
by surface area. Complete interfacial tension proKles of in-vitro lipolysis 
of interfacial layers performed with the OCTOAES using BS, BS + lipase 
are presented in Fig. S2. 

The interfacial tension of the puriKed sunflower oil–water interface 
was checked before every eBperiment obtaining values of 25.5 ± 1.5 
mN/m at C10.15 G. 

2.6. Critical micelle concentration (CMC) 

The CMC in water and SIF solution of the BS NaDC, NaTC, and their 
ratios at physiological temperature (C10.15 G) were assessed according 
to Łozińska et. al (Łozińska & Jungnickel, 2021) by using conductivity 
measurements using an autotitrator equipped with a microconductivity 
electrode (Eurosensor EAST-2ZAM, Gliwice, Aoland). The temperature 
was maintained using a thermostatic water bath (AolyScience 9106, 
Niles, ESA). 

2.7. Static interfacial tension measurements 

Additional static interfacial tension measurements were done by 
using a drop shape analyzer (Grϋss Drop shape analyzer DSA 10, 
Damburg, Germany). The measurements have been performed to 
determine the impact of NaTC/NaDC ratio on the reduction of the 
interfacial tension of oil. These values were aimed to correlate with the 
potential of speciKc BS to reduce drop size during lipolysis. The mea-
surements were performed as described previously by Łozińska et al. 
(Łozińska & Jungnickel, 2021). An oil drop of puriKed sunflower oil was 
formed in a measuring cell, Klled with 10 mM BS solution, ranging from 
0.00 to 1.00 NaTC/NaDC. Interfacial tension of the equilibrated drop 
was measured after 10 min at a constant temperature of C10.15 G. 

2.8. Molar solubilization ratio 

Molar solubilization ratio (MSR) for different BS ratios for linoleic 
acid as a representative high molecular volume FFAH cholesterol as a 
small molecular weight solubilizateH and toluene as a commonly tested 
and thus comparable reference standard, were measured. Solutions of 
speciKc BS ratio in SIF, in the range of 10–20 mM were prepared for each 
solubilizate. Each was added in eBcess. Solubilization was carried out in 
vials sealed with Teflon septa and miBed thoroughly (1000 rpm, 24 h, 
298.15 G) using a horizontal shaker (IGA VIBRAN VNR Basic, Sigma- 
Aldrich) to allow for incorporation of eBtra phase into the bio-
surfactant micelles. Subsequently, the eBcess phase was separated by 
centrifugation at 12,298 g for 15 min (MAW-C50 Med. Instruments, 
Aoland). MSR was determined according to. Lee et al. (Lee, Aorter, & 
Boyd, 201C). ColumnJ 4.6 × 75 mm Waters Symmetry� C18 (C.5 μm), 
mobile phaseJ 90J10 acetonitrileJ water, retention timeJ 4.6 min, run 
timeJ 8 min. The solubility of linoleic acid in BS solution was measured 
by using Digh-Aerformance Liquid Chromatography (Agilent Technol-
ogies DALC System 1200 Series, Santa Clara, CA, ES)- evaporative light 
scattering detector (Sedere LT-ELSD SedeB 90, Alfortville, France.). The 
solubility of cholesterol in BS solutions was quantiKed according to 
Mashkour (Muthana Saleh Mashkour, Naser A. Naser, 2017), where 1 
mL of BS in SIF solution was miBed with 2 mL of 0.01 M of the diazotized 
procaine hydrochloride solution, 2 mL of 2 M NaOD, the volume was 
made up to 10 mL with distilled water. The resultant derivative was 
measured using a spectrophotometer (Varian Cary 50 EV/VIS spectro-
photometer, Aalo Alto, ESA) at a wavelength of 558 nm. The solubility 
of toluene in BS solutions was measured at 255 nm using the spectro-
photometer as above. 

2.9. Lipolysis modeling and statistical analysis 

A meta-analysis has been performed on eBperimental data to deter-
mine the most influential factors in the lipolysis process. 14 datapoints 
from eBperimental work and 190 data points from the literature have 
been collected from C4 scientiKc articles ranging from 2001 to 2022, 
where the “Google Scholar “(MartMn-MartMn, Orduna-Malea, & Thelwall, 
2018) was used with the following key-wordsJ “bile salts”, “lipolysis”. 17 
descriptors were obtained from the papersJ BS type and concentration 
OmMP, the concentration of cholesterol, phospholipids, and calcium ions 
O%P, type of digestion model, source of enzyme, enzyme concentration 
Omg/mLP, and activity OE/mgP, type and concentration of oil, protein, 
and emulsiKer O%P, moment of particle size determination method, 
particle size OµmP. Type of BS, type of digestion model, source of 
enzyme, and type of oil have been classiKed by one-hot encoded col-
umns. Conjugated/unconjugated BS ratio (C/E) and primary/secondary 
BS ratio (A/S) have been calculated by an averaged numerator and de-
nominator ratio. The concentration of BS, enzymes, phospholipids, 
cholesterol, calcium ions, oil, protein, and emulsiKers have been re- 
calculated into a percentage composition of the total volume of the 
system. The molecular weight of the oil has been obtained by using 
molinsipiration (Jarrahpour et al., 2012). The collated lipolysis data is 
presented in Table S1. Bile composition consists of bile acid, cholesterol, 
and phospholipids (Fracchia et al., 2001). For porcine and bovine bile 
eBtract data the averaged composition of BS, cholesterol, and phos-
pholipids have been calculated from collected scientiKc articles. The 
composition of bovine and porcine bile eBtract has been shown in 
Supporting Information Table S2. Categorization was according to the 
source of BS. Enzyme concentration corresponds to the Knal enzyme 
concentration in the reaction vessel. The source of the enzyme has been 
classiKed into two typesJ lipase and pancreatic lipase. Aancreatic lipase 
differs from pure lipase by compositions of other enzymes such as 
amylase, trypsin, protease, lipase, and ribonuclease (Dur, Decker, & 
McClements, 2009). Oil was classiKed into medium and long-chained 
according to Takeuchi et al. (Takeuchi, Sekine, Gojima, & Aoyama, 
2008) FFA release after 60 min O%P has been chosen as the dependent 
variable and was recorded from papers numerically, or graphically. It 
quantiKes the total amount of release of lipolysis products during the 
intestinal digestion process. Datapoints of dynamic models of lipolysis 
have been eBcluded from the analysis. The workflow has been shown 
schematically in Fig. C. 

Multivariate Imputation by Chained Equations (MICE) has been used 
to estimate the missing data (Łozińska & Jungnickel, 2021). To estimate 
the error of the replaced missing data by using the MICE, tests that 
contained no missing data were taken into account. Arinciple component 
analysis (ACA) was used to reduce the number of descriptors originally 
collected. The results of the ACA analysis are shown in Fig. SC. 

The evolutionary algorithm to determine the most influential de-
scriptors on the lipolysis process was implemented by using GeneBAro 
(Danandeh, 2022). Common operators (addition, subtraction, multipli-
cation, division, eBponential, logarithm, root, and power functions) 
were selected. The data was split 80J20 into training and validation sets. 
Each analysis was composed of Kve runs. Each analysis was repeated ten 
times with a new randomized sample of 80J20 training and validation 
sets. The presented results are an average of the 10 repetitions of Kve 
runs of each analysis. 

The contribution of each descriptor to each model was determined 
by Qimportance’ and sensitivity. Importance was determined by the 
normalized difference in R2 between the original model and that with a 
randomized input variable as determined by GeneNAro (Salgotra & 
Gandomi, 2021). Sensitivity analysis has been performed manually. The 
percentage difference between the dependent variable (of the original 
function) and the dependent variable (when the parameter in question 
was altered by +/-0.001) for each descriptor has been calculated. Sta-
tistical analysis has been performed to determine the signiKcance of the 
results. 
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The importance of each of the parameters has been calculated by 
using Equation (2). 
⃒⃒
⃒⃒v1 − v2

v1

⃒⃒
⃒⃒× 100% = Δv (2)  

where v1 and v2 were the values for a given parameter for NaTC and 
NaDC respectively. The most signiKcant parameter, with the highest 
value of Δv, was then equaled to the value of 100 %. The rest of the 
parameters have been analogically re-calculated. 

The statistical signiKcance for all results was calculated by using a 
two-tailed t-test. 

3. Results and discussion 

The results are presented in the order of the lipolysis process as 
shown in Fig. 1C. Sections are divided according to the mentioned 
lipolysis parameters. Section C.1 covers the topic of initial emulsion, 
discussing the importance of particle size during the lipolysis process. In 
section C.2 we discuss the ability of different BS to adsorb on the O/W 
interface, including the importance of co-adsorption of lipase in section 
C.4. Section C.C refers to the ability of BS to emulsify oil droplets. Sub-
sequently, the desorption process of BS from the surface of the lipid is 
presented in section C.4 Finally, the ability to form small aggregates by 
BS and their capacity to transport lipolysis products are discussed in 
section C.5. 

3.1. Initial particle size 

The importance of particle size in the lipolysis process is well 
established (González et al., 2020), as is reflected by our results which 

showed that FFA release for NaDC and NaTC increases with decreasing 
particle size, as shown in Fig. 4A. A smaller surface area of the droplet 
can accelerate the lipolysis process, due to greater space for adsorption 
of BS/lipase compleB and faster break-down of droplets (Macierzanka, 
Torcello-Gómez, Jungnickel, & Maldonado-Valderrama, 2019). Dow-
ever, Fig. 4A shows also that lipolysis with primary conjugated NaTC 
releases a signiKcantly higher amount of FFA than using secondary 
unconjugated NaDC for the same size of emulsion. These new Kndings 
suggest that lipolysis efKciency is directly linked with BS type and its 
properties. A higher hydrophobic character of NaDC than NaTC may 
enhance the emulsiKcation process via greater adsorption. Dowever, the 
longer residence time of NaDC on the oil droplet may reduce the removal 
of lipolysis products from the interface and disturb further lipolysis 
process resulting from lower FFA release. As shown in Fig. 1C the FFA 
release is a function of Kve processes occurring during digestion. Fig. 4B 
shows that decreasing particle size increases the difference of FFA 
release between NaDC and NaTC, which indicates the signiKcance of the 
conjugation of BS. Aabois et al. (Aabois et al., 2020) performed lipolysis 
eBperiments for two different BSJ NaTC and sodium taurodeoBycholate 
with respect to two different concentrationsJ 10 mM and 50 mM. The 
results have shown to be statistically signiKcant between different 
concentrations for the same BS type and between themselves only for 50 
mM. Moreover, a higher amount of FFA released was yielded for BS at 
50 mM, underlying that a high concentration of BS signiKcantly in-
creases lipolysis efKciency. FFA release in respect to different emulsion 
size is shown in Fig. SCA for NaDC and Fig. SCB for NaTC. 

FFA release from the oil droplet was shown (Fig. 1C) to depend upon 
Kve dominant processes during the lipolysis process. In the following 
sections, we will discuss the effect of NaTC/NaDC ratio on each of the 
processes, to determine the most dominant factor during digestion. 

Fig. 3. The workflow of the methodology of lipolysis modeling. Number (N), Multivariate Imputation by Chained Equations (MICE), bile salts (BS), conjugated/ 
unconjugated (C/E), primary/secondary (A/S), partial least square (ALS), free fatty acids (FFA). 
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3.2. Adsorption of BS onto oil–water interface 

The ability of lipase to adsorb onto the lipid droplets in emulsions is 
assisted by BS, and therefore the BS adsorption kinetics onto the oil 
droplet interface play an important role (Łozińska & Jungnickel, 2021). 
The ability of BSs to adsorb onto the oil–water interface describes their 
potential to remove the surface materials and facilitate lipase adsorp-
tion. There are two hypothesized scenarios for the adsorption of BS onto 
the oil–water interface. In the Krst scenario, BS adsorbs perpendicular to 
the interface (Small, 1971). In this case, the sterol ring penetrates into 
the oil and the charged end remains at the aqueous phase. The second 
scenario assumes that BS can adsorb horizontally to the interface, as 
supported by the eBperimental work performed by Del Castillo-Santaella 
et al. (Del Castillo-Santaella, 202C). A stronger adhesion of the BS may 
facilitate the adsorption of the lipase/co-lipase to the surface of the lipid, 
which may promote lipolysis. Dowever, reduction of the time of BS at 
the interface can decrease the adhesion of the lipase/colipase but at the 
same time can facilitate displacement of lipolysis products from the 
surface. 

Fig. 4D-E shows the results from OCTOAES eBperiments for Step 2 
(according to Fig. 2C), i. e. eBchange with Step2 using different rations 
of BS. The adsorption rate of BS and BS + lipase increases with the 
concentration of primary conjugated NaTC as shown in Fig. 4D. The 
adsorption rate is determined by several factorsJ (1) aggregation number 
(2) and CMC of BS (detailed description in Section C.6.1). The aggre-
gation number is an indirect measure of the size of the BS micelle, and 
diffusion through water (and thus adsorption) is dependent on the size of 
the object. Similarly, the CMC (a measure of the concentration at which 

micelles form), indicates if the BS molecules are diffusing as single 
molecules or micelles. Aarker et al. (Aarker et al., 2014) have demon-
strated that the adsorption behavior follows the micellization properties 
of the BS. In all performed eBperiments concentration of BS was 10 mM 
(physiologically relevant) (Alan F. Dofmann, 1988), therefore concen-
tration for both BS, the primary conjugated NaTC and secondary un-
conjugated NaDC is above its CMC. Meta-analysis performed by 
Łozińska et al. (Łozińska & Jungnickel, 2021) has shown that primary 
conjugated NaTC has a smaller aggregation number (2.60 ± 0.11) than 
secondary unconjugated NaDC (5.91 ± 0.0C) (Coello, Meijide, RodrM-
guez NFñez, & Vázquez Tato, 1996). The smaller micelles of primary 
conjugated NaTC allow for faster free diffusion, therefore resulting in a 
faster rate of adsorption. The addition of the lipase showed a decrease in 
the rate of adsorption, which indicates that lipase signiKcantly supports 
the Krst step of lipolysis. 

Fig. 4E shows the interfacial tension curves recorded after 1-hour 
adsorption of protein for NaTC/NaDC for pure BS, BS + lipase (lipol-
ysis), and BS + lipase + orlistat (inhibited lipolysis). The results show 
that interfacial tension is signiKcantly lower for BS + lipase than for pure 
BS eBperiments. This is a result of the presence of lipolytic products 
which are surface active and therefore contribute to reducing the 
interfacial tension. Moreover, the results demonstrate that the Knal 
interfacial tension in all cases, increases with increasing concentration 
of NaTC. Del Castillo-Santaella et al. (Del Castillo-Santaella, 202C) have 
mentioned that the number and position of the hydroByl groups affect 
the adsorption of BS at the interface. NaTC has three hydroByl groups at 
positions C, 7, and 12, as shown in Fig. 1A, which makes parallel 
adsorption of BS at the oil interface more likely. NaDC, however, lacks 

Fig. 4. A. FFA release after 2 h of in-vitro digestion process for whey protein isolate (WAI)-stabilized emulsion of two different types of bile salts (BS)J sodium 
taurocholate (NaTC) and sodium deoBycholate (NaDC)at 10 mM and C10.15 G for different particle size OnmP B. Aercentage difference of free fatty acids (FFA) release 
between NaTC and NaDC obtained for different initial emulsion droplet size. C. Representative curve of in-vitro lipolysis of S4 emulsion using NaTC. All lipolysis 
other results are presented in Fig. S4. D Measurements of lipolysis in OCTOAES (Fig. 2C, Step 2) using different ratios of BS in Step2 (BS and BS + Lipase). The 
adsorption rate is calculated as the slope of the interfacial tension versus time obtained in Step 2 (Fig. 2C) divided by the surface area. E. Interfacial tension after 
stabilization of Step 2 (Fig. 2C). 
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the OD group at position 7, which may enhance greater perpendicular 
orientation at the oil interface. Results shown here suggest that the 
planar orientation of NaTC favors lipolysis to a greater eBtent as quan-
tiKed by the lower interfacial tension reached as the amount of NaTC 
increases. The orlistat results did not deviate from the BS interfacial 
tension, which indicates the ability of orlistat to inhibit lipase function 
in agreement with previous works reporting lipase inhibition by up to 
90 % (Del Castillo-Santaella et al., 2021, 2015). Greater rate of 
adsorption and interfacial tension for NaTC than NaDC, as shown in 
Fig. 4D and E which follows the pattern of greater FFA release obtained 
with conjugated NaTC. The results indicate that lipolysis efKciency is 
linked with the interfacial properties of BS. 

3.3. Emulsification 

The ability of the BS to reduce the size of the lipid droplets during 
lipolysis has been documented (Łozińska & Jungnickel, 2021H Aabois 
et al., 2020H Wilde, Garcia-Llatas, Lagarda, Daslam, & Grundy, 2019). 
Dowever, we present here for the Krst time the results of a coalescence 
initiated by the unconjugated BS with time, as shown in Fig. 5A-D. 

Areviously published results by Łozińska et al. (Łozińska & Jung-
nickel, 2021) have shown the ability of primary conjugated and sec-
ondary unconjugated BS to reduce the interfacial tension of an oil 
droplet. The linear relationship in Fig. 5AC presents the interfacial 
tension of aqueous solutions with different NaTC/NaDC ratio. The 
increasing ratio of secondary unconjugated NaDC within NaTCJNaDC 
systems decreased the interfacial tension (Fig. 5G), which may indicate 
better emulsiKcation properties during the lipolysis process. 

The ability of BS to emulsify the droplets of the emulsion for three 

different sizes of emulsions is presented in Fig. 5B-D in terms of the time 
evolution of the droplet diameter. Controls, shown in Fig. 5 C-D, have 
been stable over the process which is in agreement with other work 
performed by Calvo-Lema et al. (Calvo-Lerma, Fornés-Ferrer, Deredia, & 
Andrés, 2019). Larger particles of the emulsion are not easily influenced 
by the BS type, as can be observed in Fig. 5B Conversely, BS type has a 
strong influence on emulsions with lower particle size, as observed in 
Fig. 5C and D. During the Krst 60 min, secondary unconjugated NaDC 
signiKcantly reduces the particle size of the emulsion (as shown in 
Fig. 5B), and after that promotes coalescence of the droplets. This result 
can be connected with the higher hydrophobic character of NaDC 
(conjugated NaTC loss hydroByl group at position 7), which increases 
the hydrophobicity of the oil droplet. 

3.4. Co-adsorption of lipase 

To better understand the influence of the type of BS on the lipolysis 
process, the conformational structural changes of lipase and colipase 
introduced by BS were investigated, which may further reflect the po-
tential of lipase adsorption. Colipase is a protein cofactor of pancreatic 
lipase, that assists in the breakdown of lipids (Rathelot, Julien, Canioni, 
Coeroli, & Sarda, 1976). The molecular dynamic simulation performed 
by Daque et al (Daque & Arakash Arabhu, 2018) revealed the alterations 
in the interfacial activity of pancreatic lipase. The binding of NaTC to 
porcine pancreatic lipase resulted in changing the structure of the lipase. 
Moreover, this interaction prevented the closed conformation and 
induced the open conformation of lipase, where the open conformation 
assists the lipase to stay active without the co-lipase. Thus, the inter-
action between BS and lipase compleB will induce conformational 

Fig. 5. A Static interfacial tension (sunflower oil) of 10 mM of bile salts (BS) in simulated intestinal fluid (SIF), performed on drop shape analyzer. Interfacial tension 
for 0.00 sodium taurocholate (NaTC)/sodium deoBycholate (NaDC) and 1.00 NaTC/NaDC were published previously by Łozińska et al (Łozińska and Jungnickel, 
2021). The ability of NaTC and NaDC to reduce droplet size for B. C000 nm C. 800 nm D.500 nm. Controls for eBperiments C-D were performed according to the 
description in section 2.4, without the presence of BS. E. Desorption rate measured as the change in interfacial tension due to desorption after lipolysis in OCTOAES 
(Fig. 2C, Step C), divided by surface area, for different BS ratios. F. FFA release from emulsions for different BS ratios after 2 h. The particle size was 1C00 nm. G. 
Interfacial tension obtained after desorption (Fig. 2C, Step C) with different BS ratios for BS and BS + lipase in OCTOAES. Values are taken from an average of the last 
C0 points. D. Lipolysis rate measured as the change in interfacial tension versus time in OCTOAES results (BS + lipase) for different BS ratios, divided by surface area. 
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changes in the lipase, and thus influence the lipase activity. Dow the 
conjugation of BS influences these conformational structures is not yet 
known, but due to the different intermolecular bonds, we can assume 
that some differences should be observable. We show that conjugation 
affects the adsorption of lipase, since Δinterfacial tension (calculated by 
IFT of BS + orlistat + lipase – IFT of pure BS ± SD) for 1.00 NaTC/NaDC 
was −1.18 ± 0.22 mN/m, compared to 0.64 ± 0.52 for 0.00 NaTC/ 
NaDC, and −0.60 ± 0.48 for 1.00 NaTC/NaDC. Dence, NaTC displays a 
higher interfacial tension than NaDC, as shown in Fig. 4E, and a faster 
rate of adsorption (Fig. 4D) which may facilitate lipase adsorption to a 
higher eBtent than NaDC. 

3.5. Desorption of BS 

The ability to desorb from the lipid surface plays a crucial role in the 
lipolysis process and the adsorption–desorption process is a rate-limiting 
step controlling the rate of lipolysis (Maldonado-Valderrama et al., 
2014). 

Fig. 5E-D shows the outputs from OCTOAES eBperiments and in-vitro 
digestion of emulsions. The increasing concentration of NaTC speeds up 
the rate of desorption as can be observed in Fig. 5E. The rate of 
desorption of different BS ratios correlates with FFA release obtained in 
the lipolysis of emulsions (Fig. 5F). NaTC shows the highest ability to 
desorb from the interface, as reflected in the higher interfacial tension 
reached after subphase eBchange with SIF and in agreement with its 
higher hydrophilicity. Moreover, the higher desorption rate correlates 
with faster removal of lipolysis products from the interface, therefore 
enhancing lipolysis. Fig. 5G shows the Knal interfacial tension of the 
desorption proKle (Step C, Fig. 2C) from interfacial Klms formed by 
sequential adsorption in Figs. 4D and E. These are composed of protein 
+ BS or protein + BS + lipase and obtained after (StepC, Fig. 2C). In the 
absence of Lipase, the interfacial tension after desorption reaches a close 
value to that of the bare oil–water interface (Fig. 5G). This means that BS 
had displaced protein upon sequential adsorption and they practically 
fully desorb from the interface as a response to the concentration 
gradient imposed as the subphase is depleted. Conversely, the interfacial 
tension reached after desorption in the presence of Lipase (Fig. 5G), just 
increases slightly with respect to that shown before the eBchange in 
Fig. 4E. This suggests that BS desorbs but lipolytic compounds remain 
anchored at the interface. 

Moreover, increasing the concentration of NaTC increases the 
interfacial tension of the interfacial Klm after desorption in the presence 
and absence of lipase (Fig. 5G). This agrees with the hydrophilic char-
acter of NaTC compared to NaDC which promotes desorption. 

The lipolysis rate, presented in Fig. 5D, follows the results of FFA 
release from Fig. 4C. Again, the increasing concentration of primary 
conjugated NaTC enhances the rate of lipolysis in emulsions. 

3.6. Removal of lipolysis products 

3.6.1. Micellization properties 
As shown by Maestre et al. (Maestre et al., 2014) BS planar polarity 

plays a crucial role in the self-assembly of BS into small aggregates and 
influences their structure. The limitation in the number of hydrophobic 
interactions in one BS molecule results in formation of the smaller mi-
celles than spherical micelles of classical amphiphilic surfactants 
(Euston, 2017). Carey and Small (Carey, 1972) hypothesized that in the 
liquid phase, BS forms primary micelles by hydrophobic interactions, 
subsequently self-associate into secondary micelles held by hydrogen 
bonding between hydroByl groups. Gawamura et al. (Gawamura, D., 
Murata, Y., Yamaguchi, T., Igimi, D., Tanaka, M., Sugihara, G., & Gra-
tohvil, 1989) suggested a disk-like structure consisting of hydrophobic 
sides of BS directed toward the center of the micelle with hydrophilic 
sides oriented on the outer surface. Oakenfull and Fisher (Oakenfull, D. 
G., & Fisher, 1997) proposed the formation of the layers of dimers, 
formed by BS, held by hydrophobic interactions between them. Towards 

the outside of the micelle, the hydrophobic end was directed, while Na+

ions occupied the central cavity of the micelle. 
CMC presented in Fig. 6A correlated with the results of other authors 

(Maestre et al., 2014H Mukherjee et al., 2016), i.e. increasing the con-
centration of primary conjugated NaTC increases the CMC, in both water 
and salt environments, which due to the change in hydrophilicity of the 
BS systems. Secondary unconjugated NaDC BS have been shown to 
create small aggregates within the lower concentration than primary 
conjugated NaTC. CMC in SIF has shown to be signiKcantly lower than in 
water, due to the usual shielding of the charges on the BS. 

3.6.2. MSR 
Molar solubilization ratio (MSR) is the ability of the surfactant to 

incorporate compounds into their miBed micelle. In terms of our 
research, MSR is important in determining the efKciency of the indi-
vidual BS to remove speciKc lipolysis products from the interface. Re-
sults from a meta-analysis performed by Łozińska et al. (Łozińska & 
Jungnickel, 2021) have revealed that conjugated BS possessed a greater 
ability to incorporate products into their aggregates. Moreover, the 
logGoW and molecular volume are crucial in influencing the potential of 
the individual compound to solubilize inside BS micelles. Interestingly, 
reduction of the MSR of cholesterol in BS has been shown to be a cause of 
cholelithiasis(Grupa et al., 2021). Reduced BS concentration promoted 
development of the gallstone disease, due to reduced cholesterol solu-
bility. Wiedmann et al. (Wiedmann & Gamel, 2002) stated that BS with 
more hydroByl groups have a higher cholesterol solubilization potential. 
More hydrophilic conjugated BS have shown higher solubilization 
properties towards all tested compounds as shown in Fig. 6B, which 
suggests that reduced levels of NaTC may result in lower cholesterol 
solubility and may potentially increase the risk of gallstone formation. 
Arevious eBperiments have shown that the MSR for cholesterol of con-
jugated BS lies between 0.2C and 0.46 (Neiderhiser & Roth, 1968), 
which is in agreement with our results. Linoleic acid (as our represen-
tative FFA) does not show a signiKcant change in MSR with the degree of 
conjugation. We can therefore conclude that conjugation of the BS has a 
limited influence on the ability of the BS to remove the lipolysis products 
from the interface. 

3.7. Lipolysis-modeling and the importance of conjugation of BS 

Bile composition was the most influential parameter in the lipolysis 
process, as shown in Fig. 6C. Sensitivity analysis has shown that 
increasing the diversity of BS increases the FFA release. SpeciKc types of 
BS reveal different properties that may diversely influence the individ-
ual steps of lipolysis. Diversity of BS affect lipolysis efKciency due to 
differences in the physiochemical properties of the BS ( Dofmann & 
Roda, 1984). Additionally, components of BS such as phospholipids and 
cholesterol, may impact lipolysis. It was previously shown that the 
molar ratio of phospholipid to BS influences the size and structure of 
micelles (Mazer, N. A., Benedek, G. B., & Carey, 1980), and 
phospholipids-BS aggregates prevent inhibition of digestion by removal 
of accumulated lipolysis products from the interface (Macierzanka et al., 
2019). 

The second most influential factor, as shown in Fig. 6C is Ca2+

concentration, which positively correlates with lipolysis, as it helps to 
precipitate the FFA, as shown by Zangenberg et al. (Zangenberg, MRl-
lertz, Gjelstrup Gristensen, & Dovgaard, 2001). Aarticle size is one of the 
three most influential factors. The sensitivity analysis has revealed that 
decreasing the particle size increases lipolysis efKciency. The smaller the 
particle size, the larger the surface area of the lipid droplet available for 
BS and lipase to adsorb. protein weight average (AWA) has shown a 
positive contribution towards FFA release. A greater concentration of 
protein increases emulsion stability and provides a smaller particle size, 
which may be easier and faster digested (Grundy, Wilde, Butterworth, 
Gray, & Ellis, 2015). 

Increasing oil concentration decreases the efKciency of FFA release. 
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Digh oil concentration promotes the formation of bigger particle sizes 
and leads to re-solubilization of the substrate. Sensitivity analysis has 
also revealed that increasing the molecular weight of oil decreases 
lipolysis efKciency (Ji, Shin, Dong, & Lee, 2019). The C/E and A/S ratios 
(as molecular descriptors) were insigniKcant in the meta-analysis. Even 
though this might be surprising initially, the C/E and A/S influence 
other (phenomenological) parameters such as emulsiKcation, and BS 
adsorption/desorption, as the C/E and A/S are not orthogonal param-
eters, and are part of the composition variable. 

Dowever, the type and form of BS may indirectly affect the lipolysis 
process by modulating its parameters. A higher C/E ratio would 
enhance the adsorption process (Fig. 4E), which may facilitate adsorp-
tion of co-lipase. Therefore, it may enhance the potential to reduce the 
droplet size, due to a greater emulsiKcation ability of the conjugated BS 
(as shown in Fig. 5A). Moreover, the predominant concentration of 
primary conjugated over secondary unconjugated (A/S) BS may promote 
faster removal of the lipolysis process by their higher desorption ability. 
Conjugated BS possessed the ability to create aggregates under lower 
concentrations than unconjugated BS (Fig. 6A). Therefore, the prevalent 
ratio of C/E BS may result in higher FFA release (as shown in Fig. SC). 

As stated in the aim, we aimed to determine the dominant process 
that can be affected by the degree of conjugation, as shown in Fig. 1C 
and D. Our analysis, as presented in Fig. 6E showed that the emulsiK-
cation, (initial droplet size, interfacial tension of sunflower oil droplet) 
process of BS was the most signiKcant. The emulsiKcation, as shown in 
Fig. 1C is the second process taking place during lipolysis. This appears 
logical, as the size of the emulsion is a phenomenological parameter 
governing and affecting all other processes such as adsorption/desorp-
tion, and thereby the lipolysis process. The second most important was 
shown to be the BS-adsorption process, as this process will further in-
fluence the other process downstream. The CMC, as the Krst non-process 
parameter, was shown as the third most important, highlighting the 
importance of micelle formation of the BS in the removal of lipolysis 
products. 

3.8. Limitations of the research 

We decided to eBamine the influence of conjugated and unconju-
gated BS in pure systems rather than in compleB miBtures for several 
reasons. CompleB miBtures contain components, such as cholesterol, 

Fig. 6. A. Critical micelle concentration (CMC) of sodium deoBycholate (NaDC), sodium taurocholate (NaTC), and their ratios at C10.15 G in water and SIF. CMC of 
0.00 NaTC/NaDC and 1.00 NaTC/NaDC in water was previously published by Łozińska et al. (Łozińska and Jungnickel, 2021). B. Molar solubilization ratio (MSR) for 
two different types of BSJ NaTC and NaDC for different compoundsJ toluene, linoleic acid, and cholesterol. MSR of toluene was calculated to be 0.45 for sodium 
cholate (Golehmainen, 1985). C. Sensitivity analysis has shown that the most important variables areJ BS miB composition, Calcium ions, and particle size.D. The 
sensitivity analysis shows the magnitude of the impact of each variable. BS miB components and calcium concentration have been shown to have a positive impact on 
the lipid digestion process. Increasing particle size has shown to have a negative contribution towards free fatty acids (FFA) release E. BS conjugation has shown to 
mostly affect the emulsiKcation step during the lipolysis process. Conjugated forms of BS reduce droplet size to a higher eBtent than their unconjugated forms 
therefore enhancing the lipolysis process. BS adsorption rate and CMC have shown around 60 % of importance. Arimary/Secondary (A/S), protein weighted average 
(A.W.A), Molecular weight (MW), concentration (conc). 
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phospholipids, or bilirubin which may mask the action of BS. Moreover, 
as shown by our analysis (Table S2) porcine and bovine bile eBtracts 
differ in the composition of BS and other components, either among or 
between themselves. Therefore, compleB systems would present too 
many compounding factors and variations of component concentrations 
which may directly or indirectly influence the lipolysis process, and 
direct elucidation of the effect of conjugation would be hindered. 
Accordingly, we decided to present pure BS systems, to aid the under-
standing of the impact of conjugation on the lipolysis process. 

4. Conclusions 

Dere we have demonstrated the influence of two BS with different 
conjugation types on the lipolysis of emulsions. The impact on lipolysis 
is modulated by Kve factors which are in turn influenced by the nature of 
BSH adsorption of BS, emulsiKcation of the lipid droplets, co-adsorption 
of lipase, desorption of BS, and Knally removal of lipolysis products. We 
have found that emulsion droplet size is the dominant factor deter-
mining lipolysis. The effect of conjugation was more evident at smaller 
droplet sizes. Additionally, a higher adsorption rate was observed for BS 
systems with a higher level of conjugation while increasing the quantity 
of unconjugated BS showed improved emulsiKcation of the lipid drop-
lets. The higher hydrophilic character of primary conjugated BS pro-
motes faster desorption from the oil–water interface, resulting in faster 
and improved removal of lipolysis products. 

Meta-analysis of in-vitro lipolysis results revealed the importance of 
several factors in lipolysis. The presence of unconjugated BS in a BS 
miBture was shown to be the most signiKcant factor in reducing the FFA 
released from oil-in-water emulsion. NaDC has been shown to have a 
lower rate of adsorption and desorption than NaTC. Dowever, it was 
shown to more efKciently reduce the size of the oil droplet than NaTC, 
therefore promoting the emulsiKcation process, but only at the begin-
ning of the process. Later on NaDC promotes coalescence which reduces 
the efKciency of emulsiKcation. 

We have shown that deconjugation has a positive influence on the 
rate of lipolysis. This effect is due to the change in particle size caused by 
the BS during lipolysis, as we have shown by analyzing the effect of 
conjugation on each of the Kve processes mentioned above. The 
adsorption rates of BS and CMC have shown almost equal importance. 

The deconjugation process of BS plays a crucial role in our body 
ensuring the function of our organism. Its disruption, even to a small 
eBtent, may impact our organisms. A change in the C/E ratio of BS may 
influence the absorption of essential nutrients, dysregulate our hor-
monal receptors, affect BS synthesis, and in consequence promote the 
development of disease. For the Krst time we have shown how two 
different BS forms affect lipolysis by modulating Kve different processes, 
and we have shown the importance of each of the processes. 

Future analysis comparing in-vitro with in-vivo data would be crucial 
in understanding the importance of the BS in our small intestine. 
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1. Emulsion preparation 

 

Table S3 The conditions for emulsion preparation, where H states of homogenized, working time 2 minutes and 
V for vortex, working time 3 minutes. PDI of emulsions varies from 0.18-0.98. PDI ʹ polydispersity index, SD ʹ 
standard deviation. 

 
  

Emulsions H/V Pulse on/off [s] Amplitude [%] Time [min] Average of particle 
size [nm] ± SD 

PDI 

S1 H - - - 200 ± 3 0.18 ± 0.93 
S2 H 50/30 50 2.5 450 ± 38 0.60 ± 0.66 
S3 H 2/3 70 5 740 ± 35 0.84 ± 0.18 
S4 H 2/3 50 10 1300 ± 300 0.70 ± 0.29 
S5 V 10/30 80 2 1500 ± 140 0.98 ± 0.02 
S6 V 2/5 80 1 2100 ± 180 0.74 ± 0.11 
S7 V 2/5 80 1 3800 ± 300 0.91 ± 0.2 
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2. Standard and normalized time for IFT measurements at The OCTOPUS.   

 
Figure S1 Exemplary graphs for in-vitro lipolysis results from OCTOPUS equipment A. The results for primary 
conjugated sodium taurocholate (NaTC) for standard time and normalized time. B. The black arrow indicates the 
distance between standard time and normalized time for NaTC of simulated intestinal fluid (SIF) I results. The 
starting point when the exchange of the protein layer with SIF I began was 3745.1 s and  7776.16 s when SIF II 
was exchanged. C. The results for PC NaTC for standard IT and equilibrated IT.  D. The black arrow indicates the 
distance between standard IT and equilibrated IT for NaTC of SIF I results. The starting point for SIF I exchange 
was 15mN/m. Sodium deoxycholate (NaDC). Interfacial tension (IFT) 

 
The time and IFT of all the experiments have been normalized, to allow the calculation of comparable adsorption 
and desorption rates.  
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3. Interfacial Tension (IFT) measurements with OCTOPUS: sequential adsorption of WIP and BS (+lipase) 
and desorption cycles at the sunflower oil-water interface. 

 

 
Figure S2 Interfacial tension (IFT) measurements of in-vitro digestion process performed on OCTOPUS device for 
different ratios of sodium deoxycholate (NaDC) and sodium taurocholate (NaTC) for A. bile salts (BS) + lipase B. 
BS and C. BS+lipase+orlistat measurements. Time (t) 

 
IFT measurements presented on Fig. S1 A-B consist of three phases. Step 1: protein adsorption, Step 2: lipolysis,  
subphase exchange with BS or BS+lipase (rapid decrease of IFT) and Step 3: desorption, subphase exchange by 
SIF (rapid increase of IFT). All measurements were done in duplicate.  
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4. Principal component analysis (PCA) results 

 
Figure S4 PCA analysis was used to reduce the number of descriptors. 

 
Figure S3 FFA release in respect to PDI of emulsion S1-S7 for two different BS: NaDC and NaTC. Increasing PDI was 
shown to reduce FFA release for both NaDC and NaTC.  PCA ʹ principal component analysis, BS ʹ bile salt, C/U ʹ 
conjugated/unconjugated, Ca ʹ calcium, FFA ʹ free fatty acids, MW ʹ molecular weight, act ʹ activity, t0 ʹ time 
0 [min] 
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5. In-vitro lipolysis of emulsions: Free fatty Acis (FFA) release  

 

 
Figure S3 Free fatty acids (FFA) release from whey protein (WP)I-stabilized emulsions (S1-S7) at 10mM under 
physiological conditions at 310.15 K.  for A. sodium deoxycholate (NaDC) and B. sodium taurocholate (NaTC). All 
measurements were done in duplicate 

FFA release from 7 emulsions with different particle sizes for NaDC and NaTC. NaTC experiments have shown to 
have higher FFA release than NaDC for the same emulsion. For emulsion S7, with the greatest particle size 
(3800nm) the difference between the FFA release of NaTC,12.93% r 02, and NaDC, 12.34% r 0.27, was not 
significant.  Decreasing the particle size of emulsions increased the difference of FFA release for NaDC and NaTC. 
FFA release from the smallest emulsion S1 (200nm), for NaTC was 60.04% r 0.93 and for NaDC was 48.82% r 
0.98, which indicates the importance of particle size of emulsion and type of BS during the lipolysis process 
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Table S1 Data of meta-analysis for literature data and experimental results. Please note that the original table, with the 
complete data is available with the paper at https://www.sciencedirect.com/science/article/abs/pii/S0963996924003259 
Exp ʹ experimental work, D1 ʹ D(2,1), D2 ʹ(D(3,2), D3 ʹ (D4,3), D4- (D(1,0), P0 ʹ particle size [um] at time 0 [min], P ʹ protein 
[%], O ʹ oil [%], FFA ʹ free fatty acids [%], Ca ʹ calcium [mM], P.W.A.O- protein weight average of oil [%], MW O ʹ molecular 
weight of oil [kDa], E.A ʹ enzyme activity [U/ml], Pan ʹ pancreatin, M BS ʹ Mixture of BS, BS ʹ bile salts [mM].  

P/S C/U BS  MBS Pan E.A MW
O O P P.W.

A.O  D1 D2 D3 D4 P0 Ca FFA  Ref 

4 2 10 1 0 120 867 36 4 86 1 0 0 0 1 5 44 [1] 

4 2 10 1 0 120 867 36 4 86 1 0 0 0 1 5 50 [1] 

1 10 10 0 1 96 867 2 1 45 0 1 0 0 2 10 13 [2] 

1 10 10 0 1 96 867 2 1 45 0 1 0 0 2 10 12 [2] 

1 10 10 0 1 96 867 2 1 45 0 1 0 0 2 10 12 [2] 

1 10 10 0 1 96 867 2 1 45 0 1 0 0 2 10 11 [2] 

1 10 10 0 1 96 867 2 1 45 0 1 0 0 2 10 10 [2] 

1 3 10 1 1 600 215 1 0 0 0 1 0 0 0 3 7 [3] 

1 3 10 1 1 600 320 1 0 0 0 1 0 0 0 3 15 [3] 

10 10 10 0 1 27 867 8 0 30 0 0 0 1 4 10 5 [4] 

10 10 50 0 1 27 867 8 0 30 0 0 0 1 4 10 20 [4] 

0 10 10 0 1 27 867 8 0 30 0 0 0 1 4 10 6 [4] 

0 10 50 0 1 27 867 8 0 30 0 0 0 1 4 10 15 [4] 

0 0 10 0 1 2000 867 3 0 45 1 0 0 0 2 0 14 [5] 

10 10 10 0 1 2000 867 3 0 45 1 0 0 0 2 0 16 [5] 

1 3 11 1 1 100 867 4 0 0 1 0 0 0 0 1 54 [6] 

1 3 11 1 1 100 867 4 0 0 1 0 0 0 0 1 45 [6] 

1 3 11 1 1 100 867 4 0 0 1 0 0 0 0 1 43 [6] 

1 3 11 1 1 100 867 4 0 0 1 0 0 0 0 1 33 [6] 

1 3 20 1 1 113 241 1 1 45 1 0 0 0 0 10 94 [7] 

1 3 20 1 1 113 241 1 1 256 1 0 0 0 0 10 86 [7] 

1 3 20 1 1 113 241 1 1 69 1 0 0 0 0 10 86 [7] 

1 3 0 1 1 6 215 4 1 69 0 1 0 0 0 0 8 [8] 

1 3 1 1 1 6 215 4 1 69 0 1 0 0 0 0 14 [8] 

1 3 3 1 1 6 215 4 1 69 0 1 0 0 0 0 23 [8] 

1 3 5 1 1 6 215 4 1 69 0 1 0 0 0 0 28 [8] 

1 3 13 1 1 6 215 4 1 69 0 1 0 0 0 0 42 [8] 

1 0 12 0 0 480 492 11 0 11 0 0 1 0 19 0 23 [9] 

1 0 12 0 0 480 492 11 0 33 0 0 1 0 20 0 22 [9] 

1 0 12 0 0 480 492 11 0 5 0 0 1 0 15 0 24 [9] 

1 0 12 0 0 480 492 11 0 30 0 0 1 0 27 0 17 [9] 

1 0 12 0 0 480 492 11 0 24 0 0 1 0 18 0 20 [9] 

1 0 12 0 0 480 492 11 0 17 0 0 1 0 18 0 19 [9] 

1 0 12 0 0 480 492 11 0 11 0 0 1 0 14 0 25 [9] 

1 0 12 0 0 480 492 11 0 11 0 0 1 0 16 0 21 [9] 

1 0 12 0 0 480 492 11 0 12 0 0 1 0 20 0 24 [9] 

1 0 12 0 0 480 492 11 0 1 0 0 1 0 24 0 17 [9] 

1 0 12 0 0 480 492 11 0 31 0 0 1 0 76 0 18 [9] 

1 0 12 0 0 480 492 11 0 6 0 0 1 0 15 0 17 [9] 

1 0 12 0 0 480 492 11 0 29 0 0 1 0 21 0 17 [9] 
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1 0 12 0 0 480 492 11 0 23 0 0 1 0 26 0 15 [9] 

1 0 12 0 0 480 492 11 0 15 0 0 1 0 27 0 15 [9] 

1 0 12 0 0 480 492 11 0 10 0 0 1 0 17 0 13 [9] 

1 0 12 0 0 480 492 11 0 10 0 0 1 0 21 0 15 [9] 

1 0 12 0 0 480 492 11 0 10 0 0 1 0 17 0 18 [9] 

4 2 12 1 0 13500 867 3 1 256 0 0 1 0 1 7 68 [10] 

4 2 12 1 0 13500 867 3 1 86 0 0 1 0 1 7 49 [10] 

4 2 12 1 0 13500 867 3 1 171 0 0 1 0 1 7 52 [10] 

4 2 12 1 0 13500 867 3 1 256 0 0 1 0 0 7 81 [10] 

4 2 12 1 0 13500 867 3 1 86 0 0 1 0 1 7 60 [10] 

4 2 12 1 0 13500 867 3 3 171 0 0 1 0 1 7 61 [10] 

4 2 12 1 0 13500 867 3 1 256 0 0 1 0 1 7 68 [10] 

4 2 12 1 0 13500 867 3 1 86 0 0 1 0 1 7 50 [10] 

4 2 12 1 0 13500 867 3 1 171 0 0 1 0 1 7 53 [10] 

4 2 12 1 0 13500 867 3 1 256 0 0 1 0 1 7 81 [10] 

4 2 12 1 0 13500 867 3 1 86 0 0 1 0 1 7 56 [10] 

4 2 12 1 0 13500 867 3 3 171 0 0 1 0 1 7 53 [10] 

1 3 5 1 1 590 282 1 0 78 0 0 1 0 1 1 50 [11] 

1 3 5 1 1 590 353 1 0 78 0 0 1 0 1 1 50 [11] 

1 3 5 1 1 590 423 1 0 78 0 0 1 0 1 1 52 [11] 

1 3 5 1 1 590 634 1 0 78 0 0 1 0 1 1 52 [11] 

1 3 5 1 1 590 985 1 0 78 0 0 1 0 1 1 56 [11] 

1 3 5 1 1 590 280 1 0 78 0 0 1 0 0 1 50 [11] 

1 3 5 1 1 590 351 1 0 78 0 0 1 0 0 1 52 [11] 

1 3 5 1 1 590 421 1 0 78 0 0 1 0 0 1 49 [11] 

1 3 5 1 1 590 633 1 0 78 0 0 1 0 1 1 51 [11] 

1 3 5 1 1 590 985 1 0 78 0 0 1 0 1 1 56 [11] 

1 3 5 1 1 590 278 1 0 78 0 0 1 0 2 1 34 [11] 

1 3 5 1 1 590 349 1 0 78 0 0 1 0 2 1 38 [11] 

1 3 5 1 1 590 420 1 0 78 0 0 1 0 1 1 48 [11] 

1 3 5 1 1 590 632 1 0 78 0 0 1 0 1 1 50 [11] 

1 3 5 1 1 590 985 1 0 78 0 0 1 0 1 1 56 [11] 

1 3 12 1 1 1791 203 7 1 45 1 0 0 0 0 6 90 [12] 

1 3 12 1 1 3840 203 7 1 45 1 0 0 0 0 6 73 [12] 

1 3 12 1 1 2901 203 7 1 45 1 0 0 0 0 6 81 [12] 

1 3 12 1 1 2678 203 7 1 45 1 0 0 0 0 6 58 [12] 

4 2 17 1 1 99 215 3 0 45 1 0 0 0 0 0 84 [13] 

4 2 17 1 1 99 215 3 0 45 1 0 0 0 1 0 82 [13] 

4 2 17 1 1 99 215 3 0 45 1 0 0 0 1 0 82 [13] 

1 3 10 1 1 100 320 2 3 67 0 0 1 0 1 0 58 [14] 

1 3 10 1 1 100 320 2 4 251 0 0 1 0 1 0 59 [14] 

1 3 10 1 1 100 320 2 5 280 0 0 1 0 1 0 77 [14] 

1 3 10 1 1 100 320 2 5 313 0 0 1 0 0 0 93 [14] 

1 3 10 1 1 100 320 2 6 348 0 0 1 0 0 0 76 [14] 

1 3 3 1 1 2000 215 17 3 45 0 0 1 0 1 0 57 [15] 

1 3 3 1 1 2000 215 17 3 45 0 0 1 0 1 0 67 [15] 
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4 2 9 1 1 19 339 2 0 256 1 0 0 0 0 0 51 [16] 

4 2 9 1 1 19 339 2 1 254 1 0 0 0 0 0 34 [16] 

4 2 9 1 1 19 339 2 1 253 1 0 0 0 0 0 22 [16] 

4 2 9 1 1 19 339 2 1 253 1 0 0 0 0 0 20 [16] 

4 2 9 1 1 19 339 2 1 252 1 0 0 0 0 0 9 [16] 

1 3 8 1 1 2174 215 2 0 45 0 1 0 0 0 0 65 [17] 

1 3 8 1 1 575 215 2 0 256 0 1 0 0 0 0 68 [17] 

1 3 8 1 1 2120 215 2 0 45 0 1 0 0 0 0 49 [17] 

1 3 8 1 1 2278 215 2 0 256 0 1 0 0 0 0 56 [17] 

1 3 8 1 1 2856 215 2 0 45 0 1 0 0 0 0 78 [17] 

1 3 8 1 1 3370 215 2 0 256 0 1 0 0 0 0 92 [17] 

1 3 8 1 1 2389 215 2 0 45 0 1 0 0 0 0 69 [17] 

1 3 8 1 1 1769 215 2 0 256 0 1 0 0 0 0 88 [17] 

1 3 26 1 1 762 249 3 0 0 0 0 1 0 1 0 15 [18] 

1 3 26 1 1 762 249 3 0 0 0 0 1 0 1 0 23 [18] 

1 3 26 1 1 762 249 3 0 60 0 0 1 0 2 0 21 [18] 

1 3 26 1 1 762 249 3 0 69 0 0 1 0 1 0 26 [18] 

1 3 26 1 1 762 249 3 0 70 0 0 1 0 2 0 21 [18] 

1 3 26 1 1 762 249 3 0 410 0 0 1 0 1 0 43 [18] 

1 3 10 1 1 800 867 3 0 45 0 0 1 0 2 0 47 [19] 

1 3 10 1 1 800 867 3 0 45 0 0 1 0 1 0 46 [19] 

1 3 10 1 1 800 867 3 0 23 0 0 1 0 1 0 43 [19] 

1 3 10 1 1 800 867 3 0 23 0 0 1 0 2 0 35 [19] 

1 3 10 1 1 800 867 3 0 1 0 0 1 0 1 0 30 [19] 

1 3 10 1 1 800 867 3 0 1 0 0 1 0 2 0 29 [19] 

1 3 10 1 1 800 492 3 0 45 0 0 1 0 1 0 81 [19] 

1 3 10 1 1 800 492 3 0 45 0 0 1 0 1 0 80 [19] 

1 3 10 1 1 800 492 3 0 28 0 0 1 0 1 0 78 [19] 

1 3 10 1 1 800 492 3 0 23 0 0 1 0 1 0 81 [19] 

1 3 10 1 1 800 492 3 0 1 0 0 1 0 1 0 78 [19] 

1 3 10 1 1 800 492 3 0 1 0 0 1 0 1 0 72 [19] 

1 3 4 1 1 1046 339 0 0 347 0 0 1 0 11
0 1 60 [20] 

1 3 4 1 1 2112 339 0 0 347 0 0 1 0 11
0 1 50 [20] 

1 3 4 1 1 846 339 0 0 347 0 0 1 0 10
5 1 56 [20] 

1 3 4 1 1 481 339 0 0 347 0 0 1 0 10
1 1 52 [20] 

1 3 4 1 1 1984 339 0 0 349 0 0 1 0 50 1 70 [20] 

1 3 4 1 1 1728 339 0 0 349 0 0 1 0 30 1 59 [20] 

1 3 4 1 1 2170 339 0 0 349 0 0 1 0 30 1 64 [20] 

1 3 4 1 1 1700 339 0 0 349 0 0 1 0 45 1 56 [20] 

1 3 4 1 1 2447 339 0 0 444 0 0 1 0 65 1 77 [20] 

1 3 4 1 1 1012 339 0 0 444 0 0 1 0 80 1 57 [20] 

1 3 4 1 1 1791 339 0 0 444 0 0 1 0 65 1 65 [20] 

1 3 4 1 1 3023 339 0 0 444 0 0 1 0 50 1 56 [20] 

1 3 4 1 1 1521 339 0 0 0 0 0 1 0 9 1 90 [20] 

1 3 4 1 1 1441 339 0 0 103 0 0 1 0 10 1 73 [20] 
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1 3 4 1 1 1482 339 0 0 219 0 0 1 0 10 1 65 [20] 

1 3 4 1 1 1835 339 0 0 618 0 0 1 0 10 1 50 [20] 

4 2 4 1 1 867 282 3 1 50 0 0 1 0 9 0 42 [21] 

4 2 4 1 1 867 339 5 0 69 0 0 1 0 9 0 30 [21] 

4 2 4 1 1 867 282 5 0 69 0 0 1 0 9 0 21 [21] 

4 2 4 1 1 867 339 3 1 50 0 0 1 0 9 0 45 [21] 

1 3 5 1 0 133 241 0 0 58 0 1 0 0 37 5 73 [22] 

1 3 5 1 0 133 241 0 0 39 0 1 0 0 4 5 59 [22] 

1 3 5 1 0 133 241 0 0 46 0 1 0 0 7 5 59 [22] 

1 3 5 1 0 133 241 0 0 19 0 1 0 0 2 5 98 [22] 

1 3 20 1 0 600 241 0 0 58 0 1 0 0 37 10 73 [22] 

1 3 20 1 0 600 241 0 0 39 0 1 0 0 4 10 95 [22] 

1 3 20 1 0 600 241 0 0 46 0 1 0 0 7 10 83 [22] 

1 3 20 1 0 600 241 0 0 19 0 1 0 0 2 10 85 [22] 

1 3 20 1 0 600 241 0 0 58 0 1 0 0 37 20 85 [22] 

1 3 20 1 0 600 241 0 0 39 0 1 0 0 4 20 79 [22] 

1 3 20 1 0 600 241 0 0 46 0 1 0 0 7 20 35 [22] 

1 3 20 1 0 600 241 0 0 19 0 1 0 0 2 20 95 [22] 

4 2 4 1 1 44 249 2 0 1 0 0 1 0 5 1 29 [23] 

4 2 4 1 1 44 249 1 1 50 0 0 1 0 4 1 33 [23] 

4 2 4 1 1 44 249 2 0 69 0 0 1 0 6 1 50 [23] 

4 2 4 1 1 44 249 2 0 0 0 0 1 0 22 1 39 [23] 

1 3 24 1 0 1140 867 2 0 154 0 1 0 0 18 10 44 [24] 

1 3 24 1 0 1140 867 2 0 86 0 1 0 0 18 10 38 [24] 

1 3 24 1 0 1140 867 2 0 50 0 1 0 0 3 10 37 [24] 

1 3 24 1 0 1140 867 2 0 1 0 1 0 0 18 10 29 [24] 

1 3 12 1 1 480 241 2 0 50 0 1 0 0 0 0 61 [25] 

1 3 12 1 1 480 241 2 0 18 0 1 0 0 0 0 58 [25] 

1 3 12 1 1 480 241 2 0 18 0 1 0 0 0 0 58 [25] 

1 3 12 1 1 480 807 3 0 40 0 1 0 0 0 0 58 [26] 

1 3 12 1 1 480 807 3 0 40 0 1 0 0 0 0 36 [26] 

0 0 10 0 1 2000 867 3 0 45 1 0 0 0 2 0 15 Exp 

1 1 10 0 1 2000 867 3 0 45 1 0 0 0 2 0 15 Exp 

2 2 10 0 1 2000 867 3 0 45 1 0 0 0 2 0 16 Exp 

0 0 10 0 1 2000 867 1 0 45 1 0 0 0 0 0 48 Exp 

10 10 10 0 1 2000 867 1 0 45 1 0 0 0 0 0 59 Exp 

10 0 10 0 1 2000 867 1 0 45 1 0 0 0 0 0 50 Exp 

0 10 10 0 1 2000 867 1 0 45 1 0 0 0 0 0 54 Exp 

0 0 10 0 1 2000 867 3 0 45 1 0 0 0 4 0 11 Exp 

10 10 10 0 1 2000 867 3 0 45 1 0 0 0 4 0 12 Exp 

0 0 10 0 1 2000 867 3 0 45 1 0 0 0 1 0 17 Exp 

0 0 10 0 1 2000 867 3 0 45 1 0 0 0 0 0 52 Exp 

0 0 10 0 1 2000 867 1 0 45 1 0 0 0 1 0 41 Exp 

10 10 10 0 1 2000 867 1 0 45 1 0 0 0 1 0 44 Exp 

0 0 10 0 1 2000 867 3 0 45 1 0 0 0 1 0 20 Exp 
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Table S2 Composition of porcine and bovine extracts. P ʹ phospholipids, Ch ʹ cholesterol, C -cholate, G ʹ glycocholate, T ʹ 
taurocholate, CD ʹ chenodeoxycholate, TCD ʹ taurochenodeoxycholate, GCD ʹ glycochenodeoxycholate, C ʹ deoxycholate, 
GD ʹ glycodeoxycholate, TD ʹ taurodeoxycholate, GL ʹ glycolitocholate, TL ʹ taurolitocholate, H ʹ hyocholate GH ʹ 
glycohyocholate, TH - taurohyocholate, HD ʹ hyodeoxycholate, GHD ʹ glycohyoxcholate, THD ʹ taurohyodeoxycholate, UD ʹ 
ursodeoxycholate, GUD ʹ glycoursodeoxycholate. 

Porcine bile extract [%] 

C G  T  CD TC
D 

GC
D D  GD  TD GL TL H GH TH  HD GH

D THD  UD GU
D P Ref 

0 0 0 49 44 46      14 15 20 36 39 36    [1] 

 30 40     15 7      5      [2] 
   1 13 20    0 1 1 3 2 0 35 24    [3] 
      4 13 6            [4] 
   8 17          6 21 8    [5] 

5      18 39 24      13     2 [6] 
 1   3 31       13   48 4    [7] 

1 13 6    4        3      [8] 
     35            16   [9] 

Bovine bile extract [%] 

C  G  T  CD TC
D  

GC
D D  GD  TD GL  TL  H  GH  TH  HD  GH

D THD  UD  GU
D  P Ref 

 42 38  4 3  6 8            [4] 

                    [10] 

8 15 35    5 8 5            [11] 

0 25 43 1 2 3 1 8 9 0 0     0 0  0  [12] 

1 36 41 0 2 2 0 8 9            [13] 

60 15 35     8 8            [14] 

3 14 20     2 5            [8] 

  18 15 0 10 2 9                           [9] 
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4. Additional results 
Additional results concerning the action of two other BS were also examined: sodium glycochenodeoxycholate 
(NaGCDC) and sodium glycodeoxycholate (NaGDC). NaGCDC is the PC BS formed in an alternative pathway, as 
shown in Figure 3, and NaGDC is the secondary conjugated BS formed after the deconjugation process. Our 
research aimed to determine the impact of the deconjugation process on lipolysis efficiency, therefore only two 
BS (NaTC and NaDC) have been chosen as representatives, as their concentration in the small intestine exceeds 
other BS.  
However, NaGCDC differs from NaTC by an additional hydroxyl group, which due to our presented research, may 
be of great importance in affecting lipolysis efficiency. Moreover, examination of the effect of NaGCDC expands 
our research of information about the effect of the action of secondary conjugated BS on the lipolysis process.  
The aim of performing these additional results was to check if their action has a significant impact in comparison 
to previously chosen BS: NaTC and NaDC in two main experiments: in-vitro lipolysis of emulsion and in-vitro 
digestion. 
 

4.1. Methodology 
4.1.1. Dilatational rheology 

The dilatational rheology on the interfacial layer is measured at the end of each phase by subjecting the droplet 
to 10 cycles of periodic deformation by injection/extraction volume at 0.1 Hz of measurement frequency (v). 
The dilatational modulus is calculated from the response of the interfacial tension to the deformation by the 
following equation: 𝐸 ൌ 𝐸ᇱ + 𝑖𝐸" ൌ 𝜖 + 𝑖𝑣𝜂       (1) 
E഻ iƐ ƚhe ƐƚŽƌage ŵŽdƵůƵƐ͕ ǁhich accŽƵŶƚƐ fŽƌ ƚhe eůaƐƚiciƚǇ Žf ƚhe iŶƚeƌfaciaů ůaǇeƌ ;ɸͿ͕ E഻഻ iƐ ƚhe ůŽƐƐ ŵŽdƵůƵƐ͕ 
ǁhich accŽƵŶƚƐ fŽƌ ƚhe ǀiƐcŽƐiƚǇ ;ɻͿ Žf ƚhe iŶƚeƌfaciaů ůaǇeƌ͕ aŶd ʆ iƐ ƚhe aŶgƵůaƌ fƌeƋƵeŶcǇ Žf ƚhe aƉƉůied 
oscillation. The amplitude of the applied oscillation was set up to < 5% to avoid excessive perturbation of the 
adsorbed interfacial layer (del Castillo-Santaella et al. 2015). At this oscillation frequency, the interfacial layer 
diƐƉůaǇƐ a ŵŽƐƚůǇ eůaƐƚic ƌeƐƉŽŶƐe ŽbƚaiŶiŶg E͛ххE͛͛ iŶ aůů caƐeƐ͘ HeŶce͕ ŽŶůǇ ƚhe ǀaůƵeƐ Žf ƚhe cŽŵƉůeǆ ŵŽdƵůƵƐ 
will be reported here and discussed as dilatational elasticity.  
 

4.1.2. In-vitro lipolysis of emulsion 
A modified INFOGEST in-vitro lipolysis model (Brodkorb et al. 2019) was used to simulate the environmental 
condition of the duodenum. Specifically, 0.8 mL of the SIF and 0.375 mL of the emulsion were added to the 
thermostatted vessel. After mixing with a magnetic stirrer (1500 rpm),0.3 mL of 10mM BS (NaTCorNaDC) and 3 
ʅL of 0.3M CaCl2 were pipetted, and the pH was set to 7.0 using 0.1 M HCl. Finally, with the addition of 1.0 mL 
of freshly prepared pancreatin (75 mg at 80 U/mg), the titration was started.  The reaction vessel was 
continuously stirred and thermostatically controlled to maintain 310.15 K. The extent of the lipolysis was 
measured by continuous titration with an autotitrator (Cerko Lab  N. System CLS/M/07/06, Gdynia, Poland) of 
(FFA) with 0.1 M NaOH. All lipolysis experiments were carried out in duplicate. Experiments were performed 
accŽƌdiŶg ƚŽ ŁŽǌiŷƐŬa eƚ aů͘ ;ŁŽǌiŷƐŬa eƚ aů͘ ϮϬϮϰͿ 
 

4.1.3. In-vitro lipolysis 
In-vitro lipolysis of adsorbed protein layers at the oil-water interface was measured in OCTOPUS by sequential 
adsorption comprising three steps: Step1- protein, Step2- lipolysis: BS, BS + lipase or BS + lipase + inhibitor, and 
Step 3- desorption: replacement of bulk solution by SIF (Maldonado-Vaůdeƌƌaŵa eƚ aů͘ ϮϬϭϰ͖ ŁŽǌiŷƐŬa eƚ aů͘ 
2024). 
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4.2. Results&Discussion 
 

4.2.1. Dilatational modulus 

 
Figure 9 A. Dilatational complex moduli of interfacial layers after an exchange of the adsorbed protein at the interface with 
one of the following solutions: BS, BS+lipase, BS+lipase+orlistat.Average taken from 10 records + SD. B. Dilatational complex 
moduli of interfacial layers after an exchange of the previous solution with simulated intestinal fluid.  BS ʹ bile salts, NaTC ʹ 
sodium taurocholate, NaDC ʹ sodium deoxycholate,  E - dilatational modulus. 

In the presence of lipase, the dilatational modulus increases slightly with the concentration of BS ( as shown in 
Figure 9 A, again supporting the increased presence of lipolytic products at the interface which is enhanced as 
the concentration of BS increases. The dilatational modulus of desorption (Figure 9B) follows the trend from 
adsorption results  
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4.2.2. In-vitro static lipolysis 

 

Figure 10 A. In-vitro static digestion experiments of PC NaGCDC and SC NaGDC. B. T-sample t-test was used to calculate the 
statistical significance of FFA release between Na GCDC and NaGDC. NaGDC has been shown to have statistically higher FFA 
release (FFA=57.07%) than NaGCDC (FFA=51.79%). NaGCDC ʹ sodium glycochenodeoxycholate, NaGDC ʹ sodium 
glycodeoxycholate, NaTC- sodium taurocholate, NaDC ʹ sodium deoxycholate, FFA ʹ free fatty acids 

The results presented in Figure 10 show that SC NaGDC have greater potential to enhance FFA release during 
the lipid digestion process than PC NaGCDC. The greater lipolysis efficiency of NaGDC is a result of its greater 
desorption potential from the oil droplet during the lipolysis process, as shown in Figure 11B. The space left after 
the removal of lipolysis products from the oil interphase ensures the continuous process of lipid digestion by 
adsorption of NaGDC and lipase/co-lipase complex. The FFA release differs significantly for PC NaTC and 
NaGCDC, which means that the conjugation ratio with cholic and chenodeoxycholic has an impact on the lipolysis 
process. Moreover, the results indicated that SC NaGDC has greater potential to enhance FFA release than SU 
NaDC, showing the importance of the conjugation process after the action of BSH. As it was shown in our 
research FFA release from emulsion is connected with interfacial processes.  
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4.2.3. In-vitro lipolysis 

 

Figure 11 A. FT measurements of in-vitro digestion process performed on OCTOPUS device for different BS: SU sodium 
glycodeoxycholate (NaGDC)  and PC sodium glycochenodeoxycholate (NaGCDC). B. Final (average of last 30 points) IFT have 
shown that NaGCDC has greater adsorption potential, which means it can more effectively adsorb to the surface of the oil 
droplet which enhances the adsorption of lipase/co-lipase complex during the lipolysis process. However, NaGDC has shown 
a greater potential to desorb from the soil surface, which can ensure the effective removal of accumulated lipolysis products 
from the oil interphase. C. Young modulus of NaGCDC and NaGDC during adsorption and desorption steps. NaGCDC ʹ sodium 
glycochenodeoxycholate, NaGDC ʹ sodium glycodeoxycholate, ɶ ʹ interfacial tension. E - dilatational modulus. 

The results presented in Figure 11 B show that NaGCDC have a greater ability to adsorb to oil interphase, 
therefore enhancing lipase/co-lipase complex to adsorb to the oil droplet and start the digestion process. 
However, the results also indicate that NaGDC faster desorbs from the oil droplet, which plays an important role 
in ensuring the removal of lipolysis products from the oil interphase, which gives greater space for lipase/co-
lipase complex for further adsorption on the lipid droplet and continue lipolysis process. 
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5. Conclusions 
The results of the PhD dissertation revealed the potential of BS to control the lipolysis process. The 
deconjugation process was shown to be crucial for the efficiency of the lipolysis process. Two predominant forms 
of BS in the small intestine: PC-NaTC and SU-NaDC were chosen for further analysis concerning lipolysis 
efficiency. 
In the first stage of the research the meta-analysis of phenomenological parameters: was performed to indicate 
the importance of the concentration of conjugated BS ;ŁŽǌiŷƐŬa aŶd JƵŶgŶicŬeů ϮϬϮϭͿ. The performed analysis 
of research results aimed to assess the ability to create micelles, responsible for incorporating lipolysis products 
into their structure, removing them from the oil interphase and further transporting them to our organism 
(Pabois et al. 2021). The collected results showed that conjugated forms of BS require lower concentrations and 
fewer molecules than unconjugated BS to form micelles. Moreover, micelles created by PC BS showed a greater 
ability to incorporate components into their structure. Performed experiments of in-vitro digestion of emulsion 
of conjugated and unconjugated systems of BS showed the importance of conjugation. For the first time, it was 
presented that concentration of conjugated BS can modulate lipolysis efficiency. 
In the next stage of the research, the analysis of BS composition concerning specific diseases has been performed 
(Krupa et al. 2021). The development of disease was shown to significantly alter the ratio of conjugated and 
unconjugated BS. Blockage of the common bile duct reduced the flow of the BS from the gallbladder to the small 
intestine which resulted in the alteration of the BS synthesis (Dai et al. 2011). Since the composition of BS 
stimulates BS synthesis, their reduced concentration during re-absorption from the small intestine promotes BS 
synthesis by an increased activation of the Cholesterol 7-ɲ hydroxylase providing to formation of the excessive 
concentration of conjugated BS (Kok et al. 2003). Development of disease was indicated as factors directly 
altering the composition of BS and indirectly modulating the efficiency of the lipolysis digestion process.  
The following stage of the research ;ŁŽǌiŷƐŬa eƚ aů͘ ϮϬϮϰͿfor the first time revealed that the lipolysis process is 
modulated by five processes and their efficiency is controlled by the form of BS. Each of the processes was 
presented as a mathematical function of measurable variables. The rate of lipolysis was shown to be controlled 
by the conjugation form of BS. Meta-analysis of in-vitro lipolysis experiments was performed revealing the 
significance of individual factors in the lipid digestion process. Unconjugated forms of BS, NaDC, have been 
shown to reduce the size of the droplet to a higher extent than conjugated NaTC providing greater efficiency of 
the emulsification process at the beginning of the lipolysis, later on, NaDC contributes to decreasing efficiency 
of emulsification, by promoting coalescence of the droplet. NaTC promotes FFA release during the lipolysis 
process by a greater rate of adsorption and desorption than NaDC. The experimental results and meta-analysis 
of the lipolysis process allowed us to determine the adsorption process and formation of the micelles as 
predominant factors influencing lipolysis. 
The results of my PhD dissertation revealed the importance of the deconjugation process of BS. Conjugation 
concentration, for the first time, was shown to regulate the rate of lipolysis and the results have shown the 
controlled way to modulate lipolysis efficiency by modulating five different processes. The importance of the 
development of diseases, as a factor disturbing the lipolysis process, was shown to alter the BS composition in 
our body and dysregulate their function as lipolysis agents.  
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6. Limitations 
 

6.1. In-vitro digestion studies One-compartment static digestion models, that were used in publication A1 
and publication A3 are good for determining the endpoint of the digestion process, however, the main 
limitation of the research is that the experiments performed in the static digestion model do not reflect 
and include the kinetics and physiology of digestion such as absorption, the response of hormones, no 
effect of gastric emptying and peristaltic movements (Wang et al. 2021). Moreover, the titration 
reaction is not specific for lipid digestion. There is no possibility to differentiate between digestion 
products in the case of a complex food matrix, consisting of proteins or starch, which are also 
neutralised by an alkaline solution (Zhou et al. 2021). This kind of model also does not consider the 
conditions and processes in the stomach. The gastric and intestinal phases can be performed 
separately by using a two-compartment model, however, it also requires pre-conditioning as the 
results obtained from the gastric phase have to be manually transferred (Huang et al. 2021). 

6.2. Digestion conditions: Another limitation of performed research is its general focus on the BS function. 
The in-vitro digestion experiments were performed only in the presence of BS, however, the human 
intestinal digestion of lipids takes place in the presence of a complex matrix of cholesterol, 
phospholipids, and a greater number of BS diversity, such as PCʹsodium glycocholate, sodium 
glycochenodeoxycholate, sodium taurochenodeoxycholate, SU ʹ sodium lithocholate and secondary 
conjugated ʹ sodium glycodeoxycholate, sodium taurodeoxycholate (Sensoy 2021). The performed 
eǆƉeƌiŵeŶƚ didŶ͛ƚ cŽŶƐideƌ ƚhe effecƚ Žf ƉhŽƐƉhŽůiƉids, which also influence final FFA release.  

6.3. Modulation of emulsion: Digestion studies were performed by using an emulsion of the same type of 
oil and stabilised by WPI. The studies were limited to the interaction of BS with only one type of 
emulsion. The effect of the composition and structure of emulsion on the lipolysis extends by 
decreasing fat absorption or increasing the bioavailability of nutrients (Pabois et al. 2020)was 
restricted in performed research.  

6.4. BS action: The BS play an important role in the digestion process, but they are also crucial components 
as receptor regulators (Da Silva et al. 2013)͘ The ƉeƌfŽƌŵed ƐƚƵdieƐ dŽŶ͛ƚ cŽǀeƌ ƚhe iŶfůƵeŶce Žf 
changes in BS composition apart from the digestion process. For example, changes induced in the 
regulation of FXR or functioning of BS synthesis. 

6.5. Digestion conditions Experiments measuring CMC of BS used a simple and non-invasive micro-titration 
technique, however, its sensitivity allowed only to determine one CMC, whereas the current more 
advanced techniques allow for more detailed measurements of primary and secondary BS micelles 
(Mukherjee et al. 2016).  
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7. Future perspectives  
Future perspectives should focus on increasing the potential to understand the mechanism of lipolysis and to  
control the lipid digestion process 
 

7.1. In-vitro digestion studies: During the digestion process in our organism, there are a lot of factors acting 
simultaneously, that influence the final rate of digestion (Bauer et al. 2005; Bellesi et al. 2018; 
Macierzanka et al. 2019), therefore, In-vitro semi-dynamic and dynamic models should be used 
considering: (a) bioaccessibility of nutrients and passive absorption of digestion products ( for example 
ESIN or ARCOL system), (b) interaction of nutrients and delivery of functional food, (c) action of gut 
microbiota (for example TIM-1 system providing complex high-density microbiota of animal or human 
origin), (d) digestive secretion (DGM system) should be used in future studies. Moreover, in-vivo 
studies should be performed.  

7.2. Digestion conditions: To expand the opportunity for performing lipolysis under controlled conditions 
in-vitro digestion studies with the presence of phospholipids, cholesterol and complex BS 
compositions should be performed. 

7.3. Modulation of emulsion:: The interaction of BS emulsifiers is considered a key factor in modulating 
lipolysis (Naso et al. 2019). Therefore, microscopic examination, such as confocal microscopy 
technique, microscope laser light scattering spectroscopy, of lipid droplets during lipolysis for 
individual BS and different digestion conditions should be investigated to determine the impact of the 
interaction of BS with emulsion on final fat digestion efficiency and possible mechanism to control 
lipolysis rate. Moreover, the effect of more complex emulsions and their effect on final FFA release via 
interaction with BS should be studied to determine the possible mechanism of interaction of emulsion 
with BS. The results may give a perspective to design an emulsion that would be digested in a 
controlled way and would modulate the lipolysis process by enhancing or suppressing FFA release from 
the emulsion. 

7.4. BS action: The effect of BS towards BS synthesis via controlling FXR should be more deeply studied to 
understand the possible perturbation of the lipolysis process from the molecular side. Controlling the 
BS synthesis appears to be a key solution to reducing the obesity problem (Haeusler et al. 2016). 
Therefore, uncovering the potential to modulate it would give great value to future studies in finding 
a solution to the obesity epidemic.  

7.5. Digestion conditions:: Studies of the activity of BSH should be performed, by using non-invasive 
methods such as bioluminescent imaging (Khodakivskyi et al. 2021),  as the BSH controls the C/U ratio 
of BS in the small intestine (Bourgin et al. 2021). The increasing activity of BSH would affect in 
formation of excessive conc of SU BS, which were considered as agents contributing to the 
development of colon cancer, fat malabsorption and obesity. Moreover, the influence of exogenous 
parameters, such as antibiotics, should be examined, as they are correlated with the development of 
disease, decreasing BS composition and diversity and reducing BSH activity (Kronman et al. 2012; Daly 
et al. 2021). Also, the effect of probiotics and prebiotics should be examined, to check their desirable 
properties as agents increasing BSH activity. 

7.6. In-vitro digestion studies: BS are responsible for delivering the essential components to our organism, 
the disturbance of this process is of great importance and may also be connected with the 
development of a disease state, such as malabsorption(Montoro-Huguet et al. 2021). Therefore, the 
absorption potential of digestion end products and BS should be measured, by using the CaCo2 cells -
hdϮϵ ŵŽdeů͕ aŶiŵaůƐ͛ ceůů ůiŶeƐ fƌŽŵ ƉigůeƚƐ Žƌ ƌaƚƐ͕ human cell lines or using chambers (ex-vivo models) 
that use intestinal tissue.  
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8. Other scientific achievements 
 

8.1. Research internships 
POWR.03.05.00-00-Z044/17, 27.03-2022-27.06.2022. University of Granada, Faculty of Science, Department of 
Applied Physics. Supervisor: Julia Maldonado Valderrama, Associate Professor 
 
BIP (Blended Intensive Programme) at L͛IŶƐƚiƚƵƚ AgƌŽ -  Institut national d'enseignement supérieur pour 
l'agriculture, l'alimentation et l'environnement  (16.06.2023-23.06.2023) 
 

8.2. Other research internships 
Internship at Dezhou University, China (08.2018-09.2018)                   
 

8.3. Conferences 
7th International Conference on Food Chemistry & Technology (FCT 2021), Paris, France 8-10.11.2021, oral 
presentation. 
 
4th Food Structure and Functionality Forum Symposium 2021, 19-20.10.2021, poster presentation  
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