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random fields in soil analysis allows for a valid reli-
ability assessment of a foundation in respect to Ser-
viceability Limit State. The relevantly adjusted corre-
lation functions of random fields allow for a realistic 
subsoil analysis even in the case of a limited in  situ 
measurement database.

Keywords Reliability · Random fields · Correlation 
functions · Monte Carlo methods · Strip foundations

1 Introduction

While the literature concerning standard foundations 
is very broad, the search is active for optimal analyti-
cal methods to precisely model the real conditions of 
the soil environment. Due to rising computational 
capability, the models are applied to consider the 
limitations and uncertainty of the in  situ measure-
ments. The probabilistic methods are applied in the 
analysis of standard cases of foundations and slope 
stability, complemented by various case studies. The 
structural assessments concerns either the foundation 
load-carrying capacity (ultimate limit state, ULS) 
or the allowable settlement exceedance (serviceabil-
ity limit state, SLS). While the prior research rather 
regarded analytical methods, the current analytical 
trends are FEM-directed. The computations involve 
various methods, material models, and detailed solu-
tions adjusted to specific tasks, see (Dey et al. 2019) 
and their references. Aldosary et al. (Aldosary et al. 
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2018) provide a state-of-the-art review of structural 
reliability analysis (SRA) and stochastic finite ele-
ment method (SFEM), covering both technology and 
application aspects. It is easy to observe that various 
computational methods to analyse the same problem 
may trigger a relatively large result scatter, even on a 
deterministic scale, see (Phoon and Tang 2019) and 
their references. It justifies the use of probabilistic 
methods to estimate the mean values and dispersion 
of the results. Hence, the uncertainty of the assumed 
computational model is considered, the scope of the 
analysis is not restricted to material parameters only.

Various methods of probabilistic analysis are 
applied, the classical Monte Carlo (MC) simulation 
method is a significant one due to its simplicity and 
the engineering sound description. The advanced 
algorithms are created to accelerate the crude MC 
routines, e.g. variance-reduction techniques, Stratified 
Sampling, SS and Latin Hypercube Sampling, LHS 
(Dilip and Sivakumar Babu 2014).

Reliability-based robust geotechnical design 
(RGD) using MC simulation is elaborated (Peng et al. 
2017). Response Surface Method (RSM) and Tar-
geted Random Sampling (TRS) became popular as 
well. The FORM and SORM methods are also per-
manently developed (Low 2014). The Point Estimate 
Method (PEM) is also currently applied (Ahmadab-
adi and Poisel 2015). Their results are always uncer-
tain, especially in the cases of several random vari-
ables due to the soil, multi-strata cases, and complex 
boundary conditions. The computational results are 
greatly distorted due to limited access to measure-
ment data to regard the assumed, simplified model 
(Beer et al. 2013; Fenton et al. 2018).

The random field approach to soil analysis 
broadens its application presently. The works by 
Fenton and Griffiths (Fenton and Griffiths 2005) 
apply random fields in both two-dimensional and 
three-dimensional scales. Specific approaches are 
incorporated too, e.g. generation based on the Kar-
hunen–Loeve expansion or subset simulation meth-
odology (Ahmed and Soubra 2012). Computations 
involving advanced correlation functions and result 
verification with the use of the Weibull variable are 
included in Puła and Zaskórski (2015). Al-Bittar 
and Soubra (Al-Bittar and Soubra 2013) applied 
the polynomial chaos expansion in bearing capac-
ity assessment of strip footing and conducted a sen-
sitivity analysis of material parameters employing 

the Sobol index. Similar solutions were applied in 
Drakos and Pande (2016). Al-Bittar et al. (Al-Bittar 
et  al. 2018) incorporated the so-called combining 
kriging and MC simulation (AK-MCS). Ali et  al. 
(Ali et al. 2017) combined the adaptive FEM tech-
niques with random fields. Ching et al. (Ching et al. 
2018) proposed Young’s modulus simulation using 
a homogenization procedure. The in  situ experi-
ments to define the soil random field are relatively 
rare, especially referring to correlation function. 
Such a complex approach may be found in Golds-
worthy et al. (2005); Suchomel and Mašín 2011).

Eurocode 7 (2004) requires the employment of 
probabilistic methods in structural reliability assess-
ment and safety issues. Although these computations 
involve advanced, dedicated software operated by 
users acknowledged with probabilistic methodology, 
their direct introduction to standard engineering com-
putations becomes a necessity (Low and Phoon 2015; 
Phoon et al. 2016; Forrest and Orr 2010).

The work provides an insight on random soil 
parameter modelling, involving either random vari-
ables or random fields. The single random variable 
variant is crude, however straightforward and acces-
sible. An advanced approach incorporates random 
fields. This procedure requires a precise definition 
of variables, their mean values, and standard devia-
tions, but first of all their correlation function. The 
work proposes some correlation functions to simulate 
the subsoil stratification. Hence a homogenization 
attempt has been undertaken to successfully reflect 
the mechanical properties of the soil, see e.g. (Grif-
fiths et al. 2012).

The paper focuses on probabilistic computational 
methods, a relatively simple example concerns the 
settlement of an eccentrically loaded foundation. 
With both standard soil material data and the load 
parameters assumed, the settlement zone may be pre-
dicted successfully. Therefore, the probabilistic analy-
sis is bound to partially complement the deterministic 
procedure. However, the work is not intended to be 
a case study only, but rather to display probabilistic 
computational methods, featuring soil parameters in 
the form of random fields. The presented algorithms 
are universal, not restricted to foundation settlement 
modelling only.
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2  The Model of the Foundation

An example of a continuous foot in plane strain 
conditions is investigated (Fig.  1). To minimize the 
impact of boundary conditions, the region is assumed 
with the following dimensions: 18.0 × 6.0  m. The 
foundation dimensions are 2.0 × 0.5 m. The subsoil is 
modelled beneath the footing level, the strata above 
this level are represented by a uniformly distributed 
load q = 18.0 kPa at the upper edge of the model 
(Fig. 1). The structural wall loading acts eccentrically. 
Its resultant P = 1.0MN acts vertically, shifted by 
e = 0.16m from the foundation axis (the eccentricity 
e = 1∕12B, while B denotes the foundation width). 
The eccentric load model is assumed to produce an 
asymmetric solution even in a homogeneous subsoil 
case. The deterministic analysis of such cases is found 
in e.g. (Benmebarek et al. 2019) and probabilistic in 
e.g. (Kasama et al. 2019). Only the SLS is analysed. 
It is worth pointing out that the limit state function is 
not known due to non-linear computational character-
istics, thus employing FE software is necessary here. 
The analysed model is not a classical case study, but 

rather an example to illustrate various probabilistic 
computational approaches proposed in the work.

Probabilistic analysis requires multiple repeti-
tions of numerical calculations thus it is necessary 
to assume an optimal FE mesh density. The discre-
tization should help to determine accurate results 
in a relatively short computational time for a single 
computational case. The sub-foundation domain is 
divided into two subdomains of various FE mesh den-
sities (Fig. 1). The material of subdomain I (10 × 3 m) 
is described with a probabilistic model, while subdo-
main II is assumed deterministic. The subdomain I is 
described as a regular mesh of two-dimensional con-
tinuum four-node elements of the following dimen-
sions: 0.25 × 0.1875 m (40 × 16 elements). Relatively 
small dimensions of subdomain I and its crude FE 
discretization originate from a prior parametric analy-
sis incorporating thousands of FE models aimed at 
finding an optimal compromise between result accu-
racy and computational time. The numerical details of 
the FE model are collected and presented in Table 1.

In the probabilistic subdomain I the follow-
ing mean value of Young’s modulus EI is assumed 

Fig. 1  2D model of plane 
strain case modelled in 
ZSoil software

Table 1  The detailed information on the FE model

Region Number of nodes Number of 2D continuum 
4-node elements

Number of element edges 
under external loads

Number of element edges 
with boundary conditions

Foot 116 80 24 –
Subdomain I 706 640 32 –
Subdomain II 584 598 24 69
Entire FE model 1406 1318 80 69
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EI = 50, 000 kPa, while cohesion c = 10 kPa, and 
internal friction angle � = 30◦ are considered deter-
ministic. The deterministic subdomain II exhibits 
constant values: EII = 30, 000 kPa, c = 10 kPa, and 
� = 30◦. The homogeneous subdomain II exhibits 
reduced medium stiffness compared to subdomain 
I, to additionally minimize the boundary condition 
impact on the response, it simulates an infinite half-
space surrounding the analysed region of subsoil I, 
and reproduces the deterministic support of the ran-
dom subdomain. Additional computations showed 
that the assumption of EII = 50,000  kPa for the sub-
domain II does not substantially affect the obtained 
mechanical response.

The computations assume the Mohr–Coulomb 
model to capture soil plastification, focusing on the 
foundation edge regions. Concrete is considered 
elastic, its parameters correspond to C30/37 con-
crete (PN-EN 2006+A1:2016-12 2016) of minimum 
compressive strength 37  MPa and Young’s modu-
lus Ec = 32.8GPa. The computations are conducted 
in the ZSoil commercial software (Commend et  al. 
2018; Truty 2018). ZSoil enables the implementa-
tion of the advanced Hardening Soil (HS) consti-
tutive model (Cudny and Truty 2020). While the 
work covers only the parametric studies of random 
subsoil impact, the standard M-C model was chosen 
instead, as it is widely used in numerous other com-
mercial packages. The advanced research on real-life 
structural settlement conditions makes it possible 
to improve the computations through the HS model 
application, see e.g. (Winkelmann et al. 2021).

The magnitude and eccentricity of the load were 
assumed deterministic, the work focuses solely on 
the subsoil impact on the foundation settlement. The 
probabilistic approach to loads requires additional 
assumptions and should be analyzed separately.

First of all deterministic computations are per-
formed incorporating mean material parameters 
of subdomain I EI = 50, 000 kPa (Fig.  1). The 

following settlements of the foundation points are 
obtained: ul = −0.064m(left edge), ur = −0.036m, 
(right edge), and udeter = −0.050m (midpoint). The 
foundation rotation, in a rigid body pattern, equals 
�deter = 0.0142 rad. In the case of axial load action 
the deflection is uaxial = −0.049m. Note that the 
example is theoretical only, enhanced foundation set-
tlement and rotation allow to comprehensively test 
the proposed algorithms. Only the plane strain case is 
considered, the impact of subsoil variability along the 
foundation is therefore neglected, see e.g. (Przewłócki 
1999; Przewłócki and Górski 2001).

3  Single Random Variable Description

The probabilistic analysis requires the assumption 
of random variables, their distributions, and cor-
responding parameters. It is assumed that Young’s 
modulus E is the only parameter to represent subsoil 
variability in subdomain I (Fig.  1). Such a simplifi-
cation is justified because of the analytical domain 
of the SLS (as opposed to the ULS). Young’s mod-
ulus is represented with a normal variable (N) with 
the mean EN = 50, 000 kPa, and standard deviation 
�EN

= 15, 000 kPa (the coefficient of variation equals 
�EN

= 0.3). The data on the material variability are 
provided in e.g. (Phoon et al. 2006; Lumb 1966).

While Gaussian variables take negative values 
the symmetrically bounded variable was applied 
here, the bounding parameter was adopted t = 3.0

(EN − t�EN
≤ EN ≤ EN + t�EN

). This way, the lowest 
Young’s modulus value is 5000 kPa (features alluvia 
and peats), whereas the highest equals 95,000  kPa. 
The values beyond this interval seem unrealistic from 
an engineering standpoint. All material data concern-
ing the subdomains are summarized in Table 2.

A population of 10,000 samples was generated 
according to appropriately modified truncated Gauss-
ian variable (N), the sample histogram is presented 

Table 2  The summary of the material parameters of the subsoil’s subdomains

Subdo-
main no

Material model Unit 
weight 
(kN/m3)

Young’s 
modulus EN 
(kPa)

Coefficient of 
variation �

E
N

 (–)

Truncation 
parameter 
t (–)

Poisson’s 
ratio ν (–)

Cohesion 
c (kPa)

Internal 
friction angle 
ϕ (°)

1 Normal distribution 18 50,000 0.3 3 0.3 10 30
2 Deterministic 18 30,000 – – 0.3 10 30
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in Fig.  2. The estimation of mean value, standard 
deviation, and skewness read: ÊN = 49, 983 kPa,

�̂�EN
= 14, 760 kPa and �̂�3N

= 0.0146. Note that the 
generated distribution differs from the standard type 
only to a slight extent. Given the truncating param-
eter t = 3.0 the probability of sample generation 
from beyond the (E − t�E ≤ E ≤ E + t�E) interval is 
0.0027 only.

The geotechnical analysis often assumes lognor-
mal (LN) variables to represent the soil variability. 
Negative Young’s moduli are discarded this way. 
Figure 2 compares the histograms generated with the 
use of two types of variables. To adjust the N and LN 
forms the following transformations are applied:

To directly compare the LN and N outcomes the 
mean value, standard deviation, and skewness are 
estimated too: ÊLN = 49, 584 kPa,�̂�ELN

= 14, 880 kPa 
and �̂�3LN

= 0.974. Figure  2 specifies the maximum 
and minimum generated Young’s moduli ( Elim(N) and 
Elim(LN) ). Note that irrationally high Young’s moduli 
are generated. The bounded Gaussian probability 
density function allows for arbitrary two-side ran-
dom variate limitation according to laboratory tests, 
in situ measurements, and engineering experience. It 
is worth pointing out that alternative generation meth-
ods may be employed in the computations, e.g. beta 
variable or hyperbolic tangent transformation (Puła 
and Zaskórski 2015; Fenton and Griffiths 2003). The 

(1)ELN = lnEN − 0.5�2
ELN

,

(2)�ELN
= ln(1 + �2

EN
∕EN).

selection of variable types to represent Young’s mod-
ulus and other soil parameters is essential in geotech-
nical computations (Jimenez and Sitar 2009).

The first step checks the impact of Young’s mod-
ulus change on the foundation settlement and slope. 
These parameters have been computed given various 
Young’s moduli in the range Emax ∕min

N
= EN ± 3�EN

. 
The results of 11 analysed cases are shown in Fig. 3. 
They point out a non-linear mechanical response of 
the subsoil. The maximum foundation settlements 
exceed 0.25  m, this value is unreal from an engi-
neering viewpoint. Based on preliminary computa-
tions the truncating parameter t of Young’s modulus 
EN variable may be corrected. However, it should 
be emphasized that the minimum Young’s modu-
lus Emin

N
= EN − 3�EN

= 5000 kPa does not lead to 
the detachment of the foundation from the subsoil, 
thus making the model compliant with engineering 
practice.

3.1  Crude Monte Carlo Method

The first step of the analysis includes the direct MC 
computations. The predefined series of computa-
tional procedures were performed in Python (Python 
manual 2019) and ZSoil packages (Commend et  al. 
2018). The computational time of a single realiza-
tion is relatively short, allowing a multitude of auto-
matic runs to be conducted, making the results reli-
able in the case of a 10,000 sample population. While 
Young’s modulus E is assumed a bounded Gaussian 
variable (Fig.  2), the mean value, standard devia-
tion, and skewness of the foundation center nodal 
deflection are achieved as follows: ûN = −0.0530 m, 

Fig. 2  Histograms of Normal (N) and Lognormal (LN) input 
data set

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
-3 -2 -1 0 1 2 3

Se
�l

em
en

t u
[m

]

Young's modulus change - standard devia�on mul�plier [-]

Fig. 3  The impact of Young’s modulus change 
E
N
∈
⟨

Ē
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�̂�uN = −0.0130 m, and �̂�3N
= −4.384. Additional 

computations were conducted in the LN variable 
case (Fig.  2): ûLN = −0.0531 m, �̂�uLN = −0.0131 m, 
and �̂�3LN

= −4.378. Figure  4 shows the histogram 
of the results, accompanied by extreme settlements 
based on N and LN computational variants (ulim(N) 
and ulim(LN)). The minimum structural rotational 
slope is �min = −0.0091 rad, the maximum value is 
�max = −0.1082 rad. Comparing the distributions of 
Young’s modulus E (Fig. 2) and the foundation settle-
ment u (Fig. 4), a transformation is shown of diversi-
fied input variables N and LN into strongly asymmet-
ric output variables.

The compared results N and LN are almost identi-
cal due to mean values, standard deviations, and the 
histogram shape (Fig.  4). The accordance of input 
histogram patterns is justified by their skewness coef-
ficients (0.14% dispersion). It is worth pointing out 
that the positive assessment of N and LN conver-
gence cannot be generalized onto arbitrary engineer-
ing models, as each engineering challenge should be 
analysed adequately. Further analysis was conducted 
with the use of a truncated Gaussian variable to rep-
resent soil Young’s modulus EN.

3.2  Stratified Sampling

The next step attempts to reduce the number of reali-
zations necessary to estimate the mean value and 
standard deviation. Stratified Sampling (SS) (Hur-
tado and Barbat 1998) is applied here. A population 
of 10,000 generated Young’s moduli EN is divided 
into 3, 9, 27, and 81 equal strata (ES). Each interval 
is represented by the values close to its center. Thus 

the computations conducted in the previous steps are 
directly implemented into the next steps, hence 81 
computational courses are performed. An example 
shows a histogram of Young’s modulus EN realiza-
tion domain divided into 27 equal sections of differ-
ent probabilities, presented in Fig. 5, accompanied by 
27 computational points. The results are presented in 
Table 3 and Fig. 6.  

The convergence of mean value and standard 
deviation in the case of 3, 9, and 27 element divi-
sion is sufficient (Table 3). While rising the number 
of intervals the solution stabilizes and the results 
correspond to the case of 10,000 crude MC popula-
tion (ûN = −0.0530 m, �̂�uN = −0.0130 m). Moreover, 
Table 3 includes the results of 3, 9, 27, and 81 sam-
ples achieved by the direct MC method. The latter 
compared with the SS results prove the high advan-
tages of the variance reduction techniques.

4  Random Field Implementation

The software to generate random fields has been 
recently developed either in the form of distinct algo-
rithms (Ahmed and Soubra 2012; Grigoriu 2003; 
Papaioannou and Straub 2017) or dedicated to sub-
sequent problems (Fenton and Griffiths 2005; Sudret 
and Kiureghian 2002). Nevertheless, the method-
ology of random fields is barely incorporated in 
engineering applications due to the need to apply 
specific software, and the difficulties in both assum-
ing appropriate input data and interpreting results. 
Such an analysis usually requires an advanced back-
ground in probabilistic methods and structural 

Fig. 4  Foundation settlement histograms (deflection of the 
central node), both N and LN variants compared, 10,000 MC 
realizations

Fig. 5  Young’s modulus EN histogram domain—27 equal 
sections, 27 points
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reliability assessment. The most widespread software 
is designed to generate random fields in the form of 
input data to standard commercial FE software for 
automatic processing.

The work also incorporates this computational 
routine. The software is employed to generate Gauss-
ian random fields, addressed in Bielewicz and Górski 
(2002), combined with ZSoil (Commend et al. 2018) 
and Python (Python manual 2019). Note that the pro-
posed computational algorithm makes it possible to 
apply any other software generating random fields 
and any FE program to analyse the task.

The software applied in the work conducts ran-
dom variable generation (Bielewicz and Górski 2002) 
employing the conditional acceptance and rejection 

concept (Devroye 1986). The software makes it pos-
sible to simulate discrete Gaussian random fields of 
an arbitrary given homogeneous or non-homogene-
ous, two- or three-dimensional correlation function. 
The conditional function fs(�u∕�k) is incorporated 
to allow for direct generation of an unknown vector 
�u assumed the relevant random field region already 
specified �k

where �c and �c are a conditional correlation matrix 
and vector of mean values respectively, and s can be 
defined as:

It is easy to notice that high values of the trunca-
tion parameter t (e.g. t ≈ 5) make the parameter s tend 
to zero.

The essential feature of the software is the gen-
eration of unknown field point values in a sequen-
tially shifted region. Thus it is possible to consider 
the fields of arbitrarily large dimensions. The soft-
ware has been thoroughly checked and verified to 
find application in many engineering tasks, e.g. silos 
(Górski et  al. 2015) or soils (Tejchman and Górski 
2011).

4.1  Homogeneous Random Field

The most important issue in the random field mod-
elling is to assume a relevant correlation function of 
the problem (Sudret 2008). Parameters governing the 

(3)

fs(�u∕�k) = (1 − s)−m∕2
(

det�c

)−1∕2
(2�)−m∕2

exp

(

−
1

2(1 − s)

(

�u − �c

)T

�
−1
c

(

�u − �c

)

)

,

(4)s =
t exp(−t2∕2)
√

2� erf (t)
.

Table 3  Foundation settlements—Stratified Sampling—single random variable field description

Division (number 
of realizations)

Foundation settlement (m) (mid-
point deflection)

Foundation slope (rad) Comparison with crude MC variant 
(m) (identical sample space)

Mean value Standard deviation Mean value Standard deviation Mean value Standard deviation

3  − 0.0505 0.0068 0.0231 0.00421  − 0.0487 0.0040
9  − 0.0532 0.0132 0.0191 0.00673  − 0.0585 0.0173
27  − 0.0531 0.0132 0.0167 0.00631  − 0.0546 0.0114
81  − 0.0531 0.0129 0.0159 0.00582  − 0.0538 0.0137
10,000  − 0.0530 0.0130

Fig. 6  Foundation settlement histograms—Stratified Sampling 
(27 and 81 samples)
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correlation functions are usually assumed by trial and 
error to match the results to experimental or litera-
ture-based outcomes. The complex studies on param-
eter calibration based on research results are also 
available (Suchomel and Mašín 2011; Lloret-Cabot 
et al. 2014).

The random field description of standard engineer-
ing materials (subsoil, concrete, composites, etc.) 
usually employs an exponential correlation function 
related to the first-order autoregression function or 
Markov process. It takes the following form in the 
univariate case, according to Vanmarcke (1983)

where |x| is the distance between the field points, 
and dx is the so-called damping parameter (Knabe 
et al. 1998). The correlation function (3) was applied 
in numerous analytical cases, see e.g. (Drakos and 
Pande 2016; Al-Bittar et  al. 2018; Ali et  al. 2017; 
Chan and Low 2012). Figure 7 presents the impact of 
the assumed damping parameter value dx (Eq. 5) on 
the correlation between the points.

Upon comparison of the diagrams in Fig.  7, the 
initial adjustment of the field parameters relative to 
the problem becomes possible (Sudret 2008). The 
information on correlation function is usually supple-
mented by an additional measure—the scale of fluc-
tuation—proposed by Vanmarcke (1983)

In the case of correlation function (Eq.  5) the 
fluctuation scale is � = 2∕dx . Different methods of 
field classification exist, e.g. based on incorporating 

(5)�(x) = e−dx|x|,

(6)� = 2∫
∞

0

�(x)dx = ∫
∞

−∞

�(x)dx.

information entropy (Walukiewicz et  al. 1995). Rel-
evant classification methods allow for the appropri-
ate selection of correlation functions according to the 
problem. However, linking the function with the in-
situ measurements is very difficult, and requires fur-
ther in-depth analysis.

While defining a correlation function referring to 
a specified linear section Δx (e.g. FE element dimen-
sion) it is necessary to assess local averages integrat-
ing Eq. (5). Uniform division yields a formula (Knabe 
et al. 1998)

where Lx is the distance between centers of the aver-
aging intervals.

Note that a sufficiently small Δx yields small vari-
ations in computed results according to Eqs. (5) and 
(7). The application of Eq. (7) makes the random field 
values and the FE mesh assumption independent. 
That was the way to minimize the impact of a sparse 
sub-foundation region division (Fig. 1). Equation (7) 
makes it possible to capture the differences in both 
horizontal and vertical dimensions of finite elements.

The work employs two correlation function types. 
The first generalizes Eq.  (5) for a two-dimensional 
case, i.e. a combination of two coordinates

where dx and dy are damping parameters capturing the 
correlation decay, |x| and |y| are the distances between 
field points along these axes.

The field defined by Eq.  (8) may be considered 
homogeneous and anisotropic in a general case. The 
averaged version makes it possible to apply Eq.  (8) 
in FE computations takes its form from the product 
of relevant Eq. (7). It seems that only moderately and 
strongly correlated fields capture the soil conditions 
related to the natural homogeneity of soils within 
respective subdomains. Therefore, a mean correla-
tion range i.e. dx = dy = 0.3 m−1 (Fig. 7) is assumed 
between Young’s moduli in the points of the subdo-
main I (Fig.  1). The assumption dx = dy simplifies 
the issue, while the real situation suggests a variable 
correlation in vertical and horizontal scales. Note that 
damping parameters distinction in vertical and hori-
zontal directions simulates the soil stratification, thus 
this action is not limited to non-homogeneity display 

(7)�1(Δx) =
2e−dx|Lx|

(dxΔx)
2
[cosh(dxΔx) − 1],

(8)�(x, y) = �(x)�(y) = e−dx|x|−dy|y|,

Fig. 7  Correlation range for different correlation damping 
parameters d 
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only. A more accurate approach to soil stratification is 
presented further on in the work.

The field is modelled by the Gaussian bounded 
function of mean value E = 50, 000 kPa, standard 
deviation �E = 15, 000 kPa, and bounding parameter 
t = 3.0 (Eq. 4). Thus the basic random field data are 
identical to the case of a one-variable field (Chap. 3), 
to compare these two sets of results.

A population of 10,000 field realizations (vectors) 
�i (i = 1, 2, ..., 10000) was generated according to 
the subdomain I division into 16 × 40 finite elements 
(Fig.  1). It should be pointed out that appropriate 
modelling of a soil medium by Eq. (8) or other corre-
lated fields requires a broader FE domain than the one 
in the model (Fig. 1), and a denser FE discretization. 
However, the parametric study to compare various 
field patterns makes it relevant to use the assumed 
FE model. This does not hold in the case-study type 
analysis. An example of generated field realizations 
is shown in Fig. 8. The impact of the assumed decay 
parameters dx and dy on the generated fields is avail-
able in Zyliński et al. (2020), including strongly cor-
related (dx = dy = 0.1 m−1) and uncorrelated (white 
noise) cases.

The next important analytical stage performs the 
correctness check of a generated field. The estimator 
of the covariance matrix �̂E is

where �i is a vector to represent a single generated 
field and �̂ is a vector of mean values of the generated 
fields. The norm of the covariance matrix ‖‖

‖

�̂E
‖

‖

‖

 is 
achieved

(9)�̂E =
1

10, 000 − 1

10,000
∑

i=1

(

�i − �̂

)(

�i − �̂

)T

,

A global error of generation, concerning the corre-
sponding theoretical value (Eq. 8) is estimated:

The error points out the possibility to apply the 
generated fields in the assessment of foundation set-
tlements (Walukiewicz et  al. 1995). Additionally, 
Fig.  9 compares theoretical (Eq.  8) and generated 
(Eq. 9) correlation coefficients between the first and 
subsequent 40 upper row elements belonging to the 
subdomain I (Fig. 1). The estimation of the generated 
matrix �̂E shown in Fig. 9 is almost perfect.

First of all, a comparative analysis is conducted 
employing the MC method regarding 10,000 random 
field realizations. Every operation is performed auto-
matically by the author-made FORTRAN-coded soft-
ware, cooperating with commercial platforms (ZSoil 
and Python). The histogram of the obtained founda-
tion settlements is shown in Fig.  10, the estimators 
are included in Table 4 with other analytical variants. 
The difference is substantial between the diagrams in 
Fig.  10 (Young’s modulus represented by a random 
field RF) and Fig. 4 (Young’s modulus represented by 
a single random variable EN). While the mean values 
of the results are similar, their standard deviations 
and the deflection ranges differ significantly.

The computations concerning a single random 
variable prove that the selected MC variance reduc-
tion method (i.e. SS) leads to the results of engi-
neering sound accuracy. It is possible to conduct the 
related analysis in the random field domain (Hurtado 

(10)‖

‖

‖

�̂E
‖

‖

‖

=

√

(

�̂E

)2

.

(11)err �̂E =

‖

‖

�E
‖

‖

−
‖

‖

‖

�̂E
‖

‖

‖

‖

‖

�E
‖

‖

100% = 8.24% .

Fig. 8  An example of a generated homogeneous field accord-
ing to Eq. (8)

Fig. 9  Theoretical �
E
 and estimated �̂�

E
 covariance matrices 

compared (first row, 40 terms)
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and Barbat 1998; Tejchman and Górski 2011). Two 
reduction techniques have been used: SS (two vari-
ants) and LHS. These methods may be applied while 
the generated random fields �i (i = 1, 2, ..., 10000) 
are appropriately classified.

Two field-classifying parameters have been speci-
fied, i.e. mean values of each field Ei and maximum 
difference between Young’s moduli of a single field 

Eextr
i

=
|

|

|

Emax
i

− Emin
i

|

|

|

 . The parameter Eextr
i

 denotes the 
field value gap (a lower parameter Eextr

i
 yields a "flat" 

field shape). Moreover, the parameter Eextr
i

 is inde-
pendent of the mean values of the fields Ei , adding 
substantial information on the generated realization 
domain. The joint probability density functions are 
presented in Fig. 11, a dot represents a single random 
vector �i defined by its mean value Ei and the field 
value gaps Eextr

i
 . This is the so-called anthill-type rep-

resentation, it yields that the classification does not 
trigger parameter correlation, hence the basic require-
ment to apply the Stratified and LHS methods is 
fulfilled.

The determined intervals of classification 
mean values are 21, 906 ≤ Ei ≤ 81, 279 kPa and 
35, 538 ≤ Eextr

i
≤ 89, 801 kPa referring to mean val-

ues and the field value gaps, respectively. These two 
variables are represented by marginal distributions, 
each one is divided into nine sections of ES (Fig. 11a) 
and equal probabilities (Fig. 11b).

First of all classical SS is incorporated, assum-
ing ES division SS-ES (Fig.  11a). Hence the 

Fig. 10  Histogram of foundation settlements uRF determined 
by the MC simulation method, homogeneous random field 
description, the population of 10,000 random fields)

Table 4  Mean values and standard deviations of foundation settlement (homogeneous random field description)

Calculation 
method

Number of realizations 
(interval division)

Foundation settlement u (m) Foundation slope ω (rad)

Mean value Standard deviation Mean value Standard deviation

MC 10,000  − 0.0529 0.0074 0.0157 0.0037
SS–ES 81 (70)  − 0.0525 0.0060 0.0161 0.0033
SS–EP 81  − 0.0523 0.0064 0.0155 0.0033
LHS 9  − 0.0527 0.0069 0.0159 0.0027
SS 9  − 0.0528 0.0074 0.0166 0.0048

Fig. 11  The anthill-type 
distribution of the gener-
ated 10,000 homogeneous 
random fields, the cases of 
equal strata (a) and equal 
probability (b)D
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computations consider both parameters classify-
ing the random field. The entire range is split into 
9 × 9 = 81 sections (Fig.  11a), however, due to the 
sample distribution in 11 sections at the edge regions 
no samples are present. Thus the computations cover 
70 samples only, chosen from the central parts of 
each section. The probabilities assumed for selected 
sections differ substantially, affected by the number 
of samples. The results are included in Table 4 (the 
SS–ES method).

Next, the computations are performed by the SS 
method, dividing the domain into equal probability 
sections SS–EP (Fig. 11b). This approach directs the 
computations into samples located near the mean val-
ues, reducing the contribution of the anthill region 
margins. The results are presented in Table  4 (the 
SS–EP method). Note that taking a higher impact of 
anthill central region samples (Fig. 11b) into account 
results in a slight computational variation only.

The next step checks out the possibility of further 
sample space reduction. The LHS is applied here. 
Nine out of the 81 subregions are randomly sampled 
from the interval limited by vertical and horizontal 
lines, see Fig. 11b. The samples selected for the com-
putation are chosen from the central sections of the 
zones marked by boxes (Fig. 11b). The computational 
results are included in Table 4 (the LHS method). It 
may be stated that the LHS method allowing for mul-
tiple reductions of the number of analysed samples 
(in this case 81 to 9) is proved successful.

To assess the impact of the assumed field classi-
fication the standard SS computations are provided, 
regarding a single classification parameter—mean 
values of selected random fields. Nine samples are 
chosen from the centers of the intervals, separated 
by vertical strands, see Fig.  11b. Here, the second 
variable classifying the field (field value gap) is not 
taken into consideration. This computational variant 
resembles the analysis of the soil defined by a single 
random variable (Chap. 3.2). The results included in 
Table 4 (the SS method) slightly differ from the LHS 
method variant.

The computational results of foundation settlement 
resting on a subsoil and defined by a single random 
variable (Table 3) and random field (Table 4) draw to 
the conclusion that both cases yield similar mean val-
ues ( ̂uN = −0.0530 m, and ûRF = −0.0529 m, respec-
tively). However the standard deviations differ sub-
stantially: �̂�uN = −0.0130 m and �̂�uRF = −0.0074 m. 

A low random field result scatter is confirmed by the 
histograms in Fig. 10, compared to the ones in Figs. 4 
and 6 (a single random variable model for a field). 
The lower bound for the single variable solution is 
ulim(N) = −0.27 m (Fig.  4) while the random field 
yields ulim(RF) ≈ −0.12 m (Fig. 10). It proves that the 
random field results are more realistic in the consid-
ered case here.

The results in Table  4 do not differ substantially. 
The most accurate solution to the direct MC case 
(Table  4, MC method) was achieved in a classical 
SS algorithm, splitting the generated region into nine 
sections of equal probabilities (Table 4, SS method). 
The application of LHS with the sample number left 
unchanged reduces the mean value and standard devi-
ation to a slight extent only (Table 4, LHS method). 
However, this conclusion is not general as a relatively 
simple example is analysed.

4.2  Non-homogeneous Random Field

In the second case, a second-order random field is 
applied

where �x is the so-called frequency parameter (Knabe 
et  al. 1998), its use allows for positive and negative 
values of Eq.  (12). Figure  12 presents possible cor-
relation function shapes assuming a constant decay 
parameter dx = 0.15 m−1 and various frequency 
parameters �x = 0.5, 1.5, 3.0 [m−1].

In a two-dimensional field case, it is possible to 
freely shape the layout of quasi-strata. The effects 
of multi-layered soil on foundation settlement are 

(12)�(x) = e−dx|x| cos(�x|x|),

Fig. 12  Graphical presentation of non-homogeneous correla-
tion function (Eq. 12)
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analysed in Kuo et al. (2004); Huang et al. 2018). As 
an example, taking a cosine function affected by the y 
parameter only, the field is quasi-stratified in the ver-
tical direction

Taking various values of �y it is possible to simu-
late the samples of quasi-stratified layout—the higher 
the parameter value, the higher density of quasi-strata 
of diverse Young’s modulus E. While the param-
eters �y show small values in subdomain I (Fig.  1) 
no stratification occurs. However, to achieve limited 
Young’s moduli dispersion in particular quasi-strata, 
it is suggested to increase the correlation of the stra-
tum points. Thus, with regard to the computations 
conducted in Chap. 4.1. the half-value decay param-
eter dx = dy = 0.15 m−1 and frequency �y = 1.5 m−1 
are assumed. It is worth pointing out that the gen-
erated fields show high variability, e.g. Figure  13a 
shows a stratified feature while Fig. 13b makes it hard 
to observe. Many other generated field types show a 
homogeneous pattern due to the strong correlation 
between points. Nevertheless, it is possible to apply 
Eq.  (13) to map the soil parameters which depend 
on geological processes. Note that this stratification 
does not reflect e.g. the in  situ experimental results, 

(13)�(x) = e−dx|x|−dx|y| cos(�y|y|).

instead, the averaged values only. Therefore the MC 
computations including stratification simulation may 
be regarded as material parameter homogenization in 
the sub-foundation zone.

On the other hand, Fig.  14 shows examples of 
fields generated with the help of a full two-dimen-
sional correlation function

The generation assumes the prior parameter val-
ues: dx = dy = 0.15 m−1 and �x = �y = 1.5 m−1. 
Appropriate variants of parameters �x and �y allows 
for shaping the quasi-strata slopes.

The computation of foundation settlements 
employs the field defined by Eq. (12), regarding only 
horizontal stratification. 10,000 Realizations are gen-
erated here. In this case, no crude MC computations 
have been conducted. The SS variant with 9 × 9 = 81 
samples has been instead employed, in the variant of 
equal probability intervals. Two variables defining the 
field are assumed: mean values E(NH)i and maximum 
differences between Young’s moduli Eextr

(NH)i
 . The fol-

lowing results are obtained: mean settlements 
ûNH = −0.0521 m and standard deviation 
�̂�uNH = −0.0033 m . While the mean value does not 
exceed the previous results for both the single varia-
ble case (ûN = −0.0530 m) and the homogeneous 
field case (ûRF = −0.0529 m) the standard deviation 
according to these models is far beyond 
( ̂𝜎uN = −0.0130 m and �̂�uRF = −0.0074 m, respec-
tively). It may be clarified based on field mean val-
ues—Young’s moduli. In the single value case, the 
bounded Gaussian variable, the range is 
5165 kPa ≤ EN ≤ 94, 810 kPa (Fig.  2), the mean 
Young’s modulus of homogeneous random fields 

(14)�(x) = e−dx|x|−dx|y| cos(�x|x|) cos(�y|y|).

Fig. 13  Example of a field generated based on Eq. (13) Fig. 14  Example of a generated field based on Eq. (14)
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21, 906 ≤ Ei ≤ 81, 279 kPa (Fig.  11), and 
43, 052 kPa ≤ E(NH)i ≤ 56, 926 kPa in the case of 
non-homogeneous fields. The non-homogeneous field 
shows the lowest dispersion due to the features of a 
strongly correlated function. All the obtained results 
are summarized in Table 5.

5  Reliability Estimation

Determining the settlement distribution for 10,000 
realizations of a single random variable and random 
field case (the homogeneous variant, Eq.  8) allows 
for reliability assessment incorporating the classical 
MC. The direct MC approach estimates the probabil-
ity of failure pf  in the entire domain of �, using the 
expression

applying the indicator function I0∕1

where LS(�) is the limit state function, and NS denotes 
the number of samples used in approximation.

The impact of both computational variants on the 
foundation reliability assessment referring to allow-
able midpoint deflection is presented in Fig. 15. The 
computations assume the limit settlements variable 
−0.28 m ≤ ulim ≤ −0.05 m. The highest difference 
between the solutions may be observed while compar-
ing the settlement range of zero damage probability. 

(15)pf ≅
1

NS

NS
∑

i=1

I0∕1 (LS(�) ≤ 0)

(16)I0∕1(LS(�) ≤ 0) =

{

1, if LS(�) ≤ 0,

0, if LS(�) > 0,

In the case of a single variable description it reads 
ulim(N) = −0.27 m while in the random homogene-
ous field case it equals ulim(RF) = −0.12 m (Fig. 15), 
i.e. less than half the value. As an example, the level 
ulim = −0.09 m triggers the estimated reliabilities 
pf (N) = 0.0183 and pf (RF) = 0.0015, respectively, 
the ratio is greater than 10 here. Above the level of 
ulim = −0.08 m the rapid growth of failure probability 
occurs in both analytical cases. A comparative look 
into two diagrams and analysing of prior results yield 
a conclusion that the definition incorporating random 
fields is more realistic.

It is worth pointing out that a reliability estima-
tion employing a direct MC method is not possible 
in the case of real engineering structures due to the 
necessity to perform thousands of FE computations. 
In these cases, other well-known methods may be 
applied, such as e.g. RSM, TRS, PEM, and many 
more addressed in detail in a great many application-
oriented works. The commercial software packages 
are bound to support these computations.

Table 5  Influence of a random subsoil description on the values of Young’s modulus E and foundation settlement u 

Random subdomain I description Young’s modulus E Foundation displacement u

Emin(kPa) Emax(kPa) Mean value ū (m) Standard devia-
tion σu (–)

Extreme displacements

umin (m) umax (m)

Single random variable 5165 94,810  − 0.0530  − 0.0130  − 0.2652  − 0.0229
Homogenous random field 21,906 81,279  − 0.0529  − 0.0074  − 0.1196  − 0.0401
Non-homogenous random field 43,052 56,926  − 0.0521  − 0.0033  − 0.0868  − 0.0305

Fig. 15  Reliability estimation with the use of a single random 
variable and the random field in terms of a limit settlement 
function

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


4718 Geotech Geol Eng (2022) 40:4705–4720

1 3
Vol:. (1234567890)

6  Conclusions

The work addresses the analysis of an eccentrically 
loaded foundation strip. The subsoil under the foun-
dation is defined in random terms through a single 
random parameter—Young’s modulus. The computa-
tions are conducted by a joint effort of the author’s 
procedures and commercial software, e.g. ZSoil and 
Python. Appropriately prepared, automated algo-
rithms made it possible to generate and compute 
thousands of foundation models. The probabilistic 
analysis makes it possible to estimate the mean values 
of foundation settlements, their standard deviations, 
and reliability in the function of the assumed limit 
settlement threshold.

First, Young’s modulus is defined by a single vari-
able. In both cases of variable types, Gaussian and 
log-normal their impact on final results is analysed. 
It is demonstrated that the bounded Gaussian pattern 
allows to limit the generation domain and to discard 
excessively small and large Young’s moduli E.

The major goal of the work is to compare the soil 
definitions through a single random variable and 
random fields. The homogeneous field simulates the 
possible subsoil parameter variability while the non-
homogeneous field allows for introducing an addi-
tional factor, i.e. soil stratification. The selection of 
correlation function parameters makes it possible to 
capture strata thickness and their orientation. The ran-
dom fields are more realistic than random variables in 
the light of soil modelling.

It should be pointed out that the random field gen-
eration is bound to average the detected soil condition 
parameters, not mapping them in their entirety. The 
probabilistic analysis is directed onto multiple compu-
tations of models with various random fields. Hence 
medium homogenization is conducted. The computa-
tions prove that the Gaussian-modeled Young’s mod-
ulus, complemented by various correlation functions 
relevantly reflects the subsoil performance at various 
stiffness ranges. This approach shows key importance 
in the case of limited and partial in situ data concern-
ing the subsoil under the designed foundation.

The work applies various MC versions. It is proved 
that for random fields in a single-variable modelling 
variant (Young’s modulus) a relevant classification of 
generated fields allows for using SS and LHS meth-
ods. This action further reduces the computational 
effort reducing the population to several samples only.

The computations are performed due to theoretical 
examples to provide a detailed parametric analysis. 
However, the proposed algorithms may be applied 
directly e.g. in foundation analysis of dedicated, 
special structures of high sensitivity to non-uniform 
settlements.

Author Contributions All authors contributed to the study 
conception and design. Material preparation, data collection 
and analysis were performed by KŻ and JG. The first draft of 
the manuscript was written by KŻ, KW, and JG and all authors 
commented on previous versions of the manuscript. All authors 
read and approved the final manuscript.

Funding The authors declare that no funds, grants, or 
other support were received during the preparation of this 
manuscript.

Data Availability The datasets generated and analysed dur-
ing the current study are not publicly available, but are avail-
able from the corresponding author on reasonable request.

Declarations 

Conflict of interest The authors have no relevant financial or 
non-financial interests to disclose.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The 
images or other third party material in this article are included 
in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit 
http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Ahmadabadi M, Poisel R (2015) Assessment of the applica-
tion of point estimate methods in the probabilistic stability 
analysis of slopes. Comput Geotech 69:540–550. https:// 
doi. org/ 10. 1016/j. compg eo. 2015. 06. 016

Ahmed A, Soubra AH (2012) Probabilistic analysis of strip 
footings resting on a spatially random soil using subset 
simulation approach. Georisk 6:188–201. https:// doi. org/ 
10. 1080/ 17499 518. 2012. 678775

Al-Bittar T, Soubra AH (2013) Bearing capacity of strip foot-
ings on spatially random soils using sparse polynomial 
chaos expansion. In J Numer Anal Methods Geomech 
37:2039–2060. https:// doi. org/ 10. 1002/ nag. 2120

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.compgeo.2015.06.016
https://doi.org/10.1016/j.compgeo.2015.06.016
https://doi.org/10.1080/17499518.2012.678775
https://doi.org/10.1080/17499518.2012.678775
https://doi.org/10.1002/nag.2120
http://mostwiedzy.pl


4719Geotech Geol Eng (2022) 40:4705–4720 

1 3
Vol.: (0123456789)

Al-Bittar T, Soubra A-H, Thajeel J (2018) Kriging-based relia-
bility analysis of strip footings resting on spatially varying 
soils. J Geotech Geoenviron Eng 144:04018071. https:// 
doi. org/ 10. 1061/ (asce) gt. 1943- 5606. 00019 58

Aldosary M, Wang J, Li C (2018) Structural reliability and sto-
chastic finite element methods: state-of-the-art review and 
evidence-based comparison. Eng Comput (swans Wales) 
35:2165–2214. https:// doi. org/ 10. 1108/ EC- 04- 2018- 0157

Ali A, Lyamin AV, Huang J, Li JH, Cassidy MJ, Sloan SW 
(2017) Probabilistic stability assessment using adaptive 
limit analysis and random fields. Acta Geotech 12:937–
948. https:// doi. org/ 10. 1007/ s11440- 016- 0505-1

Beer M, Zhang Y, Quek ST, Phoon KK (2013) Reliability 
analysis with scarce information: comparing alternative 
approaches in a geotechnical engineering context. Struct 
Saf 41:1–10. https:// doi. org/ 10. 1016/j. strus afe. 2012. 10. 
003

Benmebarek S, Guetari A, Remadna MS, Benmebarek N 
(2019) Numerical investigation of the behavior of strip 
footings under large eccentric loads, Slovak. J Civ Eng 
27:29–36. https:// doi. org/ 10. 2478/ sjce- 2019- 0019

Bielewicz E, Górski J (2002) Shells with random geometric 
imperfections simulation-based approach. Int J Nonlin-
ear Mech 37:777–784. https:// doi. org/ 10. 1016/ S0020- 
7462(01) 00098-1

Chan CL, Low BK (2012) Practical second-order reliability 
analysis applied to foundation engineering. Int J Numer 
Anal Methods Geomech 36:1387–1409. https:// doi. org/ 
10. 1002/ nag. 1057

Ching J, Hu YG, Phoon KK (2018) Effective Young’s modu-
lus of a spatially variable soil mass under a footing. 
Struct Saf 73:99–113. https:// doi. org/ 10. 1016/j. strus afe. 
2018. 03. 004

Commend S, Kivell S, Obrzud RF, Podleś K, Truty A, Zim-
mermann T (2018) Computational geomechanics. In: 
Getting started with ZSOIL.PC, vol V. Rossolis Edi-
tions, Preverenges

Cudny M, Truty A (2020) Refinement of the Harden-
ing Soil model within the small strain range. Acta 
Geotech 15:2031–2051. https:// doi. org/ 10. 1007/ 
s11440- 020- 00945-5

Devroye L (1986) Non-uniform random variate generation. 
https:// doi. org/ 10. 1007/ 978-1- 4613- 8643-8

Dey A, Acharyya R, Alammyan A (2019) Bearing capacity 
and failure mechanism of shallow footings on unrein-
forced slopes: a state-of-the-art review. Int J Geotech 
Eng. https:// doi. org/ 10. 1080/ 19386 362. 2019. 16174 80

Dilip DM, Sivakumar Babu GL (2014) Influence of spatial 
variability on pavement responses using Latin hyper-
cube sampling on two-dimensional random fields. J 
Mater Civ Eng 26:04014083. https:// doi. org/ 10. 1061/ 
(asce) mt. 1943- 5533. 00009 94

Drakos S, Pande GN (2016) Stochastic finite element analy-
sis using polynomial chaos. Stud Geotech Mech 38:33–
43. https:// doi. org/ 10. 1515/ sgem- 2016- 0004

Eurocode 7 (2004) Geotechnical design—Part 1: general 
rules

Fenton GA, Griffiths DV (2003) Bearing-capacity prediction 
of spatially random c–ø soils. Can Geotech J 40:54–65. 
https:// doi. org/ 10. 1139/ t02- 086

Fenton GA, Griffiths DV (2005) Three-dimensional proba-
bilistic foundation settlement. J Geotech Geoenviron 
Eng 131:232–239. https:// doi. org/ 10. 1061/ (asce) 1090- 
0241(2005) 131: 2(232)

Fenton GA, Naghibi F, Hicks MA (2018) Effect of sampling 
plan and trend removal on residual uncertainty. Georisk 
12:253–264. https:// doi. org/ 10. 1080/ 17499 518. 2018. 
14551 06

Forrest WS, Orr TLL (2010) Reliability of shallow foundations 
designed to Eurocode 7. Georisk 4:186–207. https:// doi. 
org/ 10. 1080/ 17499 51100 36464 84

Goldsworthy JS, Jaksa MB, Kaggwa WS, Fenton GA, Griffiths 
DV, Poulos HG (2005) Reliability of site investigations 
using different reduction techniques for foundation design. 
In: 9th International conference on structural safety and 
reliability, 2005, Rome, pp 901–908

Griffiths DV, Paiboon J, Huang J, Fenton GA (2012) Homog-
enization of geomaterials containing voids by random 
fields and finite elements. Int J Solids Struct 49:2006–
2014. https:// doi. org/ 10. 1016/j. ijsol str. 2012. 04. 006

Grigoriu M (2003) Algorithm for generating samples of homo-
geneous Gaussian fields. J Eng Mech 129:43–49. https:// 
doi. org/ 10. 1061/ (asce) 0733- 9399(2003) 129: 1(43)

Górski J, Mikulski T, Oziębło M, Winkelmann K (2015) Effect 
of geometric imperfections on aluminium silo capacities. 
Stahlbau. https:// doi. org/ 10. 1002/ stab. 20151 0224

Huang L-C, Huang S, Liang Y (2018) Probabilistic settlement 
analysis of granular soft soil foundation in southern China 
considering spatial variability. Granul Mater Sci. https:// 
doi. org/ 10. 5772/ intec hopen. 79193

Hurtado JE, Barbat AH (1998) Monte Carlo techniques in 
computational stochastic mechanics. Arch Comput Meth-
ods Eng 5:3–29. https:// doi. org/ 10. 1007/ bf027 36747

Jimenez R, Sitar N (2009) The importance of distribution types 
on finite element analyses of foundation settlement. Com-
put Geotech 36:474–483. https:// doi. org/ 10. 1016/j. compg 
eo. 2008. 05. 003

Kasama K, Whittle AJ, Kitazume M (2019) Effect of spatial 
variability of block-type cement-treated ground on the 
bearing capacity of foundation under inclined load. Soils 
Found 59:2125–2143. https:// doi. org/ 10. 1016/j. sandf. 
2019. 11. 007

Knabe W, Przewłocki J, Rózyński G (1998) Spatial aver-
ages for linear elements for two-parameter random field. 
Probab Eng Mech 13:147–167. https:// doi. org/ 10. 1016/ 
s0266- 8920(97) 00015-5

Kuo YL, Jaksa MB, Kaggwa WS, Fenton G, Griffiths D, 
Goldsworthy JS (2004) Probabilistic analysis of multi-
layered soil effects on shallow foundation settlement. In: 
9th Australia New Zealand conference on geomechanics, 
2004, Auckland, New Zealand, vol 2, pp 541–547

Lloret-Cabot M, Fenton GA, Hicks MA (2014) On the estima-
tion of scale of fluctuation in geostatistics. Georisk 8:129–
140. https:// doi. org/ 10. 1080/ 17499 518. 2013. 871189

Low BK (2014) FORM, SORM, and spatial modeling in geo-
technical engineering. Struct Saf 49:56–64. https:// doi. 
org/ 10. 1016/j. strus afe. 2013. 08. 008

Low BK, Phoon KK (2015) Reliability-based design and its 
complementary role to Eurocode 7 design approach. Com-
put Geotech 65:30–44. https:// doi. org/ 10. 1016/j. compg eo. 
2014. 11. 011

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1061/(asce)gt.1943-5606.0001958
https://doi.org/10.1061/(asce)gt.1943-5606.0001958
https://doi.org/10.1108/EC-04-2018-0157
https://doi.org/10.1007/s11440-016-0505-1
https://doi.org/10.1016/j.strusafe.2012.10.003
https://doi.org/10.1016/j.strusafe.2012.10.003
https://doi.org/10.2478/sjce-2019-0019
https://doi.org/10.1016/S0020-7462(01)00098-1
https://doi.org/10.1016/S0020-7462(01)00098-1
https://doi.org/10.1002/nag.1057
https://doi.org/10.1002/nag.1057
https://doi.org/10.1016/j.strusafe.2018.03.004
https://doi.org/10.1016/j.strusafe.2018.03.004
https://doi.org/10.1007/s11440-020-00945-5
https://doi.org/10.1007/s11440-020-00945-5
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1080/19386362.2019.1617480
https://doi.org/10.1061/(asce)mt.1943-5533.0000994
https://doi.org/10.1061/(asce)mt.1943-5533.0000994
https://doi.org/10.1515/sgem-2016-0004
https://doi.org/10.1139/t02-086
https://doi.org/10.1061/(asce)1090-0241(2005)131:2(232)
https://doi.org/10.1061/(asce)1090-0241(2005)131:2(232)
https://doi.org/10.1080/17499518.2018.1455106
https://doi.org/10.1080/17499518.2018.1455106
https://doi.org/10.1080/17499511003646484
https://doi.org/10.1080/17499511003646484
https://doi.org/10.1016/j.ijsolstr.2012.04.006
https://doi.org/10.1061/(asce)0733-9399(2003)129:1(43)
https://doi.org/10.1061/(asce)0733-9399(2003)129:1(43)
https://doi.org/10.1002/stab.201510224
https://doi.org/10.5772/intechopen.79193
https://doi.org/10.5772/intechopen.79193
https://doi.org/10.1007/bf02736747
https://doi.org/10.1016/j.compgeo.2008.05.003
https://doi.org/10.1016/j.compgeo.2008.05.003
https://doi.org/10.1016/j.sandf.2019.11.007
https://doi.org/10.1016/j.sandf.2019.11.007
https://doi.org/10.1016/s0266-8920(97)00015-5
https://doi.org/10.1016/s0266-8920(97)00015-5
https://doi.org/10.1080/17499518.2013.871189
https://doi.org/10.1016/j.strusafe.2013.08.008
https://doi.org/10.1016/j.strusafe.2013.08.008
https://doi.org/10.1016/j.compgeo.2014.11.011
https://doi.org/10.1016/j.compgeo.2014.11.011
http://mostwiedzy.pl


4720 Geotech Geol Eng (2022) 40:4705–4720

1 3
Vol:. (1234567890)

Lumb P (1966) The variability of natural soils. Can Geotech J 
3:74–97. https:// doi. org/ 10. 1139/ t66- 009

PN-EN 2006+A1:2016-12 (2016) Concrete—Part 1: require-
ments, properties, production and compliance

Papaioannou I, Straub D (2017) Learning soil parameters and 
updating geotechnical reliability estimates under spatial 
variability—theory and application to shallow founda-
tions. Georisk 11:116–128. https:// doi. org/ 10. 1080/ 17499 
518. 2016. 12502 80

Peng X, Li DQ, Cao ZJ, Gong W, Juang CH (2017) Reliability-
based robust geotechnical design using Monte Carlo simu-
lation. Bull Eng Geol Environ 76:1217–1227. https:// doi. 
org/ 10. 1007/ s10064- 016- 0905-3

Phoon KK, Retief JV, Ching J, Dithinde M, Schweckend-
iek T, Wang Y, Zhang LM (2016) Some observations 
on ISO2394:2015 Annex D (Reliability of Geotechni-
cal Structures). Struct Saf 62:24–33. https:// doi. org/ 10. 
1016/J. STRUS AFE. 2016. 05. 003

Phoon KK, Tang C (2019) Characterisation of geotechnical 
model uncertainty. Georisk 13:101–130. https:// doi. org/ 
10. 1080/ 17499 518. 2019. 15855 45

Phoon K, Nadim F, Uzielli M, Lacasse S (2006) Soil variability 
analysis for geotechnical practice. In: Characterisation and 
engineering properties of natural soils. Taylor and Francis. 
https:// doi. org/ 10. 1201/ NOE04 15426 916. ch3

Przewłócki J (1999) Reduction of dimensions in random, elas-
tic soil medium. Int J Solids Struct 36:5233–5254. https:// 
doi. org/ 10. 1016/ S0020- 7683(98) 00232-7

Przewłócki J, Górski J (2001) Strip foundation on 2-D and 3-D 
random subsoil. Probab Eng Mech 16:121–136. https:// 
doi. org/ 10. 1016/ S0266- 8920(00) 00014-X

Puła W, Zaskórski Ł (2015) Estimation of the probability dis-
tribution of the random bearing capacity of cohesionless 
soil using the random finite element method. Struct Infra-
struct Eng 11:707–720. https:// doi. org/ 10. 1080/ 15732 479. 
2014. 903501

Python manual: 2.7.17 (2019)
Suchomel R, Mašín D (2011) Probabilistic analyses of a strip 

footing on horizontally stratified sandy deposit using 

advanced constitutive model. Comput Geotech 38:363–
374. https:// doi. org/ 10. 1016/j. compg eo. 2010. 12. 007

Sudret B (2008) Probabilistic models for the extent of damage 
in degrading reinforced concrete structures. Reliab Eng 
Syst Saf 93:410–422. https:// doi. org/ 10. 1016/j. ress. 2006. 
12. 019

Sudret B, Der Kiureghian A (2002) Comparison of finite ele-
ment reliability methods. Probab Eng Mech 17:337–348. 
https:// doi. org/ 10. 1016/ S0266- 8920(02) 00031-0

Tejchman J, Górski J (2011) Modeling of bearing capacity of 
footings on sand within stochastic micro-polar hypoplas-
ticity. Int J Numer Anal Methods Geomech 35:226–243. 
https:// doi. org/ 10. 1002/ nag. 928

Truty A (2018) On consistent nonlinear analysis of soil–struc-
ture interaction problems. Stud Geotech Mech. https:// doi. 
org/ 10. 2478/ sgem- 2018- 0019

Vanmarcke EH (1983) Random fields: analysis and synthesis, 
I. MIT Press, Cambridge. https:// www. princ eton. edu/ 
~evm/ rando mfiel ds. html

Walukiewicz H, Bielewicz E, Górski J (1995) Statistical analy-
sis of simulated random fields. In: Lemaire M, Favre JL, 
Mebarki A (eds) ICASP 7 conference on applications of 
statistics and probability, 1995, Paris, pp 1267–1274

Winkelmann K, Żyliński K, Górski J (2021) Probabilistic 
analysis of settlements under a pile foundation of a road 
bridge pylon. Soils Found 61:80–94. https:// doi. org/ 10. 
1016/j. sandf. 2020. 11. 001

Zyliński K, Korzec A, Winkelmann K, Górski J (2020) Ran-
dom field model of foundations at the example of con-
tinuous footing. AIP Conf Proc. https:// doi. org/ 10. 1063/5. 
00078 11

Publisher’s Note Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1139/t66-009
https://doi.org/10.1080/17499518.2016.1250280
https://doi.org/10.1080/17499518.2016.1250280
https://doi.org/10.1007/s10064-016-0905-3
https://doi.org/10.1007/s10064-016-0905-3
https://doi.org/10.1016/J.STRUSAFE.2016.05.003
https://doi.org/10.1016/J.STRUSAFE.2016.05.003
https://doi.org/10.1080/17499518.2019.1585545
https://doi.org/10.1080/17499518.2019.1585545
https://doi.org/10.1201/NOE0415426916.ch3
https://doi.org/10.1016/S0020-7683(98)00232-7
https://doi.org/10.1016/S0020-7683(98)00232-7
https://doi.org/10.1016/S0266-8920(00)00014-X
https://doi.org/10.1016/S0266-8920(00)00014-X
https://doi.org/10.1080/15732479.2014.903501
https://doi.org/10.1080/15732479.2014.903501
https://doi.org/10.1016/j.compgeo.2010.12.007
https://doi.org/10.1016/j.ress.2006.12.019
https://doi.org/10.1016/j.ress.2006.12.019
https://doi.org/10.1016/S0266-8920(02)00031-0
https://doi.org/10.1002/nag.928
https://doi.org/10.2478/sgem-2018-0019
https://doi.org/10.2478/sgem-2018-0019
https://www.princeton.edu/~evm/randomfields.html
https://www.princeton.edu/~evm/randomfields.html
https://doi.org/10.1016/j.sandf.2020.11.001
https://doi.org/10.1016/j.sandf.2020.11.001
https://doi.org/10.1063/5.0007811
https://doi.org/10.1063/5.0007811
http://mostwiedzy.pl

	Effectiveness of Random Field Approach in Serviceability Limit State Analysis of Strip Foundation
	Abstract 
	1 Introduction
	2 The Model of the Foundation
	3 Single Random Variable Description
	3.1 Crude Monte Carlo Method
	3.2 Stratified Sampling

	4 Random Field Implementation
	4.1 Homogeneous Random Field
	4.2 Non-homogeneous Random Field

	5 Reliability Estimation
	6 Conclusions
	References




