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Abstract. This paper presents a novel full-wave tech-
nique which allows for a fast 3D finite element analysis of
waveguide structures containing rotatable tuning elements
of arbitrary shapes. Rotation of these elements changes the
resonant frequencies of the structure, which can be used in
the tuning process to obtain the S-characteristics desired for
the device. For fast commutations of the response as the
tuning elements are rotated, the 3D finite element method is
supported by multilevel model-order reduction, orthogonal
projection at the boundaries of macromodels and the oper-
ation called macromodels cloning. All the time-consuming
steps are performed only once in the preparatory stage. In
the tuning stage, only small parts of the domain are updated,
by means of a special meshing technique. In effect, the tuning
process is performed extremely rapidly. The results of the
numerical experiments confirm the efficiency and validity of
the proposed method.

Keywords
Finite element method (FEM), macromodels, macroele-
ments, model-order reduction (MOR), modal projec-
tion

1. Introduction
Waveguide structures loaded with discontinuities, such

as posts and irises, play an important role in wireless com-
munication systems. One interesting class of such structures
utilizes rotatable discontinuities, which create the desired
functionalities and allow for flexible control of the frequency
response of the device [1–4]. The design of these structures
requires efficient optimization-oriented full-wave software
that is capable of quickly updating the analysis results for
arbitrary changes of the rotation angles.

The procedure for designing direct coupled-cavity
waveguide filters containing half-cylinder screws using Fi-
nite Element Method (FEM) analysis has been presented in
[1]. A hybrid mode-matching/boundary-contour and mode-
matching/FEM for designing waveguide components con-

taining posts and irises has been proposed in [2]. This allows
for the optimization of the geometries of the waveguide fil-
ters by rotating sections, which contain posts and irises of
different shapes. In [3] an efficient method based on the
orthogonal expansion method and an iterative scattering pro-
cedure has been proposed for analyzing waveguide filters
with rotatable posts of shapes that conform to cylindrical
coordinates. An efficient 2D method combining finite dif-
ference frequency domain (FDFD) and mode-matching pro-
posed in [4] is restricted to the posts, which are homogeneous
in one direction.

In this paper, we propose a novel efficient 3D method
based on FEM that, unlike [3] and [4], allows for arbitrary
shapes of rotatable elements in fast tuning and optimiza-
tion. It combines the meshing techniques from [5] with
the model order reduction (MOR), which has been demon-
strated previously for FDFD [6], [7], 2D FEM [8], [9] and
3D FEM [10], [11]. MOR is applied locally in such a way,
that the subdomains of the computational domain are repre-
sented by small dense matrices, called macromodels. The
mathematical formulation of this approach is similar to that
presented in [10], the main difference being a new technique
of incorporating the macromodels within a fixed mesh, that
allows for a singlemacromodel to be either rotated or simulta-
neously rotated and replicated without the need to regenerate
the mesh. This substantially speeds up the computation and
makes a fast design tuning possible.

In order to allow for rotation and at the same time to
perform the orthogonal projection technique of [7], [10] we
developed a new set of basis functions that is applicable to
cylinders. The overall cost of the MOR procedure has been
significantly reduced, as the computational domain can be
easily decomposed and each region can be meshed indepen-
dently and the new type of macromodels can be now fully
reused and cloned to be placed in different locations.

The rest of the paper is organized as follows: Section 2
provides a background of the Finite Element Method Formu-
lation. Section 3 presents the basic steps of the approach of
Model Order Reduction, which is applied locally. Section 4
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describes the technique of speeding up the reduction time by
applying the orthogonal projection on macromodels’ bound-
aries. Section 5 deals with the technique of fast analysis of
the structures which contain rotatable tuning elements and it
is followed by the results of the numerical examples provided
in Section 6.

2. Finite ElementMethodFormulation
We consider a source-free closed 3-D region Ω. The

behavior of the electric field ~E is based on a formulation of
reduced Maxwell’s equations:

∇ ×
1
µ
∇ × ~E − ω2ε ~E = 0 (1)

where µ, ε are respectively the permeability and permittivity
of the medium and ω is the angular frequency. On the sur-
faces of perfect electric conductor (ΓPEC ) and perfect mag-
netic conductor (ΓPMC ) the following boundary conditions
are applied:

~E × ~n = 0 on ΓPEC, (2)

∇ × ~E × ~n = 0 on ΓPMC. (3)

Although the structure comprises the rotatable ele-
ments, they are used only for tuning. Therefore they do not
rotate continuously and the electromagnetic analysis is per-
formed only for stationary geometries. Applying the bound-
ary conditions (2)–(3) to (1) and considering the P ports on
the surfaces Γi , one obtains the following weak formulation
by means of Galerkin method [13], [15]:∫

Ω

(∇ × ~w ·
1
µr
∇ × ~E − k20 ~w · εr ~E)dΩ =

jωµ0
P∑
i=1

∫
Γi

~w · (~ni × ~H i )dΓi (4)

where P is the number of the ports of the structure, i is the
index of the excited port Γi , ~ni is a normal vector on the i-th
port, ~H i is the distribution of the tangential magnetic field
on the i-th port, µr , εr are relative permeability and permit-
tivity, k0 = ω

√
µ0ε0 is the wavenumber, ~w is a vector testing

function used in the Galerkin method and j is the imaginary
unit. The testing functions ~w belong to the orthogonal basis
used for the expansion of the unknown vector field ~E. In
the Finite Element Method (FEM) this basis is a set of func-
tions defined piecewise within small subregions, called finite
elements, into which the whole computational domain Ω is
divided by means of meshing algorithm. In the proposed
approach we are using the curvilinear tetrahedral mesh gen-
erated by the Netgen software [5], [16]. Two kinds of vector
basis functions are defined within each element [13], [14].
The first group is associated with six edges:

~αI
i j = φi∇φ j − φ j∇φi,

~αII
i j = φi∇φ j + φ j∇φi,

(5)

while the latter is related to four faces of tetrahedron:
~αIII
i jk = 3φ jφk∇φi − ∇(φiφ jφk ),

~αIV
i jk = 3φkφi∇φ j − ∇(φiφ jφk ).

(6)

In (5) and (6) {i, j, k} ∈ {1, 2, 3, 4}, and φi is the simplex
coordinate associated with the i-th node. In fact, φi is a con-
tinues linear function, which equals one at node i and zero
at all other nodes. As a result, 20 basis functions up to the
second-order are defined in each of the tetrahedrons.

Application of FEM basis functions (5-6) as the test-
ing functions ~w and expansion of the electric field ~E into
series of (5-6) results in the following matrix system of equa-
tions [12], [14]:

(K − k20M)x = b, (7)

where x is the vector of unknown coefficients, b is the excita-
tion vector, K andM are N × N stiffness and mass matrices,
respectively and N is the number of degrees of freedom
(DOF). K and M are assembled from the local matrices Kt

and Mt corresponding to each of the tetrahedrons t:

K t
lk =

1
µr

∫
t

∇ × ~αt
l · ∇ × ~αt

kdΩ,

M t
lk = εr

∫
t

~αt
l · ~α

t
kdΩ,

(8)

with ~αt being the basis functions, defined by (5) and (6),
within the tetrahedron t and K t

lk
, M t

lk
being the elements

of Kt and Mt . In order to evaluate the integrals in (8) we
are using the Gaussian quadrature of the tenth-order, which
results in 81 quadrature points within each of the elements.

For the global problem (7) the basis functions ~αt are
combined into a global set of functions ~αn and the distribu-
tion of the electric field in the whole domain Ω is approxi-
mated by means of the following expansion:

~E ≈
N∑
n

xn~αn (9)

where xn are the unknown coefficients in x.

3. Model Order Reduction
The most time consuming step of FEM is solving the

matrix system of equations of the form (7). One of the tech-
niques to improve the efficiency of FEM is to significantly
reduce the size of the system matrix by applying the Model
Order Reduction (MOR) techniques. The MOR presented in
this paper has been thoroughly described in [8], [10]. The
main idea is to develop the appropriate transfer functions,
which accurately capture the behavior of the electromag-
netic field within the selected subdomains. These transfer
functions are represented by so-called macromodels, which
replace the original problems in 3D subdomains by the re-
lations between the unknowns on their 2D boundaries. The
number of these unknowns is significantly smaller than the
number of variables needed to directly describe the field dis-
tribution inside the separated subdomains.
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Fig. 1. A source-free 3D subdomain Ω2 separated from the en-
tire domain by means of a fictitious boundary Γ.

For a single macromodel, we consider a closed source-
free 3D subdomain Ω2 separated from the whole domain by
a fictitious boundary Γ (Fig. 1). It is important, that this
operation does not change the original boundary conditions
and thus has no impact on the solution of the electromagnetic
problem.

Having consistently numbered the variables within Ω1,
Γ and Ω2, the original system (7) is split into the following
blocks of matrices, which correspond to regions: Ω1, Γ, Ω2:

*...
,



K1 ST
K1 0

SK1 KΓ ST
K2

0 SK2 K2



− k20



M1 ST
M1 0

SM1 MΓ ST
M2

0 SM2 M2



+///
-

·



x1
xΓ
x2


=



b1
0
0


. (10)

Blocks SM and SK couple the separated subdomains, e.g.
SK1 couples regions Ω1 and Γ (see [8,10] for details). Note,
that the excitation b1 is applied only to the outer region Ω1.

We assume, that the local reduction scheme will be ap-
plied to Ω2. By expanding the operations in (10), we obtain
three matrix equations. The third o them corresponds to Ω2
and has the following form:

(K2 − k20M2)x2 = −(SK2 − k20SM2)xΓ (11)

where indices 2 and Γ are associated with subregions: Ω2
and Γ, respectively and matrices SK2, SM2 couples Ω2 and
Γ. The number of variables in x2 and xΓ is denoted, as: N2
and NΓ.

Themacromodel is generated using a projection basisV
constructed by means of the Efficient Nodal Order Reduction
(ENOR) algorithm [10], [17]. BasisV consists of frequency-
independent orthonormal vectors, which span the solution
space in a limited frequency range. In the final step of MOR,
the matrix operators of (11) related to Ω2 are projected onto
a MOR subspace using V. As a result, (11) is transformed
into a new system:

(K̃2 − k20M̃2)x̃2 = −(S̃K2 − k20 S̃M2)xΓ (12)

where the tilde represents the reduction ofM2,K2, SK2, SM2
and x2:

K̃2 = VTK2V,

M̃2 = VTK2V,
x̃2 = VTx2,

S̃K2 = VTSK2,

S̃M2 = VTSM2.

(13)

Substituting (13) into (10) yields:

*...
,



K1 ST
K1 0

SK1 KΓ S̃T
K2

0 S̃K2 K̃2



− k20



M1 ST
M1 0

SM1 MΓ S̃T
M2

0 S̃M2 M̃2



+///
-

·



x1
xΓ
x̃2


=



b1
0
0


. (14)

The number of unknowns in x̃2, which also represents
the size of the macromodel, is much smaller than in x2, i.e.:

Ñ2 = qNΓ � N2, (15)

where q is the reduction order. It is important to note that this
MOR procedure does not introduce any frequency-dependent
terms into (12), so it is performed only once for the whole
frequency range for which the basis V has been constructed.
As solving the reduced system is usually much quicker than
the reduction itself, this property of MOR allows for fast
frequency sweep.

In the presented example, the MOR procedure was ap-
plied for only one separated region, however for more com-
plex problems such reduction strategy can be inefficient, since
the number of variables in the selected subdomain can be too
large. One of the ways to cope with this problem is to di-
vide the computational domain into many subdomains with
limited number of variables, using for example the approach
presented in [18]. Subsequently, the selected subdomains are
separately subject to the presented reduction scheme.

What is more, one can adopt thisMOR scheme onmany
levels using the approach called Multilevel MOR (MMOR)
[10]. On the lowest level all selected subdomains are re-
duced. Next, all created macromodels are grouped in such a
way, that on the highest level only one macromodel (which
covers the whole computational domain) remains.

4. Orthogonal Projection on the Sub-
domain Boundary
The efficiency of MOR depends on the following fac-

tors: the reduction order q, the number of variables in the
selected subdomain (N2) and the number of variables on
its boundary (NΓ). To improve the efficiency of MOR, NΓ
should be decreased prior to the reduction. It can be done
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Fig. 2. Awaveguide structure with an arbitrary rotatable discon-
tinuity closed in the cylindrical subdomainΩ2, separated
from the rest of the computational domain by means of
the surface Γ. Surfaces P1 and P2 are the excitation
ports.

through orthogonal projection of the subspace of the FEM lo-
cal basis functions from the boundary Γ onto a much smaller
subspace spanned by an appropriate basis of orthogonal func-
tions [7], [10]. In other words, the large 2D FEM basis will
be replaced by the functional basis requiring much smaller
number of unknown coefficients for the expansion of the field
on Γ.

Let us consider a basic structure with a single arbi-
trary rotatable element in an empty rectangular waveguide
(Fig. 2), bounded by the ports: P1 and P2 and the PEC walls
elsewhere. We assume that this discontinuity rotates together
with its nearest surrounding; it is therefore closed in the cylin-
drical subdomain Ω2 bounded by the fictitious boundary Γ.
The cylinder Ω2 extends from the bottom to the top PEC
walls of the waveguide along the z-axis. Although the reduc-
tion may be performed in Ω1 (with respect to Γ, P1 and P2)
and Ω2 (with respect to Γ), we focus on creating a rotatable
macromodel in the cylinder Ω2. The tangential electric field
on Γ can be approximated in the cylindrical system by means
of the following series of orthogonal continuous functions:

~EΓ (φ, z) = ~iz
L∑
i=1

L∑
j=0

aI
i j sin(iφ) cos( j

z
h
π)+

~iz
L∑
i=0

L∑
j=0

aII
i j cos(iφ) cos( j

z
h
π)+

~iφ
L∑
i=0

L∑
j=1

aIII
i j cos(iφ) sin( j

z
h
π)+

~iφ
L∑
i=1

L∑
j=1

aIV
i j sin(iφ) sin( j

z
h
π)

(16)

where aI
i j . . . a

IV
i j are the unknown amplitudes of the func-

tions, h is the height of the waveguide, φ ∈ (−π, π), z ∈ (0, h)
and L represent the arbitrarily chosen length of this expan-
sion. If the field is homogeneous in the z dimension, only

the Ez component of the electric field is required, thus (16)
is reduced to:

~EΓ (φ) = ~iz
L∑
i=1

aI
i sin(iφ) + ~iz

L∑
i=0

aII
i cos(iφ). (17)

The series (16) and (17) define the basis functions to be
used in the orthogonal projection mentioned in the beginning
of this section. It can be expressed as a linear combination
of N ′

Γ
functions in the following compact form:

~EΓ (φ, z) =
[
~e1Γ (φ, z), ~e2Γ (φ, z) . . . ~e

N ′
Γ

Γ
(φ, z)

]
a, (18)

where a is the vector of unknown amplitudes and the number
of functions is:

N ′Γ = (2L + 1)2 (19)

for series (16) and: N ′Γ = 2L + 1 (20)

for series (17).

The continuous functions from (18) are discretized by
projecting them onto the subspace spanned on the basis func-
tions defined by (5) and (6), which are associated with the
edges and facets on Γ. As a result, the following orthogonal
basis with N ′

Γ
vectors arises:

EΓ =
[
e1Γ, e

2
Γ . . . e

N ′Γ
Γ

]
. (21)

The vector ek
Γ
is computed as follows:

ekΓ =M−1Γ u (22)

where the n-th element of u has the form:

un =

∫
Γ

~αn · ~ekΓ (φ, z)dΓ. (23)

MΓ represents the mass matrix associated with the basis
functions (5)-(6) at the boundary Γ.

Subsequently, the variables from FEM system corre-
sponding to the regions Ω2 and Γ are projected onto the
subspace spanned by (21). The resulting system is derived
from the initial FEM system (11) and can be written in the
compact form:

(K2 − k20M2)x2 = −(S′K2 − k20S
′
M2)x′Γ (24)

where the prime sign refers to the results of the projection:

S′M2 = SM2EΓ,
S′K2 = SK2EΓ,
x′Γ = xΓEΓ .

(25)

For the system (24), the subsequent model-order reduc-
tion is performed according to the same procedure as the
one presented for the system (11). Owing to the orthogonal
projection, the number of variables on the boundary of the
macromodel subdomain is significantly reduced (N ′

Γ
� NΓ).

Accordingly, the size of the resulting macromodel Ñ ′2 × Ñ ′2
is decreased to the same extent, since:
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Ñ ′2 = qN ′Γ � Ñ2,

Ñ2 = qNΓ .
(26)

The same orthogonal projection and MOR procedure
may also be applied to the subdomain Ω1. However, on the
boundaries P1 and P2, the modal expansion of the waveg-
uide TE and TM modes is the natural choice for the projec-
tion [10].

5. Analysis of Structures Containing
Rotatable Elements
Without loss of generality, we refer our analysis to

waveguide filters containing rotatable tuning elements, which
will be presented for a section with a single rotatable dis-
continuity, such as the one shown in Fig. 3. The standard
approach to FEM analysis of structures where the discon-
tinuity rotates, requires regeneration of the mesh and of the
corresponding FEMmatrices in the entire structure after each
rotation step.

We propose a method that allows the inner (Ω3) and
outer (Ω1) domain to be meshed only once. The inner and
outer regions are then processed by MOR (see section 3).
If the analyzed structure contains many identical tuning ele-
ments, one can use a single macromodel to represent all these
subregions; this operation is called macromodels cloning.
Next, the two macromodels are coalesced via a narrow buffer
layer Ω2, which is updated as the inner region rotates.

The proposed procedure is performed as a preparatory
stage followed by a tuning stage. The first of these involves
all the operations that can be performed in the subdomains
of constant mesh – such as generating the mesh, the FEM
matrices, and macromodels – while in the second stage, only
the buffer is updated and the final system of equations is
solved.

5.1 Preparatory Stage
This stage is the most time-consuming part of the entire

analysis, but its operations are carried out only once. After
generating the mesh in the separate Ω1 and Ω3 subdomains,
orthogonal projection is performed on their boundaries: Γ2
for Ω3 and (Γ1, P1, P2) for Ω1. MOR is performed with re-
spect to these compressed boundaries, and so the macromod-
els are created separately in Ω1 and Ω3. These macromodels
are combined in the matrices of the final system of equations,
from which only a small part (corresponding to the buffer)
is missing. Such constant templates for the system matri-
ces will be preserved for all subsequent tuning stages. The
stiffness matrices of these two subregions have the following
form:

KI =



K′P S̃′TP 0

S̃′P K̃Ω1 S̃′TΩ1
0 S̃′Ω1 K′

Γ1A



, (27)

Fig. 3. Elevation view of the 3D WR-90 waveguide structure
with centrally placed rotatable bow-tie tuning element.
d1 = 1.5mm, d2 = 5mm, length = 40mm, width
= 22.86mm, height of the waveguide = 10.16mm,
height of the bow-tie = 9.16mm, diameter of Γ1 = 9mm
and diameter of Γ2 = 8mm, rotation angle ofΩ3: φ = 0.

KIII =



K′
Γ2B S̃′TΩ3

S̃′Ω3 K̃Ω3


. (28)

The mass matrices have the same structure, therefore they are
derived following the same procedure.

5.2 Tuning Stage
The tuning stage is performed repeatedly for each rota-

tion angle, but involves only the least time-consuming oper-
ations. Having set the rotation angle, the new mesh and the
corresponding FEM matrices of the buffer Ω2 are generated,
based on the surface mesh of Γ1 and Γ2 [5]. In order to reflect
the rotation ofΩ3 in the updated buffermesh, only the surface
mesh of Γ2 needs to be rotated. Next, the matrices associated
with the buffer are generated in the following form:

KII =



K′
Γ1B S̃′TΓ1 0

S̃′Γ1 KΩ2 S̃′TΓ2
0 S̃′Γ2 K′

Γ2A



. (29)

Then they are embedded in the templates generated in the
preparatory stage, which connects the macromodels repre-
senting Ω1 and Ω3, by adding matrices KI, KII and KIII:

K =



K′P S̃′TP 0 0 0 0

S̃′P K̃Ω1 S̃′TΩ1 0 0 0

0 S̃′Ω1 K′
Γ1A +K

′
Γ1B S̃′TΓ1 0 0

0 0 S̃′Γ1 KΩ2 S̃′TΓ2 0

0 0 0 S̃′Γ2 K′
Γ2A +K

′
Γ2B S̃′TΩ3

0 0 0 0 S̃′Ω3 K̃Ω3



.

(30)
Now the optional second model-order reduction may be

applied to the whole structure with respect to the ports P1
and P2, represented by the matrices K′P and M′P . Since the
resulting matrices have been significantly reduced, the com-
putational time needed to solve the final system of equations
is negligible [10].
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Fig. 4. S-characteristics of the structure obtained using the stan-
dard FEM and FEM-MOR for φ = 30.
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Fig. 5. Absolute error for S11 and S21 values computed using
a FEM and FEM-MOR.

6. Numerical Examples
All the numerical examples presented in this section

were calculated on a computer with an Intel i7 processor
and 16 GB RAM in MATLAB. We first consider a structure
with a single bow-tie discontinuity that does not span the
waveguide height (Fig. 3). The aim of the analysis was to
compute the S-parameters in the bandwidth of 10–12 GHz,
assuming T E10 mode excitation. First, in order to generate
the reference results, the structure was analyzed by means
of the standard FEM formulation using 52,200 degrees of
freedom (DoF). It took 1.5 s to generate a tetrahedral mesh,
37.9 s to assemble the matrices, and 132.6 s to compute the
whole 51 frequency point (fp) characteristic – in total, 170.5 s
(Tab. 1, example I). Next, the structure was simulated using
the proposed method. It took 1.5 s and 38.3 s to obtain the
mesh and corresponding matrices, respectively, resulting in
58,002 DoF. We then projected the basis functions for Γ1 and
Γ2 onto a subspace spanned by 49 functions (series (16) with
L = 3), and the basis functions from P1 and P2 onto a sub-
space spanned by the dominant waveguide mode T E10. The
preparatory stage was completed by the reduction of the sub-
domains: Ω1 (reduction order q = 4, 10.5 s) and Ω3 (q = 2
and 5.2 s). The total time for computation of the preparatory
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Fig. 6. S-characteristics of the waveguide filter with inhomo-
geneity in the z direction obtained using standard FEM
and FEM-MOR for φ1. . .4 = [−30◦, −28◦, 28◦, 30◦].
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Fig. 7. Absolute error for S11 and S21 values com-
puted using a FEM and FEM-MOR for φ1. . .4 =
[−30◦, −28◦, 28◦, 30◦].

stage was 61 s; however, it was performed only once for all
subsequent tuning stages. Each tuning stage, which includes
the second reduction of the entire domain (q = 6) and the
final solution in the whole frequency band, takes only 7.4 s
(Tab. 1). The S-characteristics of the structure obtained by
means of the standard FEM and FEM-MOR for φ = 30 are
presented in Fig. 4 and the error plots are shown in Fig. 5.
Very good agreement can be observed over the entire band-
width.

In the standard approach the whole FEM procedure
has to be repeated each time the geometry changes (e.g.
for 10 tuning stages the overall standard FEM time is
10×170.5 s = 1705 s). In our approach the preparatory stage
is performed once and only the tuning stage is performed af-
ter each of the geometry changes (61 s + 10 × 7.4 s = 135 s).
Therefore, the speed-up of the FEM-MOR compared to the
standard FEM increases with the number of tuning stages.
For 1 and 10 tuning stages the FEM-MOR is 2.4 and 12.4
times faster, respectively. Since the choice of L affects only
the preparatory stage, it has quite moderate influence on the
overall CPU time. For L=4 the speed-up for 10 tunings de-
creases from 12.6 to 11.6 (only by 8%).
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Fig. 8. S11-characteristics of the waveguide filter ob-
tained using FEM-MOR for 3 cases of φ1. . .4:
A[−10◦, −80◦, 80◦, 10◦], B[50◦, 0◦, 0◦, −50◦] and
C[−30◦, −28◦, 28◦, 30◦].

Example standard FEM-MOR stages speedup for
FEM preparatory tuning 10 tunings

I 170.5s 61.0s 7.4s 12.6
II 986.5s 152.9s 23.9s 25.2
III 894.3s 89.6s 21.8s 29.0

Tab. 1. Comparison of the performance of FEM and FEM-
MOR.

The second example deals with a third-order waveguide
filter containing four metallic elliptical posts with the pass-
band at 10.05–10.2GHz. The geometry and dimensions of
the filter are provided in [4], where the posts are full-height
while in our case they are partial-height (h = 9.16mm).
Therefore, we refer our results to standard FEM instead of [4].
Each of the rotatable elements is enclosed in cylindrical sub-
domains of diameter 5mm with buffer layers 1mm thick.
As in the previous example L is set to 3. In the reduction
process, we used q = 2 for each of the cylindrical subdomains
and q = 4 for the outer region. In the tuning stage 4 values of
φ1...4 are set, and 4 corresponding buffer meshes and matri-
ces are generated. The second reduction (with respect to the
ports of the structure) using q = 6 is applied, and the result-
ing system of equations is solved in 51 f p. The computation
times are compared in Tab. 1. Figures 6 and 7 show respec-
tively the S-characteristics of the filter obtained by standard
FEM and FEM-MOR and the error plots. Figures 8 and 9
show the characteristics for different values of the rotation
angles φ1...4. The computation times for the tuning stages do
not depend on the rotation angles. For 10 tuning stages, the
computation time is as much as 25 times shorter.

The final test (example III) involves the same waveg-
uide filter as in the example II, but for the full height of the
elliptical cylinders. Since the structure is homogeneous in
the z dimension, only the Ez component of the electric field
is nonzero. In the orthogonal projection, we therefore used
the expansion (17). In effect, the number of functions in the
projection basis is 7 (series (17) with L = 3), compared to
49 in example II. The other parameters of the FEM-MOR
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Fig. 9. S21-characteristics of the waveguide filter ob-
tained using FEM-MOR for 3 cases of φ1. . .4:
A[−10◦, −80◦, 80◦, 10◦], B[50◦, 0◦, 0◦, −50◦] and
C[−30◦, −28◦, 28◦, 30◦].

analysis remain unchanged. The simulation times for FEM
and FEM-MOR are presented in Tab. 1 (example III). The
homogeneity of the tuning posts reduces mostly the time for
the preparatory stages. The tuning times remain comparable
for both full and partial height cylinders.

7. Conclusion
In this paper, we presented a technique for the efficient

full-wave analysis of structures that contain rotatable tuning
elements. The 3DFEMmethod, chosen to allow arbitrary ge-
ometries of the structure and rotating elements, is enhanced
by model order reduction (MOR). In order to speed up analy-
sis, the most time-consuming operations – mesh generation,
FEMmatrix assembly, orthogonal projection, andMOR– are
grouped and performed only once prior the subsequent mas-
sively repeated tuning steps. The rotations of the tuning ele-
ments require only minor updates in tiny subdomains, which
involves operations that can be performed very quickly. It was
demonstrated through numerical examples that the presented
technique significantly accelerates the analysis, and can be
further developed into a versatile optimization tool.
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