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We investigate one-way communication scenarios where Bob operating on his component can transfer some
subsystem to the environment. We define reduced versions of quantum-communication rates and, further, prove
upper bounds on a one-way quantum secret key, distillable entanglement, and quantum-channel capacity by
means of their reduced versions. It is shown that in some cases they drastically improve their estimation.
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I. INTRODUCTION

Recent years have seen enormous advances in quantum-
information theory proving it has been well established as a
basis for a concept of quantum computation and communica-
tion. Much work [1–7] has been performed to understand how
to operate on quantum states and distill entanglement enabling
quantum data processing or to establish quantum secure com-
munication between two or more parties. One of the central
problems of the quantum-communication field is to estimate
the efficiency of communication protocols establishing secure
communication between involved parties or distilling quantum
entanglement [5–11]. Most simple communication scenarios
are those that do not use a classical side channel or use it only
in a one-way setup. The challenge for the present theory is to
determine good bounds on such quantities as the secret key rate
or quantum channel capacity and distillable entanglement of a
quantum state, which allow the estimation of communication
capabilities. In this paper, we provide efficient upper bounds,
avoiding a massive overestimation of communication rates.
We are inspired by classical information and entanglement
measures theory where so-called reduced quantities have been
used [8,10,12]. Herewith we consider two pairs of quantities:
private capacity P and quantum one-way secret key K→, and
one-way quantum channel capacity Q→ and one-way dis-
tillable entanglement D→, providing efficient upper bounds.
We prove that in some cases the bounds explicitly show that
the corresponding quantity is relatively small if compared to
sender and receiver systems. The main method is again the fact
that all of the aforementioned quantities vanish on some classes
of systems. Moreover, we introduce “defect” parameters �

for the reduced quantities resulting from possible transfer of
subsystems on the receivers’ side, which are (sub)additive and,
hence, can be exploited in the case of composite systems and
regularization.

II. REDUCED ONE-WAY SECRET KEY

A secret key is a quantum resource allowing two parties,
Alice and Bob, a private communication over a public channel.
In an ideal scenario, they generate a pair of maximally
correlated classical secure bit strings such that Eve, repre-
senting the adversary in the communication, is not able to
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receive any sensible information from further communication
between Alice and Bob. In this section, we elaborate on
the generation of a one-way secret key from a tripartite
quantum state shared by the parties with Eve that means
Alice and Bob can use only protocols consisting of local
operations and one-way public communication. We propose a
new reduced measure of the one-way secret key that simplifies
in many cases an analysis of the one-way security of quantum
states.

To derive new observations about the one-way quantum
secret key, in this section we use fundamental information
notions engaging entropy1 and quantum mutual information,2

which play a vital role in quantum-information theory. We
state a new result about the upper bound on the Holevo
function,3 χ (·):

Observation 1. For any ensemble of density matrices A =
{λi,ρ

i
BB ′ } with the average density matrix ρBB ′ = ∑

i λiρ
i
BB ′ ,

the following holds:

χ (ρBB ′) � χ (ρB) + 2S(ρB ′ ). (1)

Proof. On the basis of subadditivity and concavity of
quantum entropy, we can easily show that∣∣∣∣S(ρBB ′ ) −

∑
i

piS
(
ρi

BB ′
) − S(ρB) +

∑
i

piS
(
ρi

B

)∣∣∣∣
� |S(ρBB ′ ) − S(ρB)| +

∣∣∣∣∑
i

piS
(
ρi

BB ′
) −

∑
i

piS
(
ρi

B

)∣∣∣∣
� S(ρB ′ ) +

∑
i

piS
(
ρi

B ′
)

� 2S(ρB ′ ),

1For any quantum state ρ one can define a concave function S(ρ) ≡
−Tr(ρ log2 ρ), called the von Neumann entropy, and its classical
counterpart, the Shannon entropy, for a probability distribution P :
H (P ) ≡ −∑

x P (x) log2 P (x).
2For any bipartite state ρAB , one defines the quantum mutual

information I (A : B) = S(A) + S(B) − S(AB), and further, for a
tripartite system ρABC , the conditional quantum mutual information
I (A : B|C) = S(AC) + S(BC) − S(ABC) − S(C), where we use
the notation for the entropy of X system S(ρX) = S(X).

3The Holevo function χ (·) is defined for any ensemble of density
matrices A = {pi,ρi} with average density matrix ρ = ∑

i piρi as
follows: χ (ρ) = S(

∑
i piρi) − ∑

i piS(ρi), which is a good upper
bound [13,14] on the accessible information.
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where we applied the triangle inequality. This completes the
proof. �

One can use [5,6] a general tripartite pure state ρABE

to generate a secret key between Alice and Bob. Alice
engages in a particular strategy to perform a quantum measure-
ment [positive operator-valued measure (POVM)] described
by Q = (Qx)x∈X , which leads to ρ̃ABE = ∑

x |x〉〈x|A ⊗
TrA[ρABE(Qx) ⊗ IBE]. Therefore, starting from many copies
of ρABE , we obtain many copies of cqq states ρ̃ABE and we
restate the theorem, defining a one-way secret key K→.

Theorem 1 [5]. For every state ρABE, K→(ρ) =
limn→∞

K (1)
→ (ρ⊗n)

n
, with K (1)

→ (ρ) = maxQ,T |X I (X : B|T ) −
I (X : E|T ), where the maximization is over all POVMs
Q = (Qx)x∈X and channels R such that T = R(X) and
the information quantities refer to the state ωTABE =∑

t,x R(t |x)P (x)|t〉〈t |T ⊗ |x〉〈x|A ⊗ TrA(ρABE(Qx) ⊗ IBE).
The range of the measurement Q and the random variable T

may be assumed to be bounded as |T | � d2
A and |X | � d2

A,
where T can be taken as a (deterministic) function of X .

In the following, we define a modified version of the
one-way secret key rate K→ based on the results of [8,10]
for reduced intrinsic information and reduced entanglement
measure.

Definition 1. For the one-way secret key rate K (1)
→ (ρABB′ ) of

a bipartite state ρABB′ ∈ B(HA ⊗ HBB′ ) shared between Alice
and Bob, the reduced one-way secret key rate K (1)

→ ↓ (ρABB′ )
is defined as

K (1)
→ ↓ (ρABB′ ) = inf

U
[K (1)

→ (U(ρAB)) + �K→ ], (2)

where U denotes unitary operations on Bob’s system with
a possible transfer of subsystems from Bob to Eve; that
is, U(ρAB) = TrB ′(I ⊗ U)ρABB ′ . �K→ = 4S(ρB ′ ) denotes the
defect parameter related to the increase of entropy produced
by the transfer of the B ′-subsystem from Bob’s side to Eve
after the action of U .

The reduced one-way secret key rate is an upper bound on
K→, which we prove now for every cqq state ρ.

Theorem 2. For every cqq state ρABE , the following
holds:

K→(ρ) = lim
n→∞

K (1)
→ (ρ⊗n)

n
� K→ ↓ (ρ), (3)

where K→ ↓ (ρ) = limn→∞
K (1)

→ ↓(ρ⊗n)
N

. In particular, for the
identity operation U = id on Bob’s side, one obtains
K→(ρABB ′) � K→(ρAB) + 4S(ρB ′ ).

To prove this theorem, one can start showing how the
formula behaves for a one-copy secret key.

Lemma 1. For every cqq state ρABE , the following
holds:

K (1)
→ (ρ) � K (1)

→ ↓ (ρ). (4)

Proof. Since{
I (A : B|C) = S(AC) + S(BC) − S(ABC) − S(C),
I (A : E|C) = S(AC) + S(EC) − S(AEC) − S(C),

then

K (1)
→ (ρ) = max

Q,C|A
[S(BC) − S(ABC) − S(EC) + S(AEC)].

To prove Lemma 1, it suffices to show that

K (1)
→ (ρA(BB ′)E) � K (1)

→ (ρAB(B ′E)) + 4S(B ′) (5)

because, in the case of an application of U without discarding
subsystem B ′, one obtains an equality. We denote by ρAB(B ′E)

a transition of the B ′ subsystem to the environment. Both
parts (Alice and Bob) use the maximizing local operations
and classical communication (1-LOCC) protocol to find the
secret key rate; thus, we omit further the maximization symbol,
which reflects a choice of the maximizing protocol by Alice
and Bob:

S(BB ′C) − S(ABB ′C) − S(EC) + S(AEC)

�S(BC) − S(ABC) − S(B ′EC) + S(AB ′EC) + 4S(B ′).

It is easy to note that the application of unitary operations on
Bob’s side does not change the inequality, mainly due to the
property of unitary invariancy of the von Neumann entropy.
To simplify the proof, one can decompose this inequality into
the following two inequalities:

S(BB ′C) − S(ABB ′C) � S(BC) − S(ABC) + 2S(B ′),
S(B ′EC) − S(AB ′EC) � S(EC) − S(AEC) + 2S(B ′),

(6)

or, equivalently considering the assumption that the initial state
is of cqq type and A represents the classical distribution, we
can rewrite the first inequality in the form

S

( ∑
i

piρ
BB ′
i

)
− H (pi) −

∑
i

piS
(
ρBB ′

i

) − S

( ∑
i

piρ
B
i

)

+ H (pi) +
∑

i

piS
(
ρB

i

)
� 2S(B ′)

and, similarly for the second inequality, which gives as a result
a more compact structure, we can write

χ
(∑

i piρ
BB ′C
i

) − χ
(∑

i piρ
BC
i

)
� 2S(B ′),

χ
(∑

i piρ
B ′EC
i

) − χ
(∑

i piρ
EC
i

)
� 2S(B ′).

However, the above was proved in Observation 1, which
completes the proof. �

Finally, we extend this result in the asymptotic regime,
proving Theorem 2.

Proof. To prove Theorem 2, it suffices to notice that (4) holds
under 1-LOCC and an arbitrarily chosen U for any ρn = ρ⊗n.
Moreover, the existence of the defect parameter �K→ enables
regularization of the reduced one-way secret rate since, in the
asymptotic regime after application of unitary operations on
Bob’s side (one can view his operation on the B ′ system as
an action of � channel resulting from the unitary operations
acting on the whole Bob side), one can apply subadditivity
of entropy to estimate entropy of the transferred B ′ part. In
particular, for the identity operation, one achieves S(ρ⊗n

B ′ ) =
nS(ρB ′ ). This implies K→(ρABB ′) � K→(ρAB) + 4S(ρB ′ ). �

It is interesting that our results reflect E nonlockability of
the secret key rate [15], which means that the rate cannot be
locked with information on Eve’s side. Measures of classical
or quantum correlations are lockable if they can decrease
arbitrarily after measuring one qubit in a multipartite scheme—
in this case by operations on Eve’s side.
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Monogamy of entanglement has been used to prove that
for some region the quantum depolarizing channel has zero
capacity even if does not destroy the entanglement [16], which
is a particular application of the symmetric extendibility of
states to evaluation of the quantum channel capacity. The
following examples show application of the concept.

Example 1. As an example of application of Theorem 2,
we present a state which, after discarding a small B ′ part on
Bob’s side, becomes a symmetric extendible state [17]. This
example is especially important since the presented state does
not possess [18] any symmetric extendible component in its
decomposition for symmetric and nonsymmetric parts; thus,
one cannot use the method [19] to find an upper bound on K→
by means of linear optimization. Let us consider a bipartite
quantum state shared between Alice and Bob on the Hilbert
space HA ⊗ HB

∼= Cd+2 ⊗ Cd+2:

ρAB = 1

2

⎡
⎢⎣

ϒAB 0 0 A
0 0 0 0
0 0 0 0
A† 0 0 ϒAB

⎤
⎥⎦ , (7)

whereA is an arbitrarily chosen operator so that ρAB represents
a correct quantum state. This matrix is represented in the
computational basis |00〉,|01〉,|10〉,|11〉 held by Alice and Bob
and possesses a canonical maximally entangled state structure.
Whenever one party (Alice or Bob) measures the state, the state
decoheres and off-diagonal elements vanish, which leads to a
symmetric extendible state [17],

ϒAB = d

2d − 1
P+ + 1

2d − 1

d−1∑
i=1

|i 0〉〈i 0|, (8)

from which no entanglement or secret key can be distilled
by means of 1-LOCC [17,19–21]. Therefore, by applying
Theorem 2, one derives K→(ϒAB) = 0 and K→(ρAB) �
K→ ↓ (ρAB) = 4.

Example 2. Let us consider a graph state [22] |G〉 of a
(3n + 1)-qubit system associated with a mathematical graph
G = {V,E}, composed of a set V of 3n + 1 vertices and a set
E of edges {i,j} connecting each vertex i with some other j ,

|G〉 =
⊗
i,j∈E

CZij |G0〉, (9)

where 3n + 1 qubits are initialized in the product state
|G0〉 = ⊗

i∈V |ψi〉 with |ψi〉 = |0i〉 + |1i〉. Afterward, one
applies a maximally entangling control-Z (CZ) gate to all
pairs {i,j} of qubits joined by an edge: czij = |0i0j 〉〈0i0j | +
|0i1j 〉〈0i1j | + |1i0j 〉〈1i0j | − |1i1j 〉〈1i1j |. If Alice takes no
more than n qubits from the graph system that is used to
establish communication with Bob, who uses another n qubits
in this graph state, then they will be not able to set secure
one-way communication by any means. This results from the
fact that the state ρAB

2n (with n qubits on Alice’s side and n

qubits on Bob’s side) is symmetric extendible to a state ρAB
3n ,

which means that K→(ρAB
2n ) = 0. A natural symmetric exten-

sion of ρAB
2n is a state ρAB

3n = TrB ′ |G〉〈G| resulting from tracing
out an arbitrarily chosen qubit B ′ from graph G. However,
if Alice takes n qubits and Bob takes n + 1 qubits from the
graph system, the resulting state ρAB

2n+1 is no longer symmetric

extendible. For example, for n = 2, this state has the spectral
representation

ρAB
2n+1 = 1

2 (|φ0〉〈φ0| + |φ1〉〈φ1|), (10)

where |φ0〉 = |0A〉|0B〉 + |1A〉|1B〉, |φ1〉 = |0A〉|1B〉 −
|1A〉|0B〉, and {|0〉A = |00 − 01 − 10 − 11〉A,|1〉A = |00 +
01 + 10 − 11〉A, |0〉B = |001 + 010 + 100 − 111〉B, |1〉B =
|000 − 011 − 101 − 110〉B}. This state is isomorphic to a
qubit bipartite state and meets the condition [23,24] for
C2 ⊗ C2 Bell-diagonal states to be symmetric extendible:
4
√

det(ρAB) � Tr(ρ2
AB) − 1

2 . One can easily show the
isomorphism of ρAB

2n+1 for any n with a qubit bipartite
state structure (10). Thus, for a one-way secret key of the
state, K→(ρAB

2n+1) � K→ ↓ (ρAB
2n+1) = 4 holds, since after

discarding one qubit B ′ on Bob’s side his system would
become symmetric extendible.

III. UPPER BOUND ON QUANTUM CHANNEL CAPACITY

The best known definition of the one-way quantum
channel capacity Q→(�) [3,25] is expressed as an asymp-
totic regularization of coherent information: Q→(�) =
limn→∞ 1

n
supρn

Ic(ρn,�
⊗n) with parallel use of N copies of

the � channel, where the one-copy formula is Q(1)
→(�) =

supρ Ic(ρ,�). Coherent information for a channel � and a
source state σ transferred through the channel is defined
as Ic(σ,�) = IB(I ⊗ �)(|�〉〈�|), where � is a pure state
with reduction σ , and coherent information of a bipartite
state ρAB shared between Alice and Bob is defined as
IB(ρAB) = S(B) − S(AB). We use further the following
notation: Ic(A〉B) = IB(ρAB).

Observation 2. For a bipartite state ρABB ′ ∈ B(HA ⊗ HB ⊗
HB ′ ) shared between Alice and Bob (B and B ′ system), the
following holds:

Ic(A〉BB ′) � Ic(A〉B) + 2S(B ′). (11)

Proof. One can easily observe that, for subadditivity of en-
tropy S(BB ′) � S(B) + S(B ′) and for the Araki-Lieb inequal-
ity |S(AB) − S(B ′)| � S(ABB ′), the left-hand side can be
bounded as follows: S(BB ′) − S(ABB ′) � S(B) + S(B ′) −
S(AB) + S(B ′) = Ic(A〉B) + 2S(B ′), which completes the
proof. �

Motivated by the reduced quantity of the secret key rate
and the preceding observation, we further derive the reduced
version of the quantum channel capacity and show that it is a
good bound on quantum channel capacity.

Definition 2. For a one-way quantum channel �BB ′ :
B(HBB ′ ) → B(HB̃B̃ ′ ), the reduced one-way quantum channel
capacity is defined as

Q(1)
→ ↓ (�BB ′ ) = inf

U
[Q(1)

→(U(�B)) + �Q→ ], (12)

where U denotes unitary operations on Bob’s system with a
possible transfer of subsystems from Bob to Eve after action
of the �BB ′ channel, that is, U(�B(ρB)) = TrB ′U�BB ′(ρBB ′).
�Q→ = 2 supρBB′ S(TrBU�BB ′(ρBB ′)) denotes the defect pa-
rameter related to the increase of entropy produced by the
transfer of the B ′-subsystem from Bob’s side to Eve after the
action of U .
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Theorem 3. For any one-way quantum channel �BB ′ :
B(HBB ′) → B(HB̃B̃ ′),

Q→(�BB ′) � Q→ ↓ (�BB ′ ) (13)

holds, where Q→ ↓ (�BB ′ ) = limn Q(1)
→ ↓ (�⊗n

BB ′)/n denotes
the reduced quantum capacity. In particular, for the identity
operation U = id on Bob’s side, one obtains Q→(�BB ′) �
Q→(�B) + 2 supρBB′ S(TrB�BB ′ (ρBB ′)).

To prove this inequality for regularized quantum capacity
and its reduced version, it is sufficient to derive the following
lemma for the single-copy case in analogy to Lemma 1 for the
one-way secret key rate.

Lemma 2. For any one-way quantum channel �BB ′ :
B(HBB ′) → B(HB̃B̃ ′), the following holds:

Q(1)
→(�BB ′) � Q(1)

→ ↓ (�BB ′). (14)

Proof. The proof of this lemma is straightforward with the
application of Observation 2 that, for a state ρBB ′ maximizing
coherent information on the left-hand side of the observation,
the above formula also holds for a possible transfer of B ′ to the
environment. It is worth recalling that an action of the unitary
operator on a state does not change its entropy and, as a result,
does not change the coherent information for any partition of
the system. �

Furthermore, one can complete the proof of the theorem in
the asymptotic regime:

Proof. To prove the inequality of Theorem 3 asymptotically
it suffices to notice that statements of Lemma 2 hold
also for the arbitrarily chosen state ρn = ρ⊗n. Now
we can prove that Q→(�BB ′) � Q→(�B) + �Q→ . Let
ρBB ′

n be a state maximizing Q→(�BB ′) as an asymptotic
regularization of coherent information; that is, Q→(�BB ′) =
limn→∞ 1

n
Ic(ρBB ′

n ,�⊗n
BB ′ ), which one can represent as

Ic(A〉BB ′) for the aforementioned Choi-Jamiolkowski
isomorphism between states and channels. Based on
Observation 1, one can immediately derive for the maximizing
state ρBB ′

n : 1
n
Ic(A〉BB ′) � 1

n
[Ic(A〉B) + 2S(ρB ′

n )], where
Ic(A〉B) = Ic(TrB ′ρBB ′

n ,�⊗n
B ) and ρB ′

n = TrB�⊗n
BB ′ (ρBB ′

n ).
However, if there exists a state σB

n for which
Ic(σB

n ,�⊗n
B ) > Ic(TrB ′ρBB ′

n ,�⊗n
B ), then it proves that

the right-hand side of the inequality in the lemma can
only be larger than in case of the chosen state ρBB ′

n ,
which completes the proof. Finally, the aforementioned
proof for key subadditivity of entropy can be applied to
verify that, in the case of the regularized reduced secret
key, its defect parameter cannot be larger than �Q→ =
2 supρBB′ S(TrBU�BB ′(ρBB ′)), since for any state ρX1...Xn

and
channel �̃ there holds: S(�̃⊗n(ρX1...Xn

)) �
∑

i S(�̃(ρXi
)),

which implies supρBB′
n

S(TrB(U�BB ′)⊗n(ρBB ′
n )) �

n supρBB′ S(TrBU�BB ′(ρBB ′)). �
Example 3. We use the aforementioned graph state from

Example 2 and we search for the one-way channel capacity of
a channel �BB ′ , isomorphic due to the Choi-Jamiolkowski
isomorphism, with a state ρABB ′

2n+1 = (I ⊗ �BB ′)|�〉〈�|. As
above, after discarding the B ′ 1-qubit system, the state would
become symmetric extendible, which implies Q→(�B) = 0.
Therefore, we obtain Q→(�BB ′) � 2.

The power of the above results is especially visible in
application of Theorem 3 to any channel reducible to an

antidegradable channel for which the Choi-Jamiolkowski rep-
resentation is symmetric extendible [23] or channels reducible
to degradable channels which have known capacity [26].

IV. DUAL PICTURE FOR ONE-WAY DISTILLABLE
ENTANGLEMENT AND PRIVATE INFORMATION

Our results for the one-way secret key and quantum channel
capacity lead immediately to a similar reduced formula
for private information and one-way distillation quantities.
The private capacity [7] P(�) of a quantum channel is
equal to the regularization of private information, P (1)(�) =
maxX,ρA

x
[I (X,B) − I (X,E)], with maximization over classi-

cal random variables X and input quantum states ρA
x depending

on the value of X. Absorbing T into the variable X in
Theorem 1 leads to definitions for private information and
private capacity [7]; thus, following Lemma 2, we can derive
an upper bound on private information and private capacity
via their reduced counterparts.

Definition 3. For a one-way quantum channel �BB ′ :
B(HBB ′) → B(HB̃B̃ ′ ), the reduced private information is
defined as

P (1) ↓ (�BB ′) = inf
U

[P (1)(U(�B)) + �P ], (15)

where U denotes unitary operations on Bob’s system with
a possible transfer of subsystems from Bob to Eve; that is,
U(�B(ρB)) = TrB ′U�BB ′(ρBB ′). �P = 4S(ρB ′ ) denotes the
defect parameter related to an increase of entropy produced by
the transfer of the B ′-subsystem from Bob’s side to Eve after
the action of U .

Theorem 4. For a one-way quantum channel �BB ′ :
B(HBB ′) → B(HB̃B̃ ′ ),

P(�BB ′) � P ↓ (�BB ′) (16)

holds, where P ↓ (�BB ′) = limn P (1) ↓ (�⊗n
BB ′)/n denotes the

reduced private capacity. In particular, for the identity opera-
tion U = id on Bob’s side, one obtains P(�BB ′) � P(�B) +
4S(ρB ′ ).

The proof can be conducted in analogy to Theorem 2 and
Lemma 2, however, because the regularization of reduced
private information it is crucial to derive the following lemma
for a one-copy case.

Lemma 3. For every one-way quantum channel �BB ′ :
B(HBB ′) → B(HB̃B̃ ′ ), the following holds:

P (1)(�BB ′) � P (1) ↓ (�BB ′). (17)

Proof. To prove this lemma, it suffices to absorb variable T

into X in Theorem 1 for the definition of private information
and to conduct the proof in analogy to the proof of Lemma 1
for a channel �BB ′ and a chosen state ρ sent through it. �

We can now propose a new bound on distillation of entan-
glement by means of a one-way LOCC. This result is based
on the observation [7] that one-way distillable entanglement
D→ of a state ρAB can be represented as the regularization
of a one-copy formula, D(1)

→ (ρAB) = maxT
∑L

l=1 λlIc(A〉B)ρl
,

where the maximization is over quantum instruments T =
(T1, . . . ,TL) on Alice’s system, λl = TrTl(ρA), Tl is assumed
to have one Kraus operator Tl(ρ) = AlρA

†
l , and ρl = 1

λl
(Tl ⊗

id)ρAB . Based on the results of Observation 2 and Lemma
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2, we derive a general formula for the bound on one-way
distillable entanglement applying the reduced quantity.

Definition 4. For a bipartite state ρABB ′ ∈ B(HA ⊗ HB ⊗
HB ′) shared between Alice and Bob (B and B ′ system), the
reduced one-way distillable entanglement is defined as

D(1)
→ ↓ (ρABB ′ ) = inf

U

[
D(1)

→ (U(ρAB)) + �D→
]
, (18)

where U denotes unitary operations on Bob’s system with
a possible transfer of subsystems from Bob to Eve; that
is, U(ρAB) = TrB ′ (I ⊗ U)ρABB ′ . �D→ = 2S(ρB ′ ) denotes the
defect parameter related to the increase of entropy produced
by the transfer of the B ′-subsystem from Bob’s side to Eve
after the action of U .

Theorem 5. For a bipartite state ρABB ′ ∈ B(HA ⊗ HB ⊗
HB ′) shared between Alice and Bob (B and B ′ system),

D→(ρABB ′) � D→ ↓ (ρABB ′)

holds, where �D→ = 2S(ρB ′ ) and D→ ↓ (ρABB ′) =
limn D(1)

→ ↓ (ρ⊗n
ABB ′)/n denotes the regularized version

of reduced one-way distillable entanglement for one copy. In
particular, for the identity operation U = id on Bob’s side,
one obtains D→(ρABB ′) � D→(ρAB) + 2S(ρB ′ ).

The proof of this theorem can be conducted in analogy to
the previous proofs for bounds on one-way secret keys and
quantum channel capacity. The left inequality is an immediate
implication of the following lemma for the one-copy formula.

Lemma 4. For every bipartite state ρABB ′ , the following
holds:

D(1)
→ (ρABB ′) � D(1)

→ ↓ (ρABB ′). (19)

Proof. It suffices to use the results of Observation 2 to
notice that, for a chosen set of instruments T on Alice’s side for
calculation of D(1)

→ (ρABB ′), the inequality holds as an extension
of the inequality from Observation 2 by multiplicands λl on
the left and right sides. However, if in case of calculating
D(1)

→ (ρAB) there exists a set T′ that maximizes D→(ρAB) better
than T, then the right-hand side of the inequality can be only
greater. �

It is crucial to notice that the “defect” parameters � for the
reduced quantities are subadditive and, hence, can be exploited
in the case of composite systems and regularization.

Corollary. For the reduced quantities of {K→,P,Q→,D→},
for composite systems, �X(ρ ⊗ σ ) � �X(ρ) + �X(σ ) and
�Y (� ⊗ �) � �Y (�) + �Y (�) hold, where X = {K→,D→}
and Y = {Q→,P} stand for states for channels, respectively.

To prove the above corollary, it suffices to use the
subadditivity of entropy for composite systems since Bob
can act with a unitary operation before he discards some
part of his subsystem. This property of the parameters
enables regularization in the asymptotic regime of the reduced
quantities for large systems ρ⊗n.

Example 4: Activable multiqubit bound entangled states.
As an example illustrating this bound, we consider an
activated bound entangled state ρII [27], which is distillable
if the parties (Alice and Bob) form two groups containing
between 40% and 60% of all parties of the system in the
state ρII . If Alice or Bob possess less than 40% of the
system or if the system is shared between more than two
parties, then the state becomes undistillable. This state for a
large amount of particles can manifest features characteristic
of “macroscopic entanglement” with no “microscopic
entanglement.” For a definition of the state, let us consider the
family ρN of N -qubit states: ρ = ∑

σ=± λσ
0 |�σ

0 〉〈�σ
0 | +∑

k �=0 λk(|�+
k 〉〈�+

k | + |�−
k 〉〈�−

k |), where |�±
k 〉 =

1√
2
(|k1k2 · · · kN−10〉 ± |k1k2 · · · kN−11〉) are Greenberger-

Horne-Zeilinger-like states with k = k1k2 · · · kN−1 being a
chain of N − 1 bits and ki = 0,1 if ki = 1,0; thus, the state
is parametrized by 2N−1 coefficients. Let us consider now
a bipartite splitting P where Alice takes 0.6N qubits and
Bob takes the other 0.4N qubits. We can immediately show
that D→(ρII ) � −2(λ±

0 + 2
∑

k λk) log2(λ±
0 + 2

∑
k λk)

since, for Bob transferring one qubit to the environment, we
obtain the undistillable state D↔(ρN−1) = 0. It is noticeable
that, even for a large macroscopic system with N → ∞,
D→(ρII ) � −2(λ±

0 + 2
∑

k λk) log2(λ±
0 + 2

∑
k λk). It can

be easily shown that with the same method it is possible to
achieve an upper bound on the one-way quantum channel
capacity Q→.

V. CONCLUSIONS

In this paper we proposed reduced versions of quantum
quantities: a reduced one-way quantum key, distillable entan-
glement, and reduced corresponding capacities. We showed
that in some cases these quantities may provide bounds on the
nonreduced versions, drastically simplifying their estimations.
It is evident especially for states of large systems, as supported
by examples. The open problem is whether they can be applied
to a nonadditivity problem of quantum channel capacities and
quantum secure keys [11,26]. Furthermore, it is not known if
they have analogs in general quantum networks or whether
the bounds can be improved by better estimation of defect
parameters.
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