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Abstract

In the paper we present a modern efficient parallel OpenMP-+CUDA imple-
mentation of crowd simulation for hybrid CPU+GPU systems and demon-
strate its higher performance over CPU-only and GPU-only implementations
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000 000 agents. We show how performance varies for various tile sizes and
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main sizes among CPUs and GPUs of a high performance system with 2
Intel Xeon Silver multicore CPUs and 8 NVIDIA Quadro RTX 5000 GPUs.
We then present how execution time depends on the number of agents as
well as the number of CUDA streams used for parallel execution of several
CUDA kernels. We discuss the design and implementation of an algorithm
with CPU computational threads, GPU management threads, assignment of
particular tasks to threads as well as usage of pinned memory and CUDA
shared memory for maximizing performance.
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1. Introduction

Crowd simulation has become an important topic in today’s society as it
allows to model many scenarios that are of interest especially in modern cities
— in the context of evacuations because of natural disasters, facility failures,
terrorist attacks as well as optimizing traffic, designing new buildings, areas,
passes etc. As the density of objects in such scenarios is still increasing,
use of high performance computing systems [1] has become a necessity to
simulate a large number of possibly interacting agents [2, 3, 4|, using also
new hardware solutions such as NVRAM for efficiency and fail-safety of a
solution [5].

Currently most of computer systems are available in multicore CPU(s)+
GPU(s) setups which on one hand made it possible to exploit computational
power of such a hybrid system, on the other hand this task is difficult as
it requires non-trivial load balancing, minimizing communication and over-
heads and mastering proper APIs. CPU+GPU systems have been known
to deliver high performance for various applications such as: matrix fac-
torization [6], optical remote sensing image processing [7], parallelization of
large vector similarity computations [8] etc. The contribution of this work
is a modern efficient CPU+GPU OpenMP-+CUDA implementation of the
demanding crowd simulation problem that demonstrates performance better
than CPU and GPU only solutions using techniques such as load balancing
with tiling, multiple CUDA streams, pinned and shared GPU memory.

2. Related work

In the literature there have been several models [9] proposed for crowd
simulation that can be grouped into major categories such as: microscopic
(rule-based, force-based, velocity-based, agent-based and vision-based) [10],
macroscopic (continuum models, aggregate dynamics, potential field-based
models) as well as mesoscopic models (dynamic group behavior, interactive
group formation, social psychological crowds). In terms of future challenges
and directions such as generally increasing realism of simulations [11|, apart
from approaches and improvements such as data collection and integration,
data-driven crowd modelling [12, 10], cognitive-based crowds, learning to
generate character animation [10], using machine learning approaches, com-
putational efficiency through parallel computing is of key importance in order
to simulate large-scale realistic crowds.
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There are many examples of solutions that use a parallel environment for
crowd simulation. The most common motivation for their development is the
desire to deliver an implementation that could handle a very large number of
agents while providing reasonable execution time of the application. Ways of
solving the problem of crowd simulation parallelization are different. This is
due to differences in the assumptions made during implementation or slightly
different goals that their authors have set for themselves. Nevertheless, all
existing solutions can be assigned to one of three categories which are CPU-
only solutions, GPU-only solutions and CPU+GPU solutions.

2.1. CPU solutions

It appears that most available parallel solutions focus only on using CPU
multithreading. In such implementations, the most commonly used interfaces
are OpenMP and MPI, the latter developed for inter-node communication in
clusters. Results of the tests performed on each implementation show that
parallelization on the CPU does indeed improve the performance of crowd
simulations, which is particularly noticeable for large numbers of agents.
Typically, in these types of solutions, simulations are run for a couple or tens
of thousands of agents. An exception is work [2]|, where the heaviest test
cases involved 250 000 individuals at the same time. The scalability of the
solutions varies. In works [13, 14] it was shown that increasing the number of
resources does not always contribute to an increase in program performance.
On the other hand, the results of the implementation presented in paper [15]
suggest a linear relationship between computing resources and number of
simulation updates per second (which was the performance evaluation met-
ric in this case). In this solution type, the crowd behavior model often plays
the main role. The behavior of individuals is often simulated using complex
models that emphasize realism. In such cases, the matter of parallel pro-
cessing is treated as a secondary issue; it is introduced to ensure acceptable
performance of the computations.

2.2. GPU solutions

Solutions based on GPU computations present a slightly different ap-
proach to the problem. Typically, their goal is to run simulations for many
hundreds of thousands or even hundreds of millions of agents in real-time.
Such an assumption implies the need for simplifying the crowd behavior mod-
els used in the simulation quite significantly. Implementations [16, 3| are
based on the assumption that agents can only navigate between predefined
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environment cells, which is rather unrealistic. Nevertheless, the presented
solutions are able to achieve high computational efficiency, which was their
main goal. Authors of such solutions often mention scalability as their main
advantage, which is noticeably higher than for CPU solutions [3]. Typically,
a linear increase in simulation execution time is observed with an increasing
number of agents involved in a given scenario. In many cases, the use of more
than just one GPU device is considered when designing solutions of this kind.
Such an approach was proposed in work [16]. By using multiple GPU clusters,
its authors managed to run simulations considering 529 million individuals.
Interestingly, in this solution using a relatively large number of nodes for
computations resulted in a significant increase in inter-node communication
time. For this reason, the highest performance was achieved when not all
available GPUs were used.

2.3. Hybrid solutions

CPU-+GPU hybrid solutions are typically structured in a similar way to
GPU solutions; they use less complex models to support as many agents as
possible. An example of this approach is work [4], which is actually an ex-
tension of work [16] presented in Section 2.2. This implementation is based
on MPI, CUDA and the OmpSs interface which is an extension of OpenMP.
Thanks to the combined power of the CPU and GPU, authors of the solu-
tion managed to handle up to 764 million agents at once. Authors of paper
[17] decided to use the GPU in a slightly different way than in the pre-
viously mentioned implementations. Instead of CUDA or OpenCL, GLSL
(OpenGL Shading Language) [18] and textures were used to perform appro-
priate calculations on the graphics card. In a hybrid approach, it is crucial
to properly design how the processor and graphics cards work together. It is
essential to be aware of the advantages and disadvantages of each side. For
example, the CPU is good at complex calculations containing many condi-
tional instructions etc. On the other hand, its limitation is a relatively small
number of cores. In the case of the GPU, the opposite is true. Graphics
cards have many cores, which allow for massive parallelization, but the best
performance is obtained for a code without or with limited divergence. In ad-
dition, an important aspect that has a significant impact on the performance
of CPU+GPU solutions is the data transfer time from the processor to the
graphics card and vice versa. Often these operations are the bottleneck of
the algorithm so minimization of communication is essential.
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3. Proposed approach

3.1. Crowd behavior model

In this solution, Helbing’s model [19], classified as a popular social force
model |20], is used to simulate crowd behavior. It assumes that the movement
of agents is described by three components: self-driving force with current
velocity and agent mass considered, external force exerted by all neighboring
agents, and external force exerted by all neighboring obstacles. The sum of
these values gives the resulting force on the basis of which it is possible to
determine new positions and velocities of the agents.

The decision to choose this particular model was motivated by the desire
to achieve a certain compromise between realism and simplicity, in contrast
to more complex models e.g. Xu’s work [21] — in which an agent’s behavior
is influenced by their gender, age or heart rate level or Mohd Nasir’s work
[22], which involves the implementation of relatively advanced behavioral
mechanisms such as group formation. Helbing’s model is a proven solution
that was developed by experts in the field. It allows for reproducing many
behaviors and phenomena that can be observed in real life scenarios, thanks
to which the simulations based on this model can be considered realistic. On
the other hand, the idea behind Helbing’s model is relatively simple. The
model does not take very small details concerning agents’ representation or
behavior into account, which for scenarios involving a large number of agents
would have an insignificant impact on the credibility of the simulation. As
an example of a more complex model, work [21] can be mentioned, in which
an agent’s behavior is influenced by their gender, age or heart rate level. A
different example can be work [22], which involves the implementation of rel-
atively advanced behavioral mechanisms such as group formation. Of course,
such details indeed increase the level of realism of the solution, however, they
usually have a negative impact on performance as well, which could be par-
ticularly noticeable for large-scale simulations. Moreover, it might not be
irrelevant that the approach described in this work relies greatly on graphics
card computations, which require a slightly different programming approach
to fully exploit GPU potential. For example, it is recommended to avoid con-
ditional statements (if else statements) in the logic of GPU kernels as they
may lead to the so-called branch divergence which has a major impact on
performance [23]. In the implementation of more complex models, avoiding
these types of instructions could be very difficult or impossible, which could
consequently reduce the usefulness of GPUs usage significantly. In terms
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of performance, the most interesting are relatively simple models that are
based on using a discrete domain. For instance, Pérez’s solution [4], which
is capable of handling hundreds of millions of agents simultaneously, is one
of such approaches. However, these types of models lack realism and for this
reason they have not been considered.

3.2. Nawvigation system

In Helbing’s model, each agent moves toward a certain destination point
that is assigned to it. In the simplest simulation scenarios it would be suf-
ficient to assign one fixed target point to every agent at the beginning of
the simulation but for more complex cases this approach would be limiting.
For this reason, we decided to develop a navigation system that would allow
new target positions to be dynamically assigned to agents during simula-
tion. Such a solution does not interfere with the way the model works; it is
only an extension thanks to which the agents can navigate in more complex
environments.

The issue of agent navigation in similar solutions has been addressed
in different ways. For example, in work [24], the A* algorithm [25] was
implemented for navigation, which allows finding the shortest path from point
A to point B. Despite the high efficiency and reliability of this algorithm, it
requires performing an environment space search which is costly in terms of
performance. A different approach was presented in [26]. In this solution, the
decision in which direction an agent should move is determined by its position
in the environment. This method of navigation has some limitations. For
example, it is not possible to create a scenario in which agents residing in a
certain space move in opposite directions. Nevertheless, a great advantage of
this approach is its simplicity and minimal impact on simulation performance.
For this reason the decision was made to develop a solution based on this
approach.

The developed agents’ navigation system mainly consists in defining so-
called navigation zones in the simulation environment. A navigation zone is
a rectangular space of an arbitrary size that navigates all agents within the
zone to the same navigation point. This means that when an agent crosses
the boundary of a navigation zone, its destination point is changed to the
navigation point assigned to that zone. Each navigation zone is assigned
exactly one navigation point. One navigation point can be assigned to more
than one navigation zone. Figure 1 shows the principle of the navigation
system. Each navigation zone is marked with a different color. A navigation


http://mostwiedzy.pl

—0

._,_..---?

Fig. 1: The principle of the agents navigation system.

point that is assigned to a zone is marked with a triangle of the same color.
Agents are represented by black dots.

3.3. Parallelization approach

For parallelization of simulation computations we adopted simulation en-
vironment partitioning. This approach is widely used in similar solutions, as
evidenced by the work of Pérez [4] and Quinn [15]. In our solution, partition-
ing of the environment is performed by defining a so-called computational
grid (also referred to as a grid). A single element of the grid is called a
computational tile (also referred to as a tile). Each tile is a subspace of the
simulation environment and therefore has a specific position and size. Its
purpose is to identify a group of agents whose state can be updated in an in-
dependent way by one of the threads running within the application. In order
to provide such computational independence, it is necessary to obtain data
on agents located in neighboring tiles. In Quinn’s and Pérez’s solution, this
problem was solved by performing communication and mutual information
exchange between independent regions. In our solution exchange of informa-
tion takes place indirectly by the means of so-called margins. Margins are
additional spaces defined around a given tile which overlaps all neighboring
tiles. Thanks to them each tile is aware of the presence of the agents in its
immediate proximity, who may have a significant impact on the state of the
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agents belonging to the tile (Figure 2). It is important to note that it is not
the tiles but a management thread that is responsible for the content of the
margins. This means that there is never any direct communication between
tiles. Updating the content of the tiles and their margins with the latest data
is one of the operations performed (in each step of the simulation) before the
actual processing, thanks to which the tiles are fully independent from each
other at the processing stage.

Fig. 2: Example of partitioning the simulation environment into computational tiles.
One of the tiles is highlighted. The red color indicates the area of the tile, and the
orange color indicates the area of its margins.

Each computational tile has data collections associated with it: identifiers
of so-called primary agents, identifiers of so-called secondary agents, and a
collection of positions of all obstacles located within the tile and its margins.
Primary agents are the individuals whose state must be updated by a thread
to which the tile was assigned. Usually this term is used for agents that are
located inside the tile. Secondary agents are the individuals whose presence
is important from the point of view of performed calculations, but their state
is not updated during tile processing. These agents are treated as obstacles
that may be important in determining new states for primary agents. Usually
these agents would be located in the margins of the given tile. The exception
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for this are the agents that are inside of the tile, but were injured in previous
steps of the simulation. This is because the state of once injured agents is not
being updated anymore. The collection of obstacle positions plays a similar
role as the collection of secondary agents identifiers, however, contrary to it,
the content of the collection of obstacle positions does not change throughout
the simulation.

An important aspect of computational tiles is that their size is not prede-
fined. Their width, height and margin size are input parameters. The size of
the tile determines how work is distributed among the available threads/de-
vices. Selecting a smaller tile size will result in the creation of a large number
of tiles whose content is relatively light computationally. On the other hand,
large tile sizes will result in creating a small number of tiles which would
usually be relatively heavy computationally. This means that the size of
the computational tile can have a significant impact on overall performance.
When choosing the tile size, it is worth considering the number of agents
involved in the simulation, the size of the simulation environment and the
available resources.

To update the state of each primary agent it is necessary to have infor-
mation about every other primary agent, about every secondary agent and
about every obstacle located inside the tile or on its margins. Access to
such a set of information guarantees that the thread processing a given tile
will be able to correctly update the state of all primary agents. However,
it is important to note that not all agents and obstacles inside the tile (or
on its margins) have a significant impact on the state of a given agent. It
can be observed that the larger the distance between a given agent and its
neighbor/obstacle, the smaller the force that affects it. What is more, at a
sufficiently large distance, the effect of such a force is virtually negligible and
for this reason its value could be fully omitted. The parameter describing the
limiting value of the distance beyond which the force is considered negligible
was called the radius of influence. This means that if during the agent’s state
update process the second agent or obstacle is located at a distance greater
than radius of influence then the given force will not be calculated at all
(Figure 3).

3.4. Algorithm overview

The main loop of the algorithm is executed in parallel by multiple threads
using OpenMP, similarly to design of a parallel CPU+GPU framework in [27],
where threads with ids in the range [0, number of available GPU devices)

9


http://mostwiedzy.pl

A\ MOST

Fig. 3: The effect of using the radius of influence on the number of agents considered
when updating the state of a given agent. Solid lines represent the boundaries of the
computational tile, dashed lines define its margins.

manage GPUs, and the other threads participate in operations taking place
on the CPU side. A GPU managing thread handles only one and the same
device throughout the simulation. Inside the loop, there are three stages of
computations execution. All operations in a given stage must be completed
before moving to the next stage. For this reason, at the end of each stage all
operating threads are synchronized. Each stage of the main loop will now be
briefly described.

3.4.1. Stage I

At this point three independent operations are performed in parallel,
as shown in Figure 4: updating the data on the GPUs with determining
the self-driving force of each agent, reassigning agents to the computational
tiles, and saving the current position of the agents computed in the previous

10
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Fig. 4: Diagram illustrating Stage I of the main program loop.

simulation step in the output file. If the number of created threads is large
enough, all these operations can be performed in parallel. Updating data on
GPU devices and calculating new self-driving force values is performed only
by the threads designated for device management. First, the most recent
states of the agents that were determined in the previous simulation step
are sent to each device. This is necessary because in order to update the
agent states the computing unit (GPU device or a CPU) must have access to
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all agent states from the previous simulation step. Data is transferred to a
location in the memory of the devices that holds the agent states designated
for reading. The next step is to compute new self-driving force values for each
agent based on their states from the previous simulation step that have just
been transferred to the device. Afterwards, self-driving force values from
the device are transferred to the host to make the results available to the
threads operating on the CPU side. The last operation performed by all
GPU management threads is device synchronization so that all scheduled
tasks are completed.

The assignment of agents to computational tiles is performed by a sin-
gle CPU thread. The main reason for this is that the agents assignment
operation involves performing a large number of writes to shared resources,
which, when using multiple threads, would require very frequent synchro-
nization between them, significantly affecting performance. Firstly, based on
the agent’s position, the thread finds a tile to which the agent should be
assigned, and after that the agent’s belonging to the margins of neighboring
tiles is determined. Based on that information, the agent’s id is added to
the collection of secondary agent identifiers of the corresponding neighboring
tiles. The final step is to split the computational tiles into two sets for load
balancing of computations: the sets of tiles to be processed on the CPU(s)
and on the GPU(s) respectively. The division is done based on the number
of agents assigned to a tile and a certain threshold, which is one of the simu-
lation parameters. If the number of primary agents assigned to a given tile is
greater than or equal to the threshold value, the tile will be added to the set
of tiles designated for GPU devices, otherwise to the set of tiles designated
for CPU threads. If there are no primary agents on a given tile, that tile is
not assigned to either set and its content is cleared. Splitting tiles into these
two sets is done in order to balance computations between the host and the
devices.

3.4.2. Stage 11

The second stage, depicted in Figure 5, focuses primarily on processing
all of the computational tiles. The way tiles are processed is different for
device managing threads and for regular CPU threads. For GPU manage-
ment, threads, the second stage begins with entering the loop which will be
executed until all device tiles have been processed. A thread fetches a tile in
a critical section and starts processing it. In the case of GPU threads, pro-
cessing consists primarily of appropriate transfer of data regarding the agents

12
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Fig. 5: Diagram illustrating Stage II of the main program loop.

assigned to the tile and the invocation of the kernel responsible for perform-
ing simulation calculations. The only information that the GPU needs to
properly update the state of the agents from a given tile is the collections of
primary and secondary agents’ identifiers. Both of these are copied to a spe-
cially allocated buffer located in the global memory of the device. After the
data has been transferred, the kernel call parameters/configuration is deter-
mined. This includes selection of CUDA grid size for the kernel call (number
of blocks and threads per block), choosing an appropriate kernel variant de-
pending on the amount of shared memory (three are available) available on
a GPU and determining which CUDA stream should be used for execution.
The use of CUDA streams is a very important part of the solution, as they
allow for much better utilization of the GPU’s potential. In this approach it

13
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is a relatively undemanding task for the GPU to process a single computa-
tional tile, which means that only a small fraction of the device’s resources
will be occupied during such an operation. To overcome this problem we
use multiple CUDA streams so that several computational tiles can be pro-
cessed in parallel which provides a significant performance speed-up. This
matter will also be discussed in the following sections. The new agent states
computed within the kernel are stored in the dedicated buffer in the device
memory. The order of the states is the same as the order of primary agents
ids that were earlier provided. For this reason, the GPU managing thread,
saves these values on the host so that the results can be correctly assigned to
the appropriate agents. When all tiles are processed, threads leave the loop
and start the process of fetching results from devices to the host. Once this
process is complete, the device management threads join the CPU threads
to help them process tiles if there are still host tiles available.

The process of distributing tiles among CPU threads is similar to GPU
threads to some extent. It means that after entering the loop the CPU
threads will fetch the tiles designated for them first in a critical section.
If all tiles in the set have already been processed, the CPU threads will
start fetching GPU tiles to help with the work. Processing of the tile by a
CPU thread is different from that of the GPU thread, because the thread
must perform all the necessary simulation computations, rather than simply
delegating this task to the device. Processing begins with reading the states
of all agents assigned to the tile (both primary and secondary agents) in a
critical section from a shared resource into private buffers to avoid conflicts
with other threads during the computations. Such prepared data is then
used to determine the new states of all agents. Results of the calculations
are written to the corresponding buffers.

3.4.8. Stage III

The third stage, visualized as an activity diagram in Figure 6, focuses on
merging the results obtained on the GPU side with the results of the CPU
computations. Since the results from all devices are in the same buffer it is
possible to parallelize these operations among all created threads using the
pragma omp for directive. Apart from merging results, agents whose state
was updated on the GPU are assigned new navigation points. This was not
done earlier because the navigation system is not available within the ker-
nels. We made such a decision due to the fact that finding navigation points
involves using loops and several if statements that can significantly inhibit

14
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Fig. 6: Diagram illustrating Stage III of the main program loop.

3.5. Optimizations

Apart from optimizations already mentioned when discussing the algo-
rithm, we have also implemented several improvements related to various
aspects such as the organization of computations, reducing the idle time of
threads or the use of additional functionality of the APIs. The following
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subsections will briefly discuss the most important optimizations that were
implemented in the solution.

3.5.1. Balancing the workload between CPU and GPU

For efficient computation management a workload balancing mechanism
has been developed which, after updating the assignment of agents to the
computational tiles, divides all of them into two sets: a set of tiles desig-
nated by default for processing on the CPU side and a set of tiles designated
by default for processing on the GPU side. The decision on which set a tile
will be placed is based on the number of agents assigned to it and a thresh-
old value which is one of the simulation parameters ("GPU tile threshold’).
If the number of assigned agents is greater than or equal to the threshold
value, then the tile is assigned to GPU-side processing, otherwise to CPU-
side processing. This is primarily because the GPU is more efficient for more
computationally demanding operations. If there are only a few agents on a
tile, the overhead caused by having to transfer data between the CPU and
GPU makes processing such a tile on the device side slower and inefficient.
It is also important that the process of splitting tiles into sets rejects empty
tiles. If multiple threads are running within the application, the waiting time
to obtain a tile is relatively long. In this case, it is undesirable for a thread
to reject a tile after a long wait in the queue due to lack of computations to
perform on it.

3.5.2. Multiple CUDA streams usage

In general CUDA streams help to achieve better GPU utilization in two
ways. They allow overlapping in 2+ streams data transfer from host to device
(and vice versa) and simultaneous execution of multiple kernels. The second
property proved to be particularly important in the implementation of this
solution. In general, whether the use of streams results in parallel execution
of multiple kernels depends on the amount of available device resources. The
more available resources, the more kernels can be executed in parallel. Since
GPU devices are designed for massive computations, a single computational
tile is usually a relatively small resource workload. It means that by using
streams, a sufficiently powerful GPU is able to process multiple tiles simul-
taneously. In our solution, each device has its own pool of CUDA streams,
which are used to invoke kernels during algorithm execution. When a com-
putational tile is selected for processing, the thread is assigned the CUDA
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stream that has not been used for the longest period of time. This ensures
that all streams in the pool are used evenly.

3.5.3. Pinned memory usage

The implementation also uses a special type of memory called pinned
or page-locked memory [28|. Using the standard page-locked host memory
would require allocation of a temporary page-locked buffer and copying data
to the GPU through that buffer. When using the pinned memory, which is a
prerequisite allowing asynchronous data copying, data to and from the GPU
can be copied much faster and directly. In the solution, pinned memory was
used to transfer current agent states to the device and to fetch new self-
driving force values from the device. Furthermore, zero-copy memory |28|
was used for primary and secondary agent ids which allows data to be made
available to the device without the need for an explicit transfer operation.

3.5.4. Shared memory usage

Shared memory is a special type of device memory that allows very fast
reads and writes from/to shared data within a thread block [28]. Reading
from shared memory is multiple times faster than reading from the global
memory. When properly used, shared memory can bring great performance
benefits. Typically it is used as a cache, even allowing prefetching data from
global memory, when used in conjunction with registers. We used it in our
kernel implementations, even providing several kernel variants depending on
the amount of memory available on the device. In Stage I of the main loop,
if a given device has enough shared memory a kernel using shared memory
is used for computing new self-driving force values for each agent, otherwise
a version without shared memory is used. In Stage II of the main loop, we
have implemented several kernel versions for updating agents’ states. These
differ in the intensity of shared memory usage. In the first variant, shared
memory is used to store the states of primary and secondary agents, in the
second variant it is used to store only the states of primary agents, and the
third one does not use shared memory at all. Depending on the specifications
of a GPU, a variant is chosen in this very order, starting from the first one.

3.5.5. OpenMP loop usage

The loop parallelization mechanism provided by the OpenMP interface
was used in the process of merging the results obtained on the CPU side with
the results obtained from the GPU. It allows the use of all threads created
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within the #pragma omp parallel directive, instead of just device manage-
ment threads. This makes the results merging operation more efficient which
is especially noticeable when the states of a large number of agents have been
updated by GPU devices.

3.5.6. Data duplication

The data duplication that we used in the implementation was primarily
intended to minimize the number of time-consuming thread synchroniza-
tions resulting from access to shared data. This allowed multiple threads to
simultaneously perform tasks based on the same input data (e.g., operations
performed in Stage I of the main program loop). It is worth mentioning that
data duplication carries some performance overhead, but it is generally rela-
tively small compared to the overhead resulting from the need to synchronize
threads when certain resources are shared between them.

4. Experiments

The experiments mainly focused on verifying the performance of the ap-
plication for simulation scenarios of different sizes and comparing it with the
performance of non-hybrid implementations that have been specially pre-
pared for the tests.

4.1. Testbed environment

Tests were conducted on a high performance workstation equipped with
two Intel Xeon Silver 4210 processors running at 2.20GHz and 376GB of
RAM with a total of 40 logical cores. In addition, the machine has eight
NVIDIA Quadro RTX 5000 graphics cards with 16GB of GDDR6 memory
each. The machine runs on Debian GNU/Linux 10 OS (buster). The source
code was compiled using GCC 8.3.0 and NVCC 10.1 compilers.

4.2. Tests
4.2.1. Hybrid implementation performance analysis

Testing of the hybrid CPU+GPU solution was conducted for five simula-
tion scenarios that differ in the number of participating agents. In Scenario
I 10 thousand agents are involved, in Scenario IT 50 thousand agents, in
Scenario ITT 100 thousand agents, in Scenario IV 500 thousand agents, and
in Scenario V 1 million agents. Testing was largely based on finding con-
figuration of simulation parameters for each Scenario resulting in efficient
execution. In particular, we focused on the following:
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Size of calculation tiles. The tiles were assumed to be square in shape
with a margin of 2m. For each Scenario, tiles of sizes 8x8x2, 10x10x2,
15x15x2, 20x20x2, 25x25x2, 30x30x2, and 40x40x2 were considered.
These values were selected based on the results of early testing, which
allowed us to determine tile sizes for which it is possible to obtain the
interesting results for all considered Scenarios.

The number of CPU threads used. Values of 10, 20, 40, 80 were tested
for each Scenario.

The number of GPU devices used. For each Scenario, values of 1, 2, 4,
8 were tested.

GPU tile threshold — the value based on which the decision is made
whether to process a tile on CPU or GPU (described in detail in Sec-
tion 3.5.1). Different values were chosen for each Scenario due to the
different density of agents on the tile in each Scenario. The only pa-
rameter that takes different values depending on the Scenario. The
motivation behind this approach was to narrow down the number and
the range of values tested in order to obtain more interesting results
without examining impractical configurations. It is important to rec-
ognize that the threshold value should be tailored to the number of
agents that can fit within a tile of a given size. For example, using a
relatively large threshold value for the tiles of small size would result
in a vast majority (or all) of the tiles being assigned to CPU threads.
The inverse relationship is also true. Selecting appropriate values for
this parameter was done during early testing similarly to the parame-
ters related to tile size. This process consisted of gradually narrowing
the threshold values for each Scenario in such a way that the initial
results obtained were the best possible. Based on these results, a range
consisting of four values that showed the greatest potential in terms of
performance was selected.

Another very important parameter from the performance point of view is
the number of CUDA streams per device. In case of this parameter it was
decided to do separate tests in order to thoroughly investigate its impact on
performance. While searching for parameter configurations it was assumed
that for each test run the number of CUDA streams per device will be equal
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Table 1: Summary of the simulations results of the hybrid version for different computa-
tional tile sizes in the scenario involving 10 000 agents.

Scenario I
Tile size 8x8x2 |10x10x2|15x15x2|20x20x2[25x25x2|30x30x2(40x40x2
CPU threads 10 10 10 10 10 10 20
GPU devices 8 8 4 8 4 4 4
GPU tile threshold | 15 5 3 3 3 5 15

Avg (12.829] 12.097 | 4.746 | 2.519 | 1.869 | 1.635 | 1.296
Min |12.698| 11.937 | 4.676 | 2.472 | 1.813 | 1.596 | 1.253
Max |13.036| 12.212 | 4.824 | 2.545 | 1.936 | 1.674 | 1.336
Tile processing| CPU| 100.0 | 100.0 | 73.94 | 21.61 | 48.51 | 39.14 | 35.21

share [%] |GPU| 0.00 | 0.00 | 26.06 | 78.39 | 51.50 | 60.86 | 64.79

Avg. sim. step
duration [ms]

Each test run assumes a simulation scenario lasting 60 seconds with a
simulation step of 0.05s. The value of the radius of influence of the agents
was set to 2m, which corresponds to the size of the margins of computational
tiles.

The simulation environment used for testing is a rectangle of 2km by 1km
and consists of 10 sectors with dimensions of 200m by 1km. Initially, agents
are placed evenly on the left side of each sector. Their task is to move to the
other end of the sector. Such a scenario might be useful for e.g. simulation of
coordinated evacuation through a bottleneck part of a city, moving through
a particular city district during a sports event etc.

Tables 1, 2, 3, 4 and 5 show simulation results for the best parameter
configurations found for each simulation Scenario along with information on
percentages of the computational tiles processed by the CPUs and by the
GPUs. It is assumed that the main performance metric is the average time
to perform a single simulation step. Final results are averages determined
based on data from five runs.

Figure 7 shows that, in general, for different Scenarios, the optimal size
of computational tiles (the one for which the best performance was obtained)
is different. For more demanding Scenarios, tiles of small sizes perform best,
while tiles of relatively large sizes perform best for less demanding Scenarios.
This is primarily due to the varying density of agents on a tile for different
Scenarios. If the density on a tile is high, it means that a single task delegated
to a thread is demanding. In this case, as visible for Scenarios V, IV as well
as III, reducing the size of the tile means reducing the complexity of the
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Table 2: Summary of the simulations results of the hybrid version for different computa-
tional tile sizes in the scenario involving 50 000 agents.

Scenario 11
Tile size 8x8x2 |10x10x2|15x15x2|20x20x2|25x25x2|30x30x2|40x40x2
CPU threads 10 10 10 20 20 20 20
GPU devices 8 4 4 4 4 4 4
GPU tile threshold | 15 5 5 5 5 30 45
Ave. sim. step A\.zg 22.136| 10.511 | 5.807 | 4.123 | 3.847 | 3.450 | 3.247
duration [ms| Min (21.732| 10.425 | 5.664 | 4.049 | 3.807 | 3.410 | 3.232
Max |22.597| 10.589 | 5.994 | 4.282 | 3.922 | 3.494 | 3.262
Tile processing| CPU| 100.0 | 58.74 | 40.05 | 42.88 | 23.96 | 19.45 | 11,51
share (%] |GPU| 0.00 | 41.26 | 59.95 | 57.12 | 76.04 | 80.55 | 88.49

Table 3: Summary of the simulations results of the hybrid version for different computa-
tional tile sizes in the scenario involving 100 000 agents.

Scenario I11
Tile size 8x8x2 |10x10x2|15x15x2|20x20x2[25x25x2|30x30x2(40x40x2
CPU threads 10 10 20 20 20 20 20
GPU devices 8 4 4 4 4 4 4
GPU tile threshold | 10 10 25 10 40 40 25
Ave. sim. step A\.zg 21.647| 12.721 | 7.509 | 6.843 | 6.225 | 5.816 | 6.228
duration [ms| Min (20.904| 12.438 | 7.433 | 6.724 | 6.133 | 5.768 | 6.165
Max [22.228] 13.043 | 7.652 | 6.982 | 6.332 | 5.858 | 6.300
Tile processing| CPU| 100.0 | 63.25 | 44.55 | 21.61 | 14.52 | 10.29 4.99
share [%] |GPU| 0.00 | 36.75 | 55.45 | 78.39 | 85.48 | 89.71 | 95.01

Table 4: Summary of the simulations results of the hybrid version for different computa-
tional tile sizes in the scenario involving 500 000 agents.

Scenario IV
Tile size 8x8x2 |10x10x2|15x15x2|20x20x2|25x25x2|30x30x2|40x40x2
CPU threads 20 20 20 40 40 40 20
GPU devices 4 4 4 4 4 4 4
GPU tile threshold | 25 25 15 15 15 75 25
Ave. sim. step A\f'g 39.290| 34.185 | 29.651 | 31.691 | 35.347 | 39.582 | 50.368
duration [ms] Min [38.796| 33.565 | 28.830 | 31.271 | 33.902 | 39.368 | 49.479
Max [39.468| 34.480 | 30.940 | 31.935 | 36.026 | 39.733 | 50.903
Tile processing| CPU| 23.89 | 14.35 5.66 4.72 2.41 4.80 2.51
share [%] |GPU|76.11| 85.65 | 94.34 | 95.28 | 97.59 | 95.20 | 97.49
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Table 5: Summary of the simulations results of the hybrid version for different computa-
tional tile sizes in the scenario involving 1 000 000 agents.

Scenario V

Tile size 8x8x2 |10x10x2|15x15x2|20x20x2[25x25x2|30x30x2(40x40x2
CPU threads 20 20 40 40 40 10 10
GPU devices 4 4 4 4 4 8 8

GPU tile threshold | 60 30 60 15 30 30 120

Avg [67.886| 63.569 | 67.228 | 78.811 | 92.946 |109.404 | 138.823
Min [66.012| 61.492 | 66.341 | 76.545 | 91.028 | 108.846 | 138.245
Max |68.952| 65.119 | 68.373 | 80.808 | 93.777 |110.098|139.291
Tile processing| CPU| 12.27 | 4.95 4.84 1.77 2.65 0.50 1.32
share [%] |GPU|87.73| 95.05 | 95.16 | 98.23 | 97.35 | 99.50 | 98.68

Avg. sim. step
duration [ms]

task, which proves to be beneficial in terms of better load balancing. On the
other hand, as for smaller Scenarios I and IT if the tile is too small, overheads
become too large. Consequently, based on the observed results and the plots
for the five scenarios we can generalize these findings into an optimization
procedure that finds a minimum of a function observing the derivative over
tile size approaching 0 and adopting the tile size at this, or close to this point.
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Fig. 7: Influence of the tile size on the simulation time.
Interestingly, in none of the Scenarios attempting to use all available
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compute resources (i.e. 8 GPUs and 40 CPU cores) gave the best results.
In fact, in every simulation the same configuration was the most optimal,
namely 4 GPUs and 20 CPU threads, as shown in Figures 8 and 9. It appears
that using too many resources may result in an increase in performance
overhead due to more frequent/time-consuming synchronizations, the need to
create more copies of the data, etc. which does not compensate for additional
computing power.

The results also suggest that the best performance is observed when the
vast majority of tiles were processed on the GPU side. It is particularly
visible for Scenario V where, for the best configuration tested, about 95% of
all computations were performed by GPUs.
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Fig. 8: Influence of the number of CPU threads used on the performance of the hybrid
version of the solution

As mentioned before, using CUDA streams played a very significant role
in terms of performance of the solution and for this reason it was tested sep-
arately. Figure 10 shows results of testing the impact of CUDA streams on
the performance of the solution. For this test, the best parameter configu-
ration for each Scenario was used; only the number of CUDA streams per
device was adjusted. The graph in Figure 10 proves how important it was
to use multiple CUDA streams in the implementation. In general, the more
streams used the better the performance of the solution was. As previously
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Fig. 9: Influence of the number of GPUs used on the performance of the hybrid version of
the solution

assumed, the best performance was obtained for 128 streams per device. For
this value the performance of the solution can be even more than 17 times
higher (Scenario III) in comparison to the results obtained for only 1 CUDA
stream per device. It shall be noted that the maximum number of resident
grids per device for compute capability [28] of Quadro RTX 5000 used for
tests is 128.

The reason why using CUDA streams brings such a large performance
improvement comes from processing multiple computational tiles simultane-
ously. This behavior is shown in Figures 11, 12 and 13, which are screenshots
from the NVIDIA Nsight Systems application that allows profiling of GPU
performance. These figures show the results of profiling simulation scenarios
using 8, 16 and 32 CUDA streams. It can be observed that the more streams
used, the more kernels responsible for tile processing are executed in parallel.

Figure 14 shows how a single step of the main loop of the program is
executed. All stages of the algorithm are distinguished in the profiler screen-
shot. From the GPU’s perspective, Stage I focuses on transferring data from
the host to the device and vice versa. As soon as these operations are com-
plete, Stage II begins, which means that in this case, in Stage I the work on
the CPU side has been fully occluded by GPU operations. Stage II consists
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0-Quadro RTX 5000)

Fig. 11: NVIDIA Nsight Systems screenshot showing use of 8 CUDA streams.

primarily of processing the computational tiles. The workload is distributed
evenly between all available devices and their CUDA streams. The work of
the devices ends when the data is transferred to the host; however, this op-
eration does not mark the end of this stage, as the processor threads can still
continue their work. For this reason, the boundary between Stage II and III
is marked with a dotted line. In Stage I1I, only the CPU performs work.
Using NVIDIA Nsight Systems for the 4 GPU configuration and the
middle-sized Scenario IIT we have gathered statistics related to GPU kernel
execution: registers per thread 42-64, dynamic shared memory 2912-6720
bytes, shared memory executed 65536 bytes, reported theoretical occupancy:
84.375%, 93.75% or 100%, during GPU involvement (communication and ker-
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Fig. 12: NVIDIA Nsight Systems screenshot showing use of 16 CUDA streams.

Fig. 13: NVIDIA Nsight Systems screenshot showing use of 32 CUDA streams.

nel execution) GPU active 100%, during the kernel execution phase SM active
at the level of 70-80%, 1.2 read hit rate 30-100%, approx. 40% on average. In
terms of processing of the most time-consuming operations: 89.2% was spent
on kernel execution, 3.9% on synchronizing (cudaDeviceSynchronize()), 2.8%
on HtD, 0.5% on DtH communication, 2.9% on kernel launching, 0.3% on
global GPU memory allocation, 0.2% on pinned memory allocation.
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Fig. 14: Screenshot from the profiler showing how a single simulation step is performed
from a GPU perspective. All steps of the main loop algorithm are highlighted on the
timelines.

4.2.2. Comparison with non-hybrid implementations

Comparison of the hybrid versus non-hybrid versions was made in order to
determine if the extra programming effort put into developing a solution that
takes advantage of CPU and GPU collaboration can actually bring significant
performance benefits compared to implementations based on CPU or GPU
usage only. Both non-hybrid implementations were built on top of the hybrid
solution. The main challenge was to make changes so that one side (CPU
or GPU) was able to determine new agent states independently. The overall
approach to the problem remained the same.

The tests of both non-hybrid implementations focus primarily on finding
the simulation configuration parameters that give the best results (similarly
to the hybrid version) and comparing these results with the best correspond-
ing outcome of the hybrid version. The tests were performed for the same
simulation Scenarios, the same parameter values related to simulation time,
and in the same simulation environment to eliminate the influence of these
factors on the performance comparison. The method of testing was also the
same as for the hybrid version which means that the final result for a given
parameter configuration is the average of five measurements. The main per-
formance measurement metric is the average time to execute a simulation
step.

The test results of the non-hybrid implementations presented in Table 6
showed that in every Scenario considered, the hybrid version proved to be
more efficient. For the most demanding Scenario a considerable speedup can
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Table 6: Comparison of hybrid version performance with CPU-only and GPU-only versions
performance for different simulation scenarios.

Hybrid vs CPU-only
Best CPU Scenario | Scenario | Scenario | Scenario | Scenario
configuration 1 11 111 v \%
Tile size 45x45x2 20x20x2 15x15x2 6x6x2 6x6x2
CPU threads 20 20 20 20 40
Results CPU |Hyb.|CPU Hyb. CPU|Hyb.|CPU Hyb. CPU Hyb.
Avg. sim.| Avg | 1.537|1.296| 5.189 | 3.247 | 9.071 | 5.816 | 63.43 | 29.65 | 168.2 | 63.57
step | Min|1.472]1.253|5.129|3.232|8.879(5.768|62.72 |28.83|166.7 |61.49
duration |[Max | 1.570{1.336|5.247|3.262|9.412 | 5.858 | 64.26 | 30.94| 170.6 | 65.12
Avg. hybrid
version 1.186 1.598 1.560 2.139 2.646
speedup
Hybrid vs GPU-only
Best GPU | Scenario | Scenario | Scenario | Scenario | Scenario
configuration 1 11 111 v \%
Tile size 60x60x2 45x45x2 35x35%x2 20x20x2 15x15x2
GPU devices 4 2 2 2 2
Results GPU Hyb.|GPU|Hyb.GPU |Hyb. GPU Hyb.|GPU|Hyb.
Avg. sim.| Avg | 1.673|1.296|5.019 [3.247 | 10.00 | 5.816 | 66.55 | 29.65 | 139.6 | 63.57
step | Min|1.662|1.253|4.741|3.232|9.960|5.768 | 65.24 |28.83|139.2 |61.49
duration |[Max|1.695(1.336|5.207|3.262|10.04 | 5.858 | 70.82 | 30.94 | 140.0 | 65.12
Avg. hybrid
version 1.291 1.546 1.719 2.244 2.197
speedup
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be observed. For Scenario V the hybrid version proved to be more than two
times more efficient. The comparison of results in a graphical form is shown
in Figure 15. The graph suggests that for scenarios with even more agents
the advantage of the hybrid solution would be even greater.
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Fig. 15: Performance comparison of hybrid, CPU-only and GPU-only implementations.
The plots include the results obtained for all Scenarios.

The inferior performance of the CPU-only version compared to the hybrid
version is apparently due to the much smaller computational capabilities
available. The CPU alone is not able to parallelize computations as massively
without GPU(s)’s support. This means that far fewer computational tiles can
be processed at the same time in the CPU version. It appears that not having
to perform certain additional operations resulting from the presence of the
GPU in the system (such as communication) does not compensate for the
much smaller computing power available.

The performance differences between the hybrid version and the GPU
version are due to less efficient data management on the CPU side. This
is especially relevant for the third stage of the main simulation loop where
all results are merged. In the hybrid version this stage is performed by all
available threads, in the GPU version this task is performed only by the main
thread, which is particularly problematic when the number of agents is very
large.
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Additionally, it can be observed that CPU-only implementation shows
slightly better performance for least demanding simulation Scenarios than the
GPU-only implementation. Specifically, up to the tested number of agents
equal 5 - 10° the CPU version was marginally faster while the GPU one ap-
peared significantly faster for 10 agents. This observation is in line with the
fact [1] that GPU processing requires host-to-device and device-to-host com-
munication that can be amortized by the smaller execution time compared to
the CPU version only for problem sizes exceeding the given threshold which
can depend on relative performance of the CPU and the GPU as well as the
interconnect latency and bandwidth (PCIE in this case).

4.2.8. Comparison with other hybrid approaches

In [17] a CPU+GPU parallel method (OpenMP and 2D textures used
respectively) has been shown to provide better performance than CPU and
GPU only solutions by measurement of the simulation efficiency in fps, al-
beit limited in tests to small configurations i.e. AMD Athlon [IX3+NVIDIA
GeForce GTS 250 i.e. up to 3 CPU threads and the GPU. For the number
of characters in the range of 4 000 - 7 000 performance of the hybrid imple-
mentation was virtually the same as of the parallel CPU version and slightly
better for 8 000 - 10 000 characters (approx. 51 vs 44 fps for the latter).
In [4] authors presented an approach and corresponding results for scaling
crowd simulations in a cluster composed of nodes each of which featured two
CPU Intel Xeon E5649 6-Core CPUs, 24 GB RAM and two NVIDIA Tesla
M2090 GPUs. Within each node 10 CPU cores and 2 GPUs were used for
computations leaving 2 CPU cores for controlling GPUs. In terms of sce-
nario sizes, configurations from 250 000 up to 126 million agents were tested,
from 1 to 16 nodes showing largest speed-up for 16 nodes for the configu-
ration with 4 million nodes of over 7. In terms of APIs, OmpSs, CUDA
and MPT were used for an easy to program relatively high level task based
approach using #pragma omp target directive. In [4] no scaling within one
node versus CPU cores and GPUs is provided and the configurations within
one node were limited to a relatively small configuration of 10 cores and
2 GPUs. Compared to these works, we contribute by proposing a way to
parallelize among larger configurations tested up to 80 CPU threads and 8
GPUs, especially presenting how required partitioning changes depending on
the CPU+4GPU configuration. We test configurations between 10 000 and 1
000 000 agents and also show how using pinned and shared memories, data
duplication and more advanced CUDA features such as CUDA streams and
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running kernels in parallel contribute to scaling up to 4 GPUs and 40 CPU
threads. Typically using APIs such as CUDA and proper compilers yield
better performance than the level of offloading to GPUs from APIs such as
OpenMP [29].

4.3. Discussion of the results

The tests of the hybrid implementation have shown that the solution is
able to provide good computational performance, for each investigated Sce-
nario. A prerequisite for satisfactory results is proper selection of simulation
parameters. Based on the experimental results, the size of the computational
tiles was found to have a significant impact on the performance. The size
of the tiles that gives the best results depends primarily on the number of
agents involved. In general, for a relatively small number of agents, the best
performance was obtained for tiles of large size (40m x 40m), while for a
relatively large number of agents, smaller tiles (10m x 10m) proved to be the
most efficient. Interestingly, for each of the scenarios tested, using 20 CPU
threads and 4 GPU devices to perform simulation calculations appeared to
be the best from performance point of view. This configuration proved to
provide the best balance between available processing power and the perfor-
mance overhead resulting from the necessity of managing more computing
resources. It was also observed that the use of CUDA streams had a sig-
nificant impact on the performance of the solution. Involving 128 streams
per device allowed to achieve at least 10 times (this value was different for
various Scenarios) application speed-up.

A performance comparison of the non-hybrid implementations with the
hybrid implementation proved that the hybrid variant is more efficient than
both non-hybrid variants in every test case. This is especially noticeable for
the most demanding Scenarios, involving a large number of agents. In such
cases, the average execution time of a single simulation step is more than 2
times lower for the hybrid variant. This means that the extra programming
effort required to develop an implementation that uses both the CPU and
GPU for computation can be considered worthwhile. For complex and long-
running simulation scenarios, this benefit should be particularly apparent.

One of the most challenging aspects of the hybrid implementation was
the proper balance of workload between CPU and GPU. In our solution, we
used the 'GPU tile threshold’ parameter for this purpose (described in detail
in Sections 3.5.1 and 4.2.1). It allows to decide which computational tiles
should be processed on GPU and CPU. This approach is straightforward

31


http://mostwiedzy.pl

and does not require too many additional calculations, but experiments have
shown that its simplicity also has some drawbacks. For example, there is a
high dependence between the size of the computational tiles and the 'GPU
tile threshold’, which means that every time the tile size changes, a new value
of "GPU tile threshold’ has to be found in order to achieve the right workload
balance. This makes it difficult to find the most optimal parameter configu-
ration. One of the future challenges is to design a universal mechanism that
is independent of simulation conditions and (other) simulation parameters.

5. Summary and future work

The solution developed within this paper, using a modern CPU+GPU
system, allows to efficiently simulate crowd behavior. The implementation
uses Helbing’s model to describe the dynamics of the crowd. The applica-
tion allows the use of a user-defined simulation environment, which makes it
possible to create various simulation scenarios. We have shown for several
scenarios of various sizes — the least demanding simulation scenario involved
10 thousand agents, and the most demanding involved 1 million agents —
that our hybrid CPU+GPU implementation outperforms both CPU-only
and GPU-only versions. For multithreading on the CPU side the OpenMP
interface was used, whereas for handling GPU computation the CUDA plat-
form was selected. The proposed solution is based on dynamic partitioning
of the simulation environment into smaller regions called computational tiles.
We have shown that the solution benefits from a number of optimizations to
achieve the best possible performance including: load balancing among CPUs
and GPUs, using multiple CUDA streams for parallel kernel execution, using
pinned memory on the host and shared memory on GPUs.

Further work could focus on developing a mechanism to automatically
select some of the simulation parameters, for example using the approach
proposed in paper [30]. As tests have shown, the selection of appropriate
parameter values is an important but also a challenging task. Furthermore,
an attempt could be made to improve the algorithm for determining which
tiles should be processed on the CPU and GPU. Currently this is done with
a fixed threshold value which is one of the simulation parameters. Perhaps
a slightly more sophisticated solution would contribute to a better balance
of work between CPU and GPU. For example, the threshold value could be
chosen dynamically based on data about the present and past positions of
the agents.
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