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This paper studies the electro-mechanical shear buckling analysis of piezoelectric
nanoplate using modified couple stress theory with various boundary conditions.In or-
der to be taken electric effects into account, an external electric voltage is applied on the
piezoelectric nanoplate. The simplified first order shear deformation theory (S-FSDT) has
been employed and the governing differential equations have been obtained using Hamil-
ton’s principle and nonlinear strains of Von-Karman. The modified couple stress theory
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has been applied to considering small scale effects. An analytical approach was develop-
ing to obtain exact results with various boundary conditions. After all, results have been
presented by change in some parameters, such as; aspect ratio, effect of various bound-
ary conditions, electric voltage and length scale parameter influences. At the end, results
showed that the effect of external electric voltage on the critical shear load occurring on

the piezoelectric nanoplate is insignificant.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Piezoelectric materials represent a particularly interesting class of smart materials, possessing highly efficient electrome-
chanical coupling, i.e., piezoelectricity, which is a unique feature for non-centrosymmetric dielectric materials [1]. With the
development of nanotechnology and synthesis techniques, a variety of piezoelectric nanomaterials have been synthesized
under different growth conditions. In general, nanostructured materials are defined as materials with morphological fea-
tures on the nano-scale, which are smaller than one tenth of a micrometer in at least one direction [2].

Such nanostructured materials may possess special physical and mechanical properties stemming from their nano-scale
features. In particular, the enhanced electromechanical coupling of piezoelectric nanomaterials makes them attractive for
the potential applications as generators, sensors and transducers [3-5], in nanoelectromechanical systems (NEMS). In order
to further explore the piezoelectric nanomaterials and apply them commercially, it is of great importance to get a thorough
and comprehensive understanding of their electromechanical coupling properties at the nano-scale.

Over the past decade, many researches have been being examined in order to study the stability behavior of nano struc-
tures [6-36]. Malekzadeh et al. [8] considered the small scale effect on the thermal buckling of orthotropic arbitrary straight-
sided quadrilateral nanoplates embedded in an elastic medium via classical plate theory. Ke et al. investigated the nonlinear
vibration [9] and post-buckling [10] behaviors of nonlocal Timoshenko piezoelectric nanobeams under combined thermo-
electro-mechanical loadings. Murmu et al. [11] conducted buckling analysis of bi-layer nano graphene in nonlocal theory
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under biaxial compression via analytical solution using the classical plate theory with linear strains. It also demonstrated
that nonlocal critical load was always less than local. Malekzadeh and Alibeygi [12] analyzed the thermal buckling of or-
thotropic single layer graphene sheet using nonlinear elastic foundation. The classical theory and differential quadrature
method were used, together with the Winkler elastic foundation which was modeled with the nonlinear spring. Moham-
madi et al. [13] studied the shear buckling of orthotropic rectangular single layer nanoplate in thermal environment by
classical plate theory. They showed that the difference between the shear buckling load calculated by isotropic and or-
thotropic plates decreases with increasing nonlocal parameter. Radic et al. [14] published a study on mechanical buckling of
multi-layers rectangular graphene sheet based on an elastic foundation and found that the nonlocal effect had great influ-
ence on higher buckling modes. The exact solution for vibrations and biaxial buckling of multilayers graphene sheet based
on the Winkler elastic foundation were investigated by Murmu and co-workers [15]. The presented equations utilized clas-
sical plate theory and proved that the critical temperature and natural frequencies were further affected by reducing the
Winkler coefficient in high modes. Anjomshoa et al. [16] derived mechanical buckling equations of multi-layers of rectan-
gular graphene sheet placed on an elastic foundation using the classical plate theory and finite element numerical method.
Radebe and Adali [17] studied the buckling of rectangular nano-plates with uncertain orthotropic material properties using
non-local theory. They considered nano-plate as a non-local plate to take the small-size effects into account with small-
scale parameter also taken to be uncertain. They studied the effect of small scale on natural frequencies. Vibration and
buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints have been presented by
Jiang and Yan [18]. Golmakani and Rezatalab [19] conducted a study on the biaxial buckling of single layer graphene plate
by considering the elastic foundation and nonuniform mechanical load. The results showed that by neglecting the elastic
foundation, when the small scale effects are reduced, the critical load also has decreased. Challamel et al. [20]| proposed
the buckling and vibrations of micro structured rectangular plates considering phenomenological and lattice-based nonlocal
continuum models. Radic and Jeremic [21] studied the thermal buckling of double-layered graphene sheets embedded in an
elastic medium with various boundary conditions using a nonlocal new first-order shear deformation theory. Their results
showed that in nonlinear distributions of temperature all over the thickness of plate, have a higher value of critical buckling
temperatures for lower values of aspect ratio. Malikan et al. [22] recently published buckling of double-layered nanoplate
under shear and thermal loads based on the elastic matrix using differential quadrature method. They showed that, the
effect of type of shear loading on the nonlocal results is more than local results. Also, in thermal buckling analysis, the most
important results being that whether the boundary conditions have more flexibility, by increasing the dimension’s ratio, the
results of critical temperature were tightly close together in nonlocal and local analysis.

This paper investigates novel theoretical formulation on piezoelectric nanoplates. Regarding the FSDT, we could not get
the right value for shear correction factor to consider the shear stress distribution in thickness direction. Therefore, the
simplified first order shear deformation theory (S-FSDT) that provides a welcome alternative to solve the problem has been
investigated. Afterward, the nonlinear strain of Von-Karman has been considered. In addition, in order to study the length
scale, because of the fact that there is a difficulty with Eringen nonlocal theory to consider nano materials behavior while it
is applying on the nonlocal stress resultants in deriving of governing equations, because of the presence of variable nonlocal
parameter. So, the modified couple stress theory has been employed in the research. Furthermore, the exact solution is used
to solve the stability equations in various boundary conditions as well as free edges. Consequently, the effects of different
parameters such as; changes in the length scale parameter, external electric voltage, aspect ratio and boundary effects of
edges in various conditions under in-plane shear load have been demonstrated.

2. Formulation

A rectangular piezoelectric nanoplate is considered with thickness h, the length Ly, and the width L, as shown in
Fig. 1. Of the many shear deformable plate theories proposed over the years, the FSDT is fundamentally simpler to adopt
for modeling of the shear deformation behavior of plates. FSDT, are widely in use, even today, because of its simplicity. It
is now well-known that in plate analysis, shear deformation effects become important not only for thick plates but even
for thin plates [23]. As classical plate theory (CPT) does not take into account shear effects, many theories got evolved to
address the deficiency. According to the FSDT, the following displacement field can be expressed as:

Ux.y.2) =ux.y) +z9(x.y). (1a)
V(x,y,2) =v(x,y) +z¥ (X)), (1b)
W(x.y,2) =w(x.y). (1c)

where u, v and w are the displacement components along x, y and z directions, respectively. Moreover, ¢ and i are the
rotational displacement about the y and x directions, respectively. In this theory, the shear stress in thickness direction is
constant value which in fact is not true. But, in the S-FSDT theory, it is assumed that the transverse displacement (w) is
divided into the bending component (w},) and the shear component (ws) which means that [24]:

w = w(bending) + w(shear). (2)
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Fig. 1. Schematic diagram of rectangular piezoelectric nanoplate.

Also, the rotation variable in the S-FSDT is expressed in terms of the bending component only:

_ Bwb
ax
8Wb
= -2 3
% 3)
With implementation Eqs. (2) and (3) into Eq. (1) the S-FSDT displacement field can be written as follows:
8Wb
Uk.y.2)=uXy) -z7°"
Vix. v 2= vixy) -2 ®

W(x.y,2) = wy(X,y) + Ws(X,y)

In recent years, various size dependent continuum theories such as couple stress theory, modified couple stress theory,
strain gradient theory and nonlocal elasticity theory have proposed. These theories are comprised of information about
the inter-atomic forces and internal lengths. Among these theories, nonlocal elasticity theory of Eringen has been widely
applied. But in the theory, we cannot find unique result, since we have to use the variable nonlocal parameter. The classical
couple stress theory is one of the higher order continuum theories, which contains two additional material length scale
parameters besides the classical constants for an elastic material, elaborated by Mindlin and Tieresten [25], Toupin [26], and
Koiter [27]. In fact, couple stress theory is a special case of Micropolar theory proposed by Cosserat brothers [28]. Newly, a
modified couple stress theory, which contains only one additional material length scale parameter in addition to the classical
material constants, was proposed by Yang et al. [29]. The modified couple stress theory is more useful than classical one
due to symmetric couple stress tensor. According to this higher-order continuum theory and using the Hamilton’s principle,
the governing equations as well as the related boundary conditions along the edges of rectangular piezoelectric nanoplate
can be derived. The equation of the total potential energy (V) is expressed as:

V=U+Q. (5)
Here U is strain energy and 2 is work done by external loads. The virtual strain energy can be calculated as:
6U = /// (oij(Ss,-j + mi]-5x,-j + DkEk)dV =0, (6)
v

where oy, &;, my, Xij, Dy, Ey, are stress tensor, strain tensor, deviatoric part of the couple stress tensor, symmetric curvature
tensor, electric displacement and electric field, respectively [30-32].

0ij = Gjuexi—exijEx» Di = ei&wi + KiijEx. (7)
1(0u; Ou; du,du ..
1(00; 06; . 1
Xij = > (B_xj' + B_x:> i,j=1,2,3; 6= i)»iijk,j, (9)

where [ is a material length scale parameter that is related to size effect, and 6 is the rotation vector. Also, Cij, €yjj.K i are
elastic constant, piezoelectric constant and dielectric constant, respectively. The tensors associated in the displacement field
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in Egs. (7-9) are:

oo du_ 0wy 10w\ 1w\ T B, dw,
T ox T axe T2\ ox 2\ ax 0x 0x
o 2 v 0wy 1w\ 1w\ T dw, dw,
T By ayz 2\ dy 2\ 9y dy dy
ow, -
]/yz=87yS > (10a-e)
_omg
Vxz Ix

— %4,% ,2282Wb+ %+8WS %+8W§
Vo = dy ' ox 9xdy ax | Ox dy ' dy

1 0w,  Owg
92_—2(zax+ o ) (11a-c)
1/0dv odu
i 8)
192w, N 92w
=5\ “9xay T axay
1 B 92w, B 02wy
=3 9xdy  0xdy
1 9%w,, %w, 02wy 02wy
Xxy_4<_2 e 2 52 o oy ) (122-¢)
1 o
Xe =7\ 52 axay
1(_d%u 9
Xz =7 dy2 ' 9xdy
0 0 ey n _
0 0 o kn 00 Ex
€ij=|e; O 0 |- kij=| 0 «kun 0 | Ex=1E¢. (13a-c)
0 €15 0 0 0 kg3 E,
0 0 0

To confirm the Maxwell equation, the distribution of external electric potential for the present nanoplate model is as-
sumed as a combination of a cosine and linear variation [32-34].
ZZVO

T
where B=m/h; ®(x, y) is the spatial and time vibration of the electric potential in the mid-plane of the nanoplate, and V,
is the external electric voltage. Then, the components of electric field can be written as:

D (x,y,2) = —cos (B2)D(x,y) + (14)

3 I
- Ti cos (Bz) X
o o
Eg=3_2=¢= cos (Bz) — . (15a-c)
1%y B,
A —Bsin(B2)d — 2%
0z h
Using the principle of minimum total energy (8, =0) the nonlinear constitutive equations are derived as:
8U = 0; Nxx + Nyyy + 1/4Ys2xy + 1/4Yy2,y =0, (16a)

8V = 0; Ny + Nyy — 1/4Ys 0 — 1/4Y);4y = 0, (16b)
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0x2 0x2 ay? ay? 0xdy = 0xdy
_2Yxx,xy + Yyy,xy - l/zyxy.yy + 1/2ny,xx = 0,

2 2 2 2 2 2
SWb =0; Qx,x+Qy,y+Nxx(a Ws + 0 Wb) +Nyy<a Ws + 9 Wb) +2ny<a Wh + 9°ws

92ws  0%w, 92ws 32w, 92wy,
SWS = O; b Mx,x — 2Mxy,y — My,y +Nxx<axz + W +Nyy TyZ + Tyz + 2ny m +

—Yxxy +1/2Yyyxy — 1/4Y%yyy, +1/4Y5yxx =0

h/2 ) ) .
§® =0; f 9D cos (Bz) + by cos (Bz) + D, sin (Bz) |dz = 0.
—h/2 0x 8y

)

(16¢)

(16d)

(16e)

N;, M; and Q; (i=x, y, xy) are the stress resultants and Yj (i=x, y, Xy) is the non-zero curvature resultant as follows:

h/2
(N, N,, ny) = /h , (ox, 0y, Oxy)dz,
—h/

hy2
(M, My, M,,) = /h , (Ox, Oy, Oxy)2dz,
—hy

h/2
(Qny) :/ (032, 0y2)dz,
—h/2
Yix Myx
Yy hj2 | Myy
Yo § = / Myy ¢ dz,
Yy —hr2 My,
Y, my,
ow 0P
Eis—— +Xn—o—
= ox 0x
Qx h/2 Dx Ccos (,BZ) 8W aq)
D, ¢ = Dy cos (Bz) tdz= Eis—— + X1 =
=y y > 9 9
~h/2 | D,B sin (Bz) ) y ) y
0 Wy 0 Wy

_E31W —E5 2 — X530

The coefficients in Eq. (19) can be expressed respectively.

E31 ,e;31.825in (,BZ)
Eis | _ /h/z e1s cos (Bz)
Xn -2 | k11 Bcos?(Bz)
X33

k33 B2sin’ (Bz)

Next, the governing equations (Eq. 16) for rectangular piezoelectric nanoplate can be rewritten:

1 94u % 1 R TR
Nx,x +ny,y + EAS <—3X28y2 + 8)(33_)/) + 2As<_ay4 + W) = O

1 *u 9t 1 9%u 9%y
Moyt Py = 5 s <_8x38y ¥ 3x4> - ZAS(_3x8y3 * 8x28y2> =0
2 2 2 2 2 2
Qui-+ Qyy + N 3WbﬁVVS)mw(amam)uny(aWuaWs)

ax2 dx2 dy?2 ay? dxdy = dxdy

5 %w,, %ws 1 94wy, 04w %*wy, 04wy
2A5(28x28y2 + 3x28y2> — g x (2 o T T2 oy4 + oy4 =0,

3w, 0%w. %w, 0%w. %w, 9%w
My xx — ZMxy,xy - MY»)’)’ + NXX( + 5) + Nyy( + S + Zny 8x8y * 8)(8;

x2 x2 dy? dy?
1 4wy, 3%w; 1A twy | 10%ws | dtw, | 10%s |
270\ T 9x29y2 + ax2ay? |~ 4\ Toxe T ay* t3 ayr ]~

(17a)

(17b)

(17¢)

(20)

(21a)

(21b)

(21¢c)

(21d)
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h2 3D, aD, =~
/ cos (Bz) + —= cos (Bz) + D.B sin (Bz) |dz = 0. (21e)
—n2 | O0X ady
The axial and flexural rigidities of piezoelectric nanoplate are given by:
[ h
Aj = /2 Cyjdz. Dy = | Cyjz2dz(i. j=1.2.6), (22a)
-4 -4
~ C? C.e
Cir=Cqi— -3 |&, = 13533
1 1 C323 €31 €31 C33
~ C s =
Cp=Cpp— B3, 85=65 . (22b)

C33 | kK11 =kn
=~ 2
Caq =Cyq N es3
= K33 = K33 + =—

Ces = Cos Gs3

In Eq. (22), A;j and Dj; are extensional stiffness and extension-bending coupling matrix, respectively. The stress resultants
in Eq. (17) in displacement field by using Eq. (22) and substituting in Eq. (17) are defined as:

du 1(dw, 2 1/ 0ws 2 awy, Ows
ol ) T2\ex ) ek ax
av 1(ow, 2 owg 2 owy, dws ~
ayta\ay ) Y2\Gy ) Ty oy | [2ea%
[Nl [AuAz 0 0.0 0 0 07 15, 550 /dw, dw,\[dw, dws 2enVo
Nyy AA 0 0O 0O 0 0 O ay‘i’ax+<ax+ ax)(y+ 8y> 0
Nyy 0 0AgO 0 0 0 0 o~ En®
Mg | _| 00 0DyDp0 0 0 | _9 Wy e 23)
M,y 0 0 0DyDyy 0 0 0O ox 0 '
M,y 0000 0DgO O _ 9w, 9D
Q 0000 0 0AyuO 9y2 ~Eis
Lol L0 OO OO 0 0Agl _’w, 8(31’)
xdy —ElSW
BAUA
B}
B,
L ox i

The in-plane shear force in pre-buckling conditions is as follows [22]:
Nyy = —N° (24)
NO is critical shear in-plane load in buckling conditions. Inserting Eqs. (18, 19) and (23) into Eqs. (21), and also by

considering the pre-buckling conditions the electro-mechanical stability equations in the form of displacement components
based on S-FSDT also including couple stress effect are expressed as follows:

2 2 2 2 2 2 . 2 2
92w, 92w of 3wy 9%ws 2w, 92w 2wV 92w, E)wS)

HuTga +H55T)ﬂ -2 axdy 8x8y) +2eao| T+ e 9y? + dy?
020 020 5 94wy, 34w, 1/(.0%w, 9%ws 0%wy,  0%ws
“Es g ~bis 9y2 _AS|:< a2 T oeayz) “a\"Taxd T axd T T oya =0

2

94wy, 94wy, 94wy, of *wy, 92w ~ 92w, 02w
D@ + (2D12 +2Des) 9x29y2 + Dz ayt 2N 9xdy + 9xdy +2enVol i + G2 (252-0)
+2’e\ v Bzwb n aZWs +E 02d +E 22d _A 1 84Wb 13 84W5
370N T5y2 dy? 3192 3175y2 *1 2\ 7 9x20y2 d0x20y?

1 04wy, 1 0%ws; N %w,, N 1 tws\ | 0
4\ ox4 ox4 oyt 2 oyt -

2
02w, 02w, ?w,  0%w, 2d 920 _
E15< e T 9y >—E31(8X2 + 52 + X1 W+7ay2 — X339 =0.

3. Analytical solution

In the paper, different analytical boundary conditions are applied to solve the obtained stability equations which can be
written in an explicit mathematically form as [21,35-36]

Free edges(F): X; = [sirl2 (aixi) + 1]cos? (x;): i =1, 2, (26a)
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Table 1
Comparison of results for critical biaxial buckling load for single-layered graphene sheet and all edges
simply supported obtained from DQ method [19,37], and molecular dynamics simulation [38].

Critical buckling load (Pa m)

S-FSDT, Exact present study ~ FSDT-DQM [19]  FSDT-DQM [37]  MD results [38]  Lx=Ly (nm)

1.0835 1.0749 1.0809 1.0837 4.99

0.6538 0.6523 0.6519 0.6536 8.080

04330 0.4356 04350 04331 10.77

0.2615 0.2645 0.2639 0.2609 14.65

0.1720 0.1751 0.1748 0.1714 18.51

0.1198 0.1239 01237 0.1191 2235

0.0896 0.0917 0.0914 0.0889 26.22

0.0696 0.0707 0.0705 0.0691 30.04

0.0559 0.0561 0.0560 0.0554 33.85

0.0454 0.0453 0.0451 0.0449 37.81
Clamped (C) : X; = sin®(a;x;); i =1, 2, (26b)
Simply supported(S) : X; = sin(¢;x;); 1 =1, 2, (26¢)

in which m and n are the half wave numbers, oy =mm [Lx, oy =nm[Ly; X; = X, X,=y or terms used in the x and y direction
to represent the displacement functions. We use the displacement function in the following form:

WX y) = Y WixXixXjik=sbi=12j=12 (27a)
m,n=1

Pxy)= Y PxXxX;i=1,2;j=1,2. (27b)
m,n=1

Substituting the expression of wy,® in Egs. (27a,b) can obtain the explicit relation for buckling loads with various bound-
ary conditions. The stability equations and closed-form boundary conditions yield a set of following algebraic equations:

Eq. (25a) ki ki ks (W
Eq (25b) = ’(21 k22 k23 Ws ¢ (28)
Eq (25C) k3] k32 k33 o}
ki (i, j=1, 2) are the coefficients of constants terms through which to obtain the critical force are as follows:
q=| Eq.(25a)  Eq.(25b) Eq.(25¢) Ju=[W, W & | (29)
J = jacobian(q, u) — det[J]] = 0. (30)

The critical shear buckling load (N°) can be easily obtained by solving Eq. (30).
4. Results and discussions

The results validation and comparison with other research results should obviously be carried out before investigating
various parameters of this article. Because of this fact that there are not any available papers in the field of shear buckling
of piezoelectric nanoplates, therefore, Tables 1 and 2 which were in nanoplates field are examined in order to compare and
validate this formulation results with those of other articles. In order for the results to be compared in Tables 1 and 2,
[19] and [37] were employed while their results are obtained using first order shear deformation theory, differential quadra-
ture method (DQM), as well as Eringen nonlocal elasticity theory. Ref. [38] is added for further confirmation due to the
minor errors in the numerical solutions, and its results are obtained through molecular dynamics solution. Therefore, ob-
serving numerical solution alone does not enable us to ascertain the fact that the present results are validated due to the
difference between the results in both cases. However, by examining Tables 1 and 2, one can strongly express that the mod-
ified first order shear deformation theory (S-FSDT) results appropriately correspond to the molecular dynamic results. Since
this solution is an exact one, this proximity of the results clearly confirms this premise that accurate and appropriate results
are obtained by combining the modified first order shear deformation theory and exact solution of the results. Comparing
the results shown in Tables 1 with 2 confirms that the removal of the shear stress correction factors in plates affects the
critical load results. Because, the difference generated in the contractual FSDT by employing this factor when compared with
the accurate results, is removed in the S-FSDT. According to Tables 1, and 2 the thinner we assume the plate, the closer the
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Table 2

Comparison of the present results with those of DQ method [37] and molecular
dynamics (MD) simulation [38] for different aspect ratios of orthotropic single-
layered graphene sheets under uniform biaxial compression.

Critical buckling load (Pa.m)

FSDT-DQM [37] MD results [38] S-FSDT, Exact present study  Lx/Ly

0.5115 0.5101 0.5105 0.5
0.5715 0.5693 0.5698 0.75
0.6622 0.6595 0.6599 125
0.7773 0.7741 0.7747 1.5
1.0222 1.0183 1.0180 175
11349 11297 1.1301 2

Table 3
Mechanical and electrical properties of piezoelectric nanoplate.

Piezoelectric nanoplate Cy;1 =132 GPa, Cy3 =71 GPa, Ci3 =73 GPa, C33 =115 GPa, C44 =26 GPa,
Ces =30.5 GPa, h=0.34 nm, e3; =—4.1 C/m?, e;5 =10.5 C/m?, e33 = 14.1 C/m?
(Coulombs=C=Nm/V), x1; =5.841e—9 C/Vm, k33 =7.124e—9 C/V m

100

Critical shear load (nN/nm)

m=n

Fig. 2. The effect of S parameter versus wave numbers (8 = Lx/Ly, Ly=30h, I=h, V,=0.05V, SSSS).

results become to the FSDT results and numerical solution, while their accuracy decreases; because, FSDT is not applicable
to analyze thin plates and the classical plate theory (CPT) is more applicable in this case.

E=1TPa, u=03, h=034nm, u=181nm?2, B=Ix/ly=1 k1 =1, k2 =1, ks="5/6, SSSS [19,37,38]
E=1TPa, v=03,h=034nm, =1, kl =1, k2=1, [=.91 nm, n =0, SSSS [Present]

In order to solve stability equations, the parameters in Table 3 obtained from credible related research [32] are employed.

Fig. 2 shows m and n variations for square and rectangular nano-piezoelectric-sheets. It is clear that results are not
accurate before m =n =20, but after m=n> 20 the critical shear loads almost converge to the point that m and n variations
have no effect on critical shear load at m=n> 30. Therefore, the results at m=n=30 are convenient for extracting the
critical shear load of piezoelectric nano-sheets from.

Fig. 3 shows the variations of length scale versus length to thickness ratio of the sheet. It is seen that critical shear
load increases with length scale. Results were extracted for clamped boundary conditions with the external voltage being
0.05V. According to the Figure, the critical shear load decreases as the sheet length to thickness ratio increases. The Figure
is plotted for a thin sheet Lx/h > 30 and a medium thickness sheet 10 > Lx/h > 20. In fact, as the sheet becomes thinner, the
critical load decreases which is a logical outcome.

In order to study the effect of length scale on different boundary conditions, Fig. 4 was examined. It was found that with
a more flexible boundary condition critical load results decrease, which means that the maximum critical shear load occurs
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30
28
26
24
22
20
18
16
14
12
10

Critical shear load (nN/nm)

O N B OO 0

/*

Fig. 3. Length scale parameter versus length to thickness ratio (Ly =30h, I*=I/h, Vo =0.05V, CCCC).

50

45
==O==S5SSS === CCCC
40
35 . === CFCF == SFSF
30
25
20
15

10

Critical shear load (nN/nm)

O < 1 1 1 1 1 1 1 1 J
1 14 1.8 2.2 2.6 3 3.4 3.8 4.2 4.6 5

Fig. 4. The length scale parameter versus boundary conditions (Lx =Ly =30h, [*=I/h, V; =0.05V).

with clamped boundary conditions providing the minimum flexibility. The critical shear load at I* > 1.8 is greater for SFSF
condition than for SSSS. The reason is different length scales in different boundary conditions.

Fig. 5a and b is plotted to examine the effect of external electric voltage applied to the piezoelectric nano-sheet versus
the length to thickness ratio and § parameter. Fig. 5a is extracted for clamped boundary conditions while Fig. 5b pertains to
simply supported boundary conditions. Fig. 5a suggests that with clamped boundary conditions, critical shear load increases
with external voltage, but the effect of external voltage on critical load is negligible. Fig. 5b presents dissimilar results, since
for simply supported boundary conditions, the critical shear load decreases with increasing external voltage. Furthermore,
it is evident that with an increased length to width ratio the shear load decreases and external voltage becomes more
effective. The difference in results of the diagrams proves the statement.

Fig. 6 shows the direct effect of external voltage on critical shear load. Results were extracted for CFCF boundary condi-
tions and suggest that the effect of external voltage on critical shear load is negligible. Table 4 is presented to verify this
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Fig. 5. (a) The effect of external voltage versus length to thickness ratio (Ly=30h, [=0.5h, CCCC). (b) The effect of various external voltage versus f8
parameter (Ly=30h, [=0.5h, SSSS).

fact. It is clear that the critical shear load increases with external voltage in CCCC boundary conditions while it decreases
with the other two boundary conditions. Moreover, with the external voltage increased, minute differences appear in crit-
ical shear load results, showing the effect of external voltage on critical shear load to be negligible. In fact, the shear load
occurring on the piezoelectric nano-sheet due to external electric current is insignificant.

5. Conclusions

This study investigated the shear buckling of piezoelectric nanoplate under external electric voltage. In this regard, mod-
ified first order shear deformation theory was employed to obtain the governing equations by taking Von-Karman nonlinear
strains into consideration. The impact of small scale was investigated by using modified couple stress theory. Moreover, the
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Fig. 6. The effect of various length scale parameter versus external voltage (Ly =30 h, CFCF).

Table 4
The effect of external electric voltage on
various boundary conditions.

(Ly=30h,l=h)
Critical shear buckling load (nN/nm)
Vo (V)  CCCC CFCF SSSS

-15 1.8554 1.7455 1.2494

-1 1.8597 17446  1.2356
-0.5 1.8640  1.7437 1.2218
0 1.8682  1.7428 1.2081
0.5 1.8725 1.7419 1.1943
1 1.8768 1.7410 1.1806
1.5 1.8811 1.7401 11668
2 1.8853 1.7392 11531
25 18896 17384 11393
3 18939 17375 11255
3.5 1.8982 17366 11118
4 19024 17357 1.0980
4.5 1.9067 17348  1.0843
5 1.9110 17339 10705

exact solution was used to extract the results by changing various parameters. In conclusion, some of the important results
achieved from the present study are as follows:

» By increasing the parameter §, the impact of external electric voltage on the results of the critical shear load increases.
» Exact solutions by S-FSDT theory are satisfactorily corresponding to the molecular dynamics solution.

» Whenever the boundary conditions are less flexible, the critical shear load will increase.

o The length scale impact on the results of any boundary conditions increases with an increase in 1 parameters.

» By increasing the external electric voltage, the critical shear load in flexible boundary conditions decreases and vice versa
in non-flexible boundary conditions.

The effect of external electric voltage on the critical shear load occurring on the piezoelectric nanoplate is insignificant.
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