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The electronic structure of selected rare-earth atoms adsorbed on a free-standing graphene was investigated
using methods beyond the conventional density functional theory (DFT+U , DFT+HIA, and DFT+ED). The
influence of the electron correlations and the spin-orbit coupling on the magnetic properties has been examined.
The DFT+U method predicts both atoms to carry local magnetic moments (spin and orbital) contrary to a
nonmagnetic f 6 (J = 0) ground-state configuration of Sm in the gas phase. Application of DFT+Hubbard-I
(HIA) and DFT+exact diagonalization (ED) methods cures this problem, and yields a nonmagnetic ground state
with six f electrons and J = 0 for the Sm adatom. Our calculations show that Nd adatom remains magnetic,
with four localized f electrons and J = 4.0. These conclusions could be verified by STM and XAS experiments.
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I. INTRODUCTION

Adsorption of atoms and molecules provides a way to
control and modify the electronic properties of graphene
[1]. Adsorption of alkali and transition metals on graphene
was investigated extensively in recent years [2–5]. There are
much less studies of interaction between rare-earth atoms and
graphene. Since the bonding character of the sp elements and
transition metals is different from that of strongly localized 4f

metals, a different behavior of the rare-earth atoms adsorbed
on graphene is expected. In the pioneering work [6], the
first-principles theory has been applied to several rare-earth
adatoms on graphene, together with the scanning tunneling
microscopy (STM) experiments. It was shown that the hollow
site of graphene is the energetically favorable adsorption site
for all the rare-earth adatoms. Magnetic moments have been
reported for all adatoms studied.

Accurate description of the electronic and magnetic prop-
erties of the f -electron systems remains a challenge in con-
densed matter physics. The standard density-functional theory
(DFT) proves to be inadequate due to the self-interaction error
[7]. For this reason, theories like self-interaction correction
[8], hybrid functionals [9], or treatment of the 4f shell as
corelike [10] have been explored. In Ref. [6], the f states of the
rare-earth adatoms were treated as a part of the atomic core and
were fixed in a given configuration. That places some limits
on the validity of acquired conclusions about the magnetic
character of the f manifold.

In this paper, we re-examine the electronic and magnetic
structure of two rare-earth adatoms (Sm and Nd) on graphene
making use of the rotationally invariant formulation of the
DFT+U method [11]. In order to incorporate the dynamical
electron correlations, we employ the exact diagonalization
(ED) method to solve a multiorbital single-impurity Ander-
son model [12] whose parameters are extracted from DFT
calculations. This method is conceptually similar to earlier
calculations of bulk rare-earth materials [13,14].
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In Sec. II we describe the DFT+U and DFT+ED methods
which we use to calculate the electronic structure and magnetic
properties of the adatoms on graphene. Special attention is
paid to modifications of the DFT+U due to the spin-orbit
coupling (SOC). In Sec. III we describe the results of the
DFT+U , DFT+Hubbard I (HIA), and DFT+ED calculations
of Sm adatom on graphene (Sm@GR). It is shown that the f 6

shell of Sm with the nonmagnetic singlet ground state cannot
be described correctly by DFT+U . The use of DFT+HIA
and DFT+ED solves this problem. In Sec. IV we address
the electronic and magnetic character of a rare-earth adatom
with the local moment, taking as an example Nd adatom
on graphene (Nd@GR). A comparison between DFT+U

and DFT+HIA is given. Reasonable agreement between the
DFT+U and DFT+HIA f -projected density of states (DOS)
is demonstrated.

II. COMPUTATIONAL METHODS

The conventional band theory fails to correctly describe the
strongly localized 4f states due to the oversimplified treatment
of electron correlations, as it is often seen in the applications of
DFT to f -electron materials. Here, we use the correlated band
theory (DFT+U ) method, which consists of DFT augmented
by a correcting energy of a multiband Hubbard type.

In order to describe the structural, electronic, and magnetic
properties of the rare-earth adatoms on graphene, we use the
supercell shown in Fig. 1. This 4×4×1 supercell includes
32 carbon atoms, and the rare-earth adatom is placed in the
hexagonal hollow position. First, the structure relaxation was
performed employing the standard Vienna ab initio simulation
package (VASP) [15] together with the projector augmented-
wave method (PAW) [16] without SOC. We used the DFT+U

method with the exchange-correlation functional of Perdew,
Burke, and Ernzerhof (PBE) [17]. The Coulomb U values
of 6.76 eV (Nd) and 6.87 eV (Sm), and the exchange J of
0.76 eV were used, which are in the commonly accepted range
of U and J for the rare earths [18]. The optimal heights for
the rare-earth adatoms above the graphene sheet are found as
hSm = 4.58 bohr and hNd = 4.55 bohr.

2469-9950/2016/94(12)/125113(7) 125113-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.125113


AGNIESZKA L. KOZUB et al. PHYSICAL REVIEW B 94, 125113 (2016)

FIG. 1. Schematic supercell model for rare-earth impurity on
graphene.

The structural information obtained from the VASP sim-
ulations was used as an input for further electronic-structure
calculations that employ the relativistic version of the full-
potential linearized augmented plane-wave method (FLAPW)
[19], in which the SOC is included in a self-consistent
second-variational procedure [20]. This two-step approach
synergetically combines the speed and efficiency of the highly
optimized VASP package with the state-of-the-art accuracy of
the FLAPW method.

A. DFT+U with spin-orbit coupling

When the spin-orbit coupling is taken into account, the spin
is no longer a good quantum number, and the electron-electron
interaction energy Eee in the DFT+U rotationally-invariant
total-energy functional [11] has to be modified [21] to

Eee = 1

2

∑
γ1γ2γ3γ4

nγ1γ2

(
V ee

γ1γ3;γ2γ4
− V ee

γ1γ3;γ4γ2

)
nγ3γ4 , (1)

where V ee is an effective on-site Coulomb interaction ex-
pressed in terms of Slater integrals that are linked to the
intra-atomic repulsion U and exchange J , see Eq. (3) in
Ref. [22]. The essential feature of the generalized total energy
functional (1) is that it contains spin-off-diagonal elements of
the on-site occupation matrix nγ1γ2 ≡ nm1σ1,m2σ2 which become
important in the presence of large SOC.

For a given set of spin orbitals {φmσ }, we minimize the
DFT+U total energy functional. It gives the Kohn-Sham

equations for a two-component spinor �i =
(

�
↑
i

�
↓
i

)
,

∑
β

[−∇2 + V̂eff + ξ (l · s)]α,β�
β

i (r) = ei�
α
i (r), (2)

where the effective potential V̂eff is a sum of the standard
(spin-diagonal) DFT potential and the on-site electron-electron
interaction potential VU ,

V̂
α,β

U =
∑
m,m′

|φαm〉(Wαm,βm′ − δm,m′δβ,αWα
dc

)〈φβm′ |, (3)

where

Wαm,βm′ =
∑

pσ,qσ ′
(〈m′β,pσ |V ee|mα,qσ ′〉

− 〈m′β,pσ |V ee|qσ ′,mα〉)npσ,qσ ′ (4)

and Wα
dc is the double-counting correction. The most com-

monly used form of Wσ
dc is the so-called “fully localized” (or

atomiclike) limit (FLL) [11], Wσ
dc = U (nf − 1/2) − J (nσ

f −
1/2). Another form of the DFT+U functional is often called

as “around-mean-field” (AMF) limit of the DFT+U [23],
Wσ

dc = Un−σ
f + 2l

(2l+1) (U − J )nσ
f . The operator |φαm〉〈φβm′ | in

Eq. (3) acts on the two-component spinor wave function � as
|φαm〉〈φβm′ |�β〉.

In addition to the spin-dependent DFT potential, the
DFT+U method creates a spin- and orbitally-dependent
on-site “+U” potential, which enhances orbital polarization
beyond the polarization given by the DFT alone (where it
comes from the SOC only). We also note that the DFT contri-
butions to the effective potential V̂eff in Eq. (2) are corrected
to exclude the double counting of the f states nonspherical
contributions to the DFT and DFT+U parts of the potential.
The nonspherical part of the DFT potential is expanded in
terms of the lattice harmonics Kν , V NSH

DFT (r) = ∑
ν Vν(r)Kν(r̂).

The DFT contributions to the muffin-tin nonspherical matrix
elements, that are proportional to 〈lm1|Kμ|lm2〉 for l = 3
orbital quantum number, are removed.

B. DFT combined with the Anderson impurity
model (DFT+ED)

To proceed beyond DFT+U in the electronic structure of
the 4f adatoms on graphene, we make use of the “DFT++”
methodology [24]. We consider the one-particle Hamiltonian
found from ab initio electronic structure calculations plus the
on-site Coulomb interaction describing the f -electron corre-
lation of an adatom. The effects of the Coulomb interaction
on the electronic structure are described by a one-particle
self-energy �(z) [where z is a (complex) energy], which is
calculated in a multiorbital Anderson impurity model,

Himp =
∑
kmm′
σσ ′

[εk]σ σ ′
mm′ b

†
kmσ bkm′σ ′ +

∑
mσ

εf f †
mσ fmσ

+
∑

mm′σσ ′
[ξ (l · s) + CF]σ σ ′

mm′ f †
mσ fm′σ ′

+
∑
kmm′
σσ ′

([V k]σ σ ′
mm′ f †

mσ bkm′σ ′ + H.c.)

+ 1

2

∑
mm′m′′
m′′′σσ ′

Umm′m′′m′′′f †
mσf

†
m′σ ′fm′′′σ ′fm′′σ . (5)

Here f
†
mσ creates an electron in the 4f shell and b

†
mσ creates

an electron in the “bath” that consists of those host-band states
that hybridize with the impurity 4f shell. The energy position
εf of the impurity level and the bath energies εk are measured
from the chemical potential μ. The parameters ξ and CF

specify the strength of the SOC and the size of the crystal
field at the impurity. The parameter matrices V k describe the
hybridization between the f states and the bath orbitals at
energy εk .

The band Lanczos method [25], paired with an efficient
truncation of the many-body Hilbert space [26] is employed
to find the lowest-lying eigenstates of the many-body Hamil-
tonian Himp for a given number nf of correlated electrons and
to calculate the one-particle Green’s function [Gimp(z)]σ σ ′

mm′ in
the subspace of the f orbitals. The self-energy [�(z)]σ σ ′

mm′ is
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then obtained from the inverse of the Green’s function matrix
Gimp.

Once the self-energy is known, the local Green’s function
G(z) for the electrons in the f manifold of the rare-earth
adatom is calculated as

G(z) = [
G−1

0 (z) + ε − �(z)
]−1

, (6)

where G0(z) is the noninteracting Green’s function, and
ε is chosen to ensure that nf = π−1 Im Tr

∫ EF

−∞ dE G(E −
i0) is equal to the given number of correlated electrons.
Subsequently, we evaluate the occupation matrix in the 4f

shell, nγ1γ2 = π−1 Im
∫ EF

−∞ dE [G(E − i0)]γ1γ2 . This matrix is
used to construct an effective DFT+U potential VU , Eq. (3),
which is inserted into Kohn-Sham Eqs. (2). The DFT+U

Green’s function GU (z) is evaluated from the eigenvalues and
eigenfunctions of Eq. (2), represented in the FLAPW basis, and
then it is used to calculate an updated noninteracting Green’s
function G−1

0 (z) = G−1
U (z) + VU (z). In each iteration, a new

value of the 4f -shell occupation is obtained. Subsequently, a
new self-energy �(z) corresponding to the updated f -shell oc-
cupation is constructed. Finally, the next iteration is started by
evaluating the local Green’s function, Eq. (6). The steps are it-
erated until self-consistency over the charge density is reached.

When the hybridization between the f states and the
bath orbitals is weak, one can neglect the first and fourth
terms in Eq. (5), and the Anderson impurity model is
reduced to the atomic model. This approximation is called
Hubbard-I approximation (HIA). The use of HIA allows us
to substantially reduce the computational cost needed for
the exact diagonalization of the Hamiltonian (5). The same
procedure for the charge-density self-consistency is used for
DFT+HIA. Further details of the DFT+HIA implementation
in the FP-LAPW basis are described in Ref. [27].

III. SAMARIUM ON GRAPHENE

A. DFT+U

We start with the application of the DFT+U approach to
Sm@GR. The Slater integrals that define the on-site Coulomb
interaction are chosen as F0 = 6.87 eV,F2 = 9.06 eV,F4 =
6.05 eV, and F6 = 4.48 eV. They correspond to Coulomb
U = 6.87 eV and Hund exchange J = 0.76 eV. The spin (MS)
and orbital (ML) magnetic moments are given in Table I
together with the occupation of the Sm 4f orbitals nf . In these
calculations, the magnetization (spin+orbital) is constrained
along the crystallographic axes: x,y (in plane), and z (out of
plane). The DFT+U -FLL yields a solution with both MS and

TABLE I. Spin (MS), and orbital (ML) magnetic moments (in
μB ) and 4f occupation nf of the Sm adatom on graphene for three
different directions of the magnetization M: x,y (in plane), and z (out
of plane).

Sm@GR FLL AMF

nf MS ML nf MS ML

M||x 5.94 5.85 −2.90 5.94 0.09 −0.04
M||y 5.94 5.86 −2.91 5.94 0.09 −0.03
M||z 5.94 5.84 −2.93 5.94 0.19 −0.10
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FIG. 2. The total (TDOS) and spin-resolved f -orbital density of
states for the Sm adatom on graphene calculated with DFT+U -FLL
(a) and DFT+U -AMF (b).

ML nonzero, and nf very close to six. Thus the FLL flavor of
the DFT+U gives an f 6 magnetic ground state with the total
moment MJ = 2.9 μB . On the contrary, the DFT+U -AMF
converges to a practically nonmagnetic f 6 ground state with
all MS,ML, and MJ close to zero (Table I).

The calculated total density of states (TDOS, for both spins,
and per unit cell) and the f -orbital spin-resolved DOS for Sm
adatom calculated with DFT+U -FLL and DFT+U -AMF are
shown in Fig. 2. The DFT+U -FLL yields a mean-field solution
with broken symmetry. This is because the part of the Coulomb
interaction treated in the Hartree-Fock-like approximation is
transformed into the exchange splitting field. This exchange
field is several eV strong (see Fig. 2) and by far exceeds
any imaginable external magnetic field. This exchange field
is reduced to almost zero in the DFT+U -AMF calculations.
The DFT+U is not based on any kind of atomic coupling
scheme (LS or jj ), since it determines a set of single-particle
orbitals that variationally minimize the total energy. The AMF
calculated f 6 nonmagnetic ground state corresponds to the
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Slater determinant formed of six equally populated j = 5/2
orbitals.

B. DFT+HIA

The observation that two different flavors of DFT+U yield
different results for the magnetic properties is similar to
f cc-Am where the DFT+U results strongly depend on the
choice of the DFT+U double counting [28]. This situation is
quite alarming and indicates that one has to go beyond the static
mean-field approximation to accurately model these systems.
Such an improved approximation was introduced in Sec. II B
where the Coulomb potential VU , Eq. (3), is calculated from the
occupation matrix nm1σ1,m2σ2 corresponding to a multireference
many-body wave function instead of a single Kohn-Sham
determinant. The many-body wave function is the ground
state of the impurity model from Eq. (5) with the following
parameters: The Slater integrals are the same as those used
in the DFT+U calculations, the spin-orbit parameter ξ =
0.16 eV was determined from DFT calculations, and the
crystal-field effects are neglected, CF = 0.

First, we excluded the hybridization between the f states
and the bath orbitals in Eq. (5), and used DFT+HIA. The
occupation of the 4f shell self-consistently determined from
Eq. (2) is 〈nf 〉 = 5.95 (FLL double counting) and 〈nf 〉 =
5.98 (AMF double counting). When we alternatively fix εf in
Eq. (5) to −Wdc from Eq. (3), we obtain the occupation 〈nf 〉 =
6.0. It means that all f electrons of Sm are fully localized.
The ground state of the 4f shell is a nonmagnetic singlet
with all angular moments equal to zero (S = L = J = 0).
The f -orbital DOS obtained from Eq. (6) is shown in Fig. 3(a).
There is practically no difference between the different double-
counting variants, FLL or AMF, in Eq. (2).

C. DFT+ED

Next, we determine the bath parameters V k and εk ,
assuming that the DFT represents the noninteracting model.
That is, we associate the DFT Green’s function GDFT(z) with
the Hamiltonian (5) when the coefficients of the Coulomb
interaction matrix are set to zero (Umm′m′′m′′′ = 0). The
hybridization function (ε) is then estimated as (ε) =
Im Tr[G−1

DFT(ε − i0)].
A detailed inspection shows that the hybridization matrix is,

to a good approximation, diagonal in the {j,jz} representation.
Thus, we assume the first and fourth terms in Eq. (5) to be
diagonal in {j,jz}. Hence we only need to specify one bath
state (six orbitals) with εk=1

j=5/2 and V k=1
j=5/2, and another bath

state (eight orbitals) with εk=1
j=7/2 and V k=1

j=7/2. Assuming that
the most important hybridization occurs in the vicinity of
the Fermi level EF, the numerical values of the hybridiza-
tion parameters V k=1

5/2,7/2 are found from the relation [29]

π
∑

k |V k
j |2δ(εk

j − ε) = −(ε)/Nj averaged over the energy
interval, EF − 0.5 eV � ε � EF + 0.5 eV, with Nj = 6 for
j = 5/2 and Nj = 8 for j = 7/2. The bath-state energies
εk=1

5/2,7/2 shown in Table II are then adjusted to approximately

reproduce the DFT occupations of the f states, n
5/2
f and n

7/2
f .

Note that the magnitudes of the hybridization parameters V

are very small indicating the localized nature of the 4f states.

(b)

(a)

FIG. 3. f -electron density of states (fDOS, and j = 5/2,7/2
projected) for the Sm atom in Sm@GR resulting from DFT+HIA
calculations (a); fDOS, and j = 5/2,7/2 projected fDOS, for the Sm
atom in Sm@GR from DFT+ED (b).

The occupation of the 4f shell self-consistently determined
from Eq. (2) is 〈nf 〉 = 5.95 (FLL double counting) and
〈nf 〉 = 5.97 (AMF double counting). Since the occupation is
very close to 〈nf 〉 = 6.0, we kept εf in Eq. (5) at 〈nf 〉 = 6.0.
The ground state of the cluster formed by the 4f shell and
the bath is a nonmagnetic singlet with all angular moments
equal to zero (S = L = J = 0). In this ground state, there
are 〈nf 〉 = 6.0 electrons in the 4f shell and 〈nbath〉 = 8.0
electrons in the bath states. The ground-state expectation
values of the angular moments of the 4f shell are calculated
as Sf = 2.92,Lf = 2.92, and Jf = 0.03. The singlet ground
state is separated from the first excited state (triplet) by a gap of
50 meV. The f -orbital density of states obtained from Eq. (6)
is shown in Fig. 3(b). Comparison with DFT+HIA, Fig. 3(a),
demonstrates similar features with about 1 eV upward energy

TABLE II. f -states occupations n
5/2
f and n

7/2
f , and bath-state

parameters ε1
5/2, ε1

7/2,V
1

5/2,V
1

7/2 (all energies in eV) for Sm and Nd
adatoms determined from DFT calculations.

Adatom n
5/2
f n

7/2
f ε1

5/2 V 1
5/2 ε1

7/2 V 1
7/2

Sm 5.72 0.36 0.025 0.071 −0.500 0.077
Nd 3.49 0.14 0.050 0.085 −0.500 0.087
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TABLE III. Occupation nf , values of n
5/2
f and n

7/2
f , and branching

ratio B for Sm@GR. The atomic theory values [30] for nf = 6 in the
LS and jj coupling schemes are also given.

Sm@GR nf n
5/2
f n

7/2
f B

DFT+U -FLL 5.94 3.33 2.60 0.69
DFT+U -AMF 5.94 5.87 0.07 0.985
DFT+HIA-FLL 5.95 3.80 2.14 0.745
DFT+ED-FLL 5.95 3.81 2.14 0.75
DFT+HIA-AMF 5.98 3.82 2.16 0.75
DFT+ED-AMF 5.97 3.82 2.16 0.75
atomic LS 6 3.14 2.86 0.67
atomic jj 6 6.00 0.00 1.00

shift. Also, we have examined the double-counting choice
in Eq. (2), and found practically no difference between the
different double-counting variants, FLL or AMF.

D. Implications for x-ray absorption spectroscopy

Information about the 4f states can be gleaned from the x-
ray absorption spectroscopy (XAS). In these experiments, the
intensities I5/2 (3d5/2 → 4f5/2,7/2) and I3/2 (3d3/2 → 4f5/2) of
the individual absorption lines are measured and the branching
ratio B = I5/2/(I3/2 + I5/2) is evaluated [30]. We compute the
branching ratio B for core to valence 3d − 4f transition by
obtaining n5/2 and n7/2 from the local occupation matrix nγ1γ2

and making use of the sum rule [30],

B = 3

5
− 2

5

n
7/2
f − 4

3 n
5/2
f

14 − nf

. (7)

The DFT+U -FLL as well as DFT+HIA and DFT+ED
yield the branching ratios close to the atomic LS-coupling
limit (Table III). On the contrary, the DFT+U -AMF value is
close to the jj -coupling atomic value B = 1.0. It is rather
well established that the rare-earth atoms with the localized f

shell are well described by the LS-coupling scheme, and our
DFT+HIA and DFT+ED calculations, which are not bound by
any particular atomic coupling scheme, illustrate once again
the validity of the conventional atomic theory. At the same
time, the DFT+U -AMF does not have the proper atomic limit
since it is very far from the LS-coupling scheme.

As we have shown, the use of DFT+U for Sm on graphene
can lead to erroneous conclusions about the magnetic character
of the Sm adatom. In fact, recent DFT+U calculations [31]
for the rare-earth atoms embedded in graphene, including Sm,
report it to carry large spin and orbital magnetic moments. We
think that the magnetic character of Sm atom in graphene was
not determined correctly [31].

IV. NEODYMIUM ON GRAPHENE

A. DFT+HIA

Theoretical evaluation of the local magnetic moments of
the rare-earth atoms adsorbed on a nonmagnetic substrate
is an important issue in the context of creating a single
4f -atom magnet [32,33]. As an example of the rare-earth
adatom, where the local moment is expected to exist from

TABLE IV. Spin (MS) and orbital (ML) magnetic moments (in
μB ) and 4f occupation nf of Nd@GR for three different directions
of the magnetization M: x,y (in plane) and z (out of plane).

Nd@GR nf MS ML

M||x 3.78 3.70 −4.59
M||y 3.78 3.71 −4.60
M||z 3.78 3.69 −2.58

the atomic LS-coupling scheme arguments, we consider
the case of Nd@GR. For the DFT+HIA calculations, the
Slater integrals F0 = 6.76 eV,F2 = 9.06 eV,F4 = 6.05 eV,
and F6 = 4.48 eV were chosen. They correspond to Coulomb
U = 6.76 eV and exchange J = 0.76 eV. The spin-orbit
parameter was determined by DFT that yields ξ = 0.13 eV.
The bath parameters were evaluated using the same procedure
as for Sm@GR; they are listed in Table II. It is seen that
the hybridization strength in Nd@GR is rather similar to

−8 −6 −4 −2 0 2 4 6 8
Energy  (eV)

−10

0
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(b)

(a)

FIG. 4. f -electron density of states (fDOS, and j = 5/2, 7/2
projected) for the Nd atom in Nd@GR calculated with DFT+HIA
(a); the total (TDOS) and spin-resolved f -orbital DOS for the Nd
adatom in Nd@GR calculated with DFT+U -FLL (b).
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Sm@GR. This weak hybridization allows us to use the simpler
DFT+HIA method.

The ground state of the Nd atom on graphene, the solution
of Eq. (2), has 〈nf 〉 = 3.66 f electrons. Note that Nd atom
in solid-state compounds commonly has a valency 3+, and
the deviation from the atomiclike f 4 configuration is thus
not surprising. The ground state has degeneracy of nine, and
the expectation values of the 4f -shell moments are Sf =
1.96,Lf = 5.95, and Jf = 4.00. These values are consistent
with the 5I4 LS-coupled f 4 atomic ground state. The degener-
ate character of the ground state dictates the presence of local
moment for Nd@GR. The XAS branching ratio B = 0.715 is
calculated, and can be verified experimentally.

B. DFT+U

Since we have shown that DFT+U+AMF does not have the
correct atomic limit (it is not close to the LS-coupling scheme),
we apply only the DFT+U -FLL approach to Nd@GR. It
yields nonzero spin MS and orbital ML magnetic moments,
which are given in Table IV together with the occupation
of the Nd adatom f orbitals, nf . In these calculations,
the magnetization (spin+orbital) is constrained along the
crystallographic axes: x,y (in plane) and z (out of plane).
Note that MS and ML have different physical meaning than
Sf and Lf in DFT+ED calculations: They represent the
projections of the spin and orbital moments on the selected
axis, while Sf , and Lf are the expectation values of the
many-body spin and orbital operators squared. Qualitatively,
one can say that these DFT+U solutions represent different
mean-field approximations (or their linear combinations) of
the degenerate many-body ground state.

The f -orbital DOS obtained in DFT+HIA calculations is
shown in Fig. 4(a). Comparison with DFT+U , see Fig. 4(b),
shows that DFT+U gives rather correct placement of the f

states. No multiplet splittings, which are clearly seen in the
DFT+HIA DOS are resolved in DFT+U . This is expected

from the single-determinant DFT+U approximation. Both
DFT+HIA and DFT+U suggest no f -character DOS in the
vicinity of EF.

V. CONCLUSIONS

The electronic structure and magnetic properties of Sm and
Nd impurities on a free-standing graphene were investigated
making use of DFT+U , DFT+HIA, and DFT+ED methods
in order to analyze the role of the electron correlations and the
spin-orbit coupling. DFT+U calculations result in nonzero
local magnetic moments for both adatoms. This is expected
for Nd, but not for Sm, which has a nonmagnetic f 6 (J = 0)
ground state configuration. Application of the DFT+HIA
and DFT+ED methods solves this problem, and yields a
nonmagnetic singlet ground state with nf = 6.0, and J = 0
for the Sm adatom, while the degenerate ground state of Nd
adatom retains the local magnetic moment with nf = 3.7, and
J = 4.0. Our results show that the DFT+U predictions for
the f systems close to the atomic limit should be treated
with caution, keeping in mind the ambiguities inherent to the
DFT+U approximation.
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