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The adiabatic potential energy curves of the 1S+ and 1P states of the LiH molecule were calculated.

They correlate asymptotically to atomic states, such as 2s + 1s, 2p + 1s, 3s + 1s, 3p + 1s, 3d + 1s, 4s + 1s,

4p + 1s and 4d + 1s. A very good agreement was found between our calculated spectroscopic parameters

and the experimental ones. The dynamics of the rotational predissociation process of the 11P state were

studied by solving the time-dependent Schrödinger equation. The classical experiment of Velasco

[Can. J. Phys., 1957, 35, 1204] on dissociation in the 11P state is explained for the first time in detail.

During the past twenty years, the physics of diluted gases have
seen major advances in two fields, namely laser cooling of
atomic and molecular samples and femtosecond chemistry. In
both cases, appropriate frequency and phase-shaped laser light
are used to control the system. In this context, two fundamental
processes, i.e., photoassociation and photodissociation, or in
other words formation and breaking of the chemical bond by
light, have attracted the attention of theoreticians, as well as
experimentalists. In particular, photodissociation of diatomic
or small polyatomic molecules is an ideal field for investigating
molecular dynamics at a high level of precision.

Homonuclear and heteronuclear alkali metal molecules,
including LiH, are valuable for theoreticians, mainly because they
have a simple electronic structure, being two-valence electron
systems. They can serve as convenient prototypes to test theore-
tical methods, which can be further applied to more complicated
molecular systems. Besides that, knowledge of interatomic adia-
batic potential energy curves of diatomic systems is essential for
the understanding of several processes such as photodissociation,
photoassociation, cooling and trapping. An extensive survey on
the spectroscopy and structure of LiH was published in 1993
by Stwalley and Zemke,1 and this was followed by a study by
Gadea and Leininger2 in 2006.

In 1935–1936, Crawford and Jorgensen3,4 analysed the LiH band
spectra. Since then, many notable studies have been undertaken.

Among them, in 1962 Singh and Jain5 applied the Rydberg–Klein–
Rees method to obtain energies of the low excited states of LiH.
Gadea and coworkers calculated potential energy curves,2,6–8 radial
couplings,9 nonadiabatic energy shifts,10 as well as LiH formation
by radiative association in ion collisions.11 Results of several other
calculations, including semiempirical and ab initio approaches to
describe important physical and chemical properties of LiH are
available.12–26 Calculations related to LiH are also used in the
description of the formation of ultracold polar molecules in a
single quantum state (e.g. Côté et al.27). Special investigations have
been devoted to dipole moments28,29 and the ionic states of
LiH.30–32 Tung et al.33 and Holka et al.34 performed very accurate
calculations of the ground and some excited state potential curves.

LiH was also intensively explored in time-dependent studies.
Again, being only a four-electron molecule makes it a convenient
example for molecular dynamics calculations. In 1936, Mulliken35

noted that the change in the internuclear separation may cause
a rearrangement in the distribution of the density of electrons.
Recently, the LiH molecule was used in a computational study
using the time-dependent multiconfiguration method.36

The aim of our work was to provide accurate potential
energy curves and to use them to explain a classical experiment
by Velasco37 on rotational predissociation. We chose to solve
the time-dependent Schrödinger equation (TDSE) with a probe
wavepacket placed on the effective interatomic potential possess-
ing a centrifugal barrier. This approach made it possible to
compare rovibrational spacings with the results derived from
the experiment by Velasco37 and with those calculated directly
from the electronic structure. Our work was also motivated by the
case of the NaI molecule intensively studied by A. Zewail38 and
later by others.39–42 The NaI dimer shows similar behavior to LiH
in creating ionic bonds and is a well-studied prototype molecule
in femtochemistry, particularly in relation to the dynamics of
unimolecular reactions.
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In Section II, the appropriate model of the electronic struc-
ture is defined, leading to an algorithm for the calculation of
some low-excited singlet S+ and P states. Later, we describe the
theoretical backgrounds of rotational predissociation and mole-
cular dynamics. We explain how the obtained adiabatic poten-
tials can be used in the theoretical treatment of the rotational
predissociation proccess. In particular, we present a method for
the calculation of the dynamics of predissociation of molecules
starting with a given coherent wavepacket. In Section III, we
present the rotational predissociation results for the 11P state
and compare them with the measurements of Velasco.37

Conclusions are given in the last section.

2 The model
2.1 Electronic structure

We consider the interaction between the lithium (atom A) and
hydrogen (atom B) under the assumption that the molecular
state is a composition of the electronic adiabatic states Cel

i (-r;R),
i = 1, 2, 3,. . ., which depend on the positive variable R, i.e. on the
separation between the nuclei of these atoms. The applied
notation indicates that our considerations are restricted to such
eigenstates, which are independent of the direction of the vector
joining the nuclei. In other words, electronic wave functions
possess spherical symmetry with respect to the nuclear coordinates.
Our calculations are based on the Born–Oppenheimer approxi-
mation, i.e. the solutions of the following time-independent
Schrödinger equation:

HelCel
i (-r;R) = Eel

i (R)Cel
i (-r;R). (1)

Here, the separation parameter R is kept fixed, vector -
r represents

all the electronic coordinates, Hel is the electronic Hamiltonian of
a diatomic system. Thus, Cel

i (-r;R) describes the ith eigenstate of
the Hamiltonian, Eel

i (R) are the corresponding eigenvalues, also
called adiabatic potentials. The Hamiltonian of the system can be
written as

Hel = Tel + V, (2)

where Tel stands for the kinetic energy operator of the valence
electrons and V represents the operator of the interaction
between the valence electrons, the Li-core and the nucleus
of H. In the present approach only the valence electrons are
treated explicitly, which allows for an adequate description of
electron correlation at low computational cost. The lithium core
is represented by an angular momentum-dependent pseudo-
potential. The latter is obtained as

V ¼ VA þ VA
pol þ VB þ 1

r12
þ Vcc: (3)

Here, VA describes the Coulomb and exchange interaction as
well as the Pauli repulsion between the valence electrons and the
lithium core. We use the following semi-local energy-consistent
pseudopotentials:

VA ¼
X2
i¼1

�QA

rAi
þ
X
l;k

BA
l;k exp �bAl;krAi

2
� �

PA
l

!
; (4)

where QA = 1 denotes the net charge of the lithium core, PA
l is

the projection operator onto the Hilbert subspace of angular
symmetry l with respect to the Li+-core. The parameters BA

l,k and
bA

l,k define the semi-local energy-consistent pseudopotential.
The second interaction term in eqn (3) is the polarization term
that describes, among others, core-valence correlation effects
and is calculated as

VA
pol ¼ �

1

2
aA~FA

2; (5)

where aA = 0.1915a0 is the dipole polarizability of the lithium
core43 and

-

FA is the electric field generated at its site by the
valence electrons. For the latter we use the following formula:

~FA ¼
X
i

~rAi

rAi
3
1� exp �dArAi

2
� �� �

; (6)

where dA is the cutoff parameter, which equals 0.831a0
�2 (value

taken from Fuentealba et al.43). The third term in eqn (3)
represents the Coulomb interaction between the valence elec-
trons and the hydrogen nucleus. The fourth term stands for the
repulsion between the valence electrons, whereas the last term
describes the interaction between the lithium core and hydro-
gen nucleus. Since the lithium atomic core and the hydrogen
nucleus are well separated, we choose a simple point-charge
Coulomb interaction in the latter case. More detailed charac-
teristics of the applied potentials are given in the papers by
Czuchaj and coworkers44,45 and Dolg.46

The core electrons of the Li atom are represented by
the pseudopotential ECP2SDF,43 which was formed from the
uncontracted (9s9p8d3f) basis set. The basis for the s and
p orbitals, which comes with this pseudopotential, is enlarged
by the functions for d and f orbitals given by D. Feller47 and
assigned by cc-pV5Z. Additionally, our basis set was augmented by
four s short-range correlation functions (1979.970927, 392.169555,
77.676373, 15.385230), four p functions (470.456384, 96.625417,
19.845562, 4.076012), four d functions (7.115763, 3.751948,
1.978298, 1.043103) and four f functions (2.242072, 1.409302,
0.885847, 0.556818). Also, we added to the basis the following
set of diffuse functions: two s functions (0.010159, 0.003894), two
p functions (0.007058, 0.002598), two d functions (0.026579,
0.011581) and two f functions (0.055000, 0.027500). The numbers
in parenthesis are the coefficients of the exponents of the
primitive Gaussian orbitals. The basis set for the hydrogen
electron is the standard cc-pV5Z basis.48

The spin–orbit coupling (SO) contributes insignificantly to
the energy of our system, so we do not take it into account. To
calculate the adiabatic potential energy curves of the LiH diatomic
molecule, we use the multiconfigurational self-consistent field/
complete active space self-consistent field (MCSCF/CASSCF)
method and the multi-reference configuration interaction
(MRCI) method. All the calculations are performed by means
of the MOLPRO program package.49 Using these computational
methods we obtained adiabatic potential energy curves for
singlet S+ and P states, which correlate to the Li(2s) + H(1s)
ground atomic asymptote and the Li(2p) + H(1s), Li(3s) + H(1s),
Li(3p) + H(1s), Li(3d) + H(1s), Li(4s) + H(1s), Li(4p) + H(1s) and
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Li(4d) + H(1s) excited atomic asymptotes, respectively. The
quality of our calculations can be confirmed by the comparison
with experimental and theoretical asymptotic energies for differ-
ent electronic states, which is shown in Table 1. Our asymptotic
energies for ground and excited states are in very good agreement
with experimental and other theoretical values. In particular, a
perfect match is found between our result and the experimental
value for the Li(2p) energy level.

2.2 Rotational predissociation

When the adiabatic potential Eel(R) of the singlet state 1L is
obtained from the solution of eqn (1), the effective potential
energy may be written in the following form (e.g. Landau and
Lifshitz):51

UJðRÞ ¼ EelðRÞ þ JðJ þ 1Þ � L2

2mR2
; (7)

where L is the component of the sum over all the electron
angular momenta on the diatomic axis, J Z L is the rotational
quantum number of the molecule and m is the reduced mass of
the nuclei.

Rovibrational energies E(v,J) depend on Eel(R) as well as
on vibrational v and rotational J quantum numbers. They are
the solutions of the time-independent nuclear Schrödinger
equation

Hnuc
J Cnuc

v,J (R) = E(v,J)Cnuc
v,J (R), (8)

where the nuclear Hamiltonian is obtained as

Hnuc
J ¼ ��h2

2m
@2

@R2
þUJðRÞ: (9)

The effective potential UJ (R) forms a barrier for J 4 0 with a
maximum UJ (RJ), at the internuclear distance RJ, which can
easily be estimated. Any rovibrational state with a positive
energy E(v,J) lower than UJ (RJ) has a finite lifetime before it
will be decomposed due to a quantum tunneling effect. These
states are called quasibound states and formally belong to the
continuum. What is important is that during their lifetimes
they can be regarded as bound states. When the energy E(v,J)
exceeds the barrier maximum UJ (RJ), any bound state is not
possible. Following Way and Stwalley,52 we introduce a critical
value of the rotational quantum number Jc, which obeys the
two following inequalities:

E(v,Jc) o UJc
(RJc

) (10)

and

E(v,Jc + 1) 4 UJc+1(RJc+1). (11)

In other words, for a given v, the state with the energy E(v,Jc)
is the last of the quasibound states series supported by the
barrier, and the state with the energy E(v,Jc + 1) already belongs
to the continuum. By solving eqn (8) we obtain E(v,Jc) and
estimate E(v,Jc + 1). The differences E(v,Jc) � E(0,0) and
E(v,Jc + 1) � E(0,0) may refer to the last observed and the first
unobserved rotational predissociation experimental results,
respectively.

2.3 Molecular dynamics

The time-dependent approach that is mathematically equivalent
to the time-independent one can be regarded as a comple-
mentary tool and is often used in studying photodisso-
ciation processes. Here, it serves as an alternative and quite
illustrative method for testing the results of our structural
calculations.

We start our consideration from the time-dependent Schrödinger
equation written in the following form:

i�h
@

@t
FðR; tÞ ¼ Hnuc

J FðR; tÞ; (12)

for each J r Jc separately, where F(R,t) is the time-dependent
wavepacket moving on the effective potential energy curve UJ (R)
(eqn (7)) and Hnuc

J is the nuclear Hamiltonian given in eqn (9).
By definition, the wavepacket is a coherent superposition of

stationary states (e.g. Tannor53), which may be represented in
the following form consisting of two contributions from the
discrete and continuous parts of the spectrum:

FðR; tÞ ¼
X
v;J

cv;JCnuc
v;J ðRÞe�iEðv;JÞt=�h þ

ð
cJðEÞCE;JðRÞe�iEt=�hdE;

(13)

where

cv;J ¼
ð1
0

Cnuc
n;J ðRÞ�FðR; 0ÞdR

and

cJðEÞ ¼
ð1
0

CE;JðRÞ�FðR; 0ÞdR

are the energy-dependent coefficients, squares of these coeffi-
cients form the spectral distribution of F normalized to 1,
e�ıE(v,J)t/h� and e�ıEt/h� are the time evolution factors, and Cnuc

v,J (R)
and CE,J(R) are eigenfunctions of Hnuc

J (R). The wavepacket
F(R;t) is a solution of eqn (12) and its initial shape at t = 0 is
taken as a Gaussian function of arbitrary half-width placed on
the effective potential energy curve. The wavepacket moves away
from its starting location due to the Newtonian force �dUJ /dR.
This process is described by the time-dependent autocorrelation
function

SðtÞ ¼
ð
FðR; t ¼ 0ÞFðR; tÞdR: (14)

Atomic
asymptotes

Experiment
Moore50

Theory
Boutalib6

Theory
Gadea2

Theory
present

Li(2p) + H(1s) 14 904 14 905 14 898 14 904
Li(3s) + H(1s) 27 206 27 210 27 202 27 202
Li(3p) + H(1s) 30 925 30 926 30 920 30 921
Li(3d) + H(1s) 31 283 31 289 31 279 31 276
Li(4s) + H(1s) 35 012 35 018 35 007 35 016
Li(4p) + H(1s) 36 470 36 475 36 465 36 464
Li(4d) + H(1s) 36 623 37 590 36 626 36 617

Table 1 Comparison of asymptotic energies with other theoretical and 
experimental results. Energies are shown in cm�1 units
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In our case, the autocorrelation function describes evolution
of the initial nuclear wavepacket in the excited electronic state.

The time-dependent population in the range till Rmax for the
particular state labeled by J, in accordance with the effective
potential energy UJ from eqn (7), is calculated as

PðtÞ ¼
ðRmax

0

jFðR; tÞj2dR: (15)

We determine the discrete spectrum by the inverse Fourier
transform of S(t)54 as follows:

sðEðn; JÞÞ ¼ cn;J
�� ��2¼ lim

T!1

1

T

ðþT=2
�T=2

eiEðn;JÞt=�hSðtÞdt (16)

In our calculations of the autocorrelation function (eqn (14)),
the propagation time is 150 ps, which is sufficient for the
estimation of the integral in eqn (16). In eqn (15), we set the
value of Rmax to be equal to 100a0. There are 212 points in
the integration grid. To avoid the diffraction between the outgoing
waves and the incoming ones due to bouncing from the boundary
at Rmax, a negative imaginary potential is placed at 90a0. This
potential smoothly absorbs the wavepacket near the boundary.55

Fig. 1 Adiabatic potential energy curves of LiH: 1–81S+ states (solid lines),
11P state (dashed line).

Table 2 Spectroscopic parameters Re [a0], De, oe, and Te [cm�1] for the ground and low-excited states of the LiH molecule

State Dissociation limit Author Re De oe Te

11S+ Li(2s) + H(1s) Present (theory) 3.003 20 327 1391
Dulick 1998 (exp.)56 3.014 20 286 1405
Stwalley 1993 (exp.)1 3.015 20 288 1407
Grofe 2017 (theory)26 3.024a 17 930a

3.001b 19 753b

Bande 2010 (theory)25 3.013 20 333
Aymar 2009 (theory)23 3.002 20 167 1398
Gadea 2006 (theory)2 3.003 20 349
Dolg 1996 (theory)14 3.000 20 123 1391
Boutalib 1992 (theory)6 3.007 20 174

21S+ Li(2p) + H(1s) Present (theory) 4.866 8687 260 26 544
Stwalley 1993 (exp.)1 4.906 8679
Grofe 2017 (theory)26 4.724a 7662a 23 551a

4.250b 8469b 26 132b

Bande 2010 (theory)25 5.173 8679 26 584
Aymar 2009 (theory)23 4.820 8698 241
Gadea 2006 (theory)2 4.862 8687
Boutalib 1992 (theory)6 4.847 8690 26 390
Vidal 1982 (theory)13 4.910 8686 244

11P Present (theory) 4.50 286 226 34 945
Velasco 1957 (exp.)37 4.49 284 216
Aymar 2009 (theory)23 4.52 251 243
Vidal 1982 (theory)13 4.50 289

31S+ Li(3s) + H(1s) Present (theory) 3.821 1270 540 46 259
10.172 8438 293 39 092

Huang 2000 (exp.)57 — —
10.140 8469

Grofe 2017 (theory)26 4.016a �1371a 47 425a

4.001b 1129b 45 570b

9.449a 7662a 38 553a

9.997b 8711b 42 021b

Aymar 2009 (theory)23 3.830 1267 390
10.150 8361 390

Gadea 2006 (theory)2 3.821 —
10.181 8453

Boutalib 1992 (theory)6 3.825 1277 46 109
10.206 8444 38 942

a MSDFT. b MS-CASPT2.
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A normalized Gaussian-shaped wavepacket F is initially centered
at 6.15a0 and possesses the half-width equal to 0.95a0.

3 Results and discussion

Our results of the calculated adiabatic potential energy curves of
1–81S+ and 11P states are presented in Fig. 1. Several character-
istic avoided crossings are visible, particularly the double one
at 5 and 20a0 between the curves of the 31S+ and 41S+ states.
Although not very pronounced, there are avoided crossings
between 11S+ and 21S+ at 7.5a0 and 21S+ and 31S+ at 10a0.
Additionally, in Fig. 1, the ionic character of the molecular bond
is clearly visible for larger R.

To benchmark our electronic structure calculations, bond
lengths Re, dissociation energies De, vibrational constants oe

and electronic term energies Te are compared with other theo-
retical and experimental results in Table 2. For the ground state
our position of Re agrees exactly with the theoretical value of
Gadea and Leininger2 and reasonably with the experimental
values of Stwalley et al.1 and Dulick et al.56 We also find good
agreement within 40 cm�1 between the well depths De of our
results and the experimental data of Stwalley et al. In the case of
11P, our results of Re and De agree within 0.01a0 and 2 cm�1

with the experimental data of Velasco, respectively. All the
theoretical results indicate the existence of a double well for
the 31S+ state, but this is not confirmed by the only available
experiment by Huang et al.57 A key observation is that for the
state of interest, namely 11P, the excellent consistency between
our results and the experimental data is better than for any
previous theoretical results.

Fig. 2 displays spacings between successive rovibrational levels
of the 11P state. Our first set of values was obtained by solving58

eqn (8). The second set comes from the appropriate differences
between the positions of peaks in the absorption spectrum obtained
from eqn (16) and presented in Fig. 3. These two sets agree very well

with each other. Moreover, there is also very good agreement with
the experimental values of Velasco.37

The peaks in the spectrum (Fig. 3) were obtained by solving
the time-dependent Schrödinger equation55 (eqn (12)) in combi-
nation with eqn (16). Here, we are not interested in the intensity
of the peaks and the precise shape of the initial wavepacket is
unimportant. The set of effective potentials UJ (eqn (7)) spans J

from 1 to 10. The broadened peak labeled by v = 0 and J = 9 is the
last in the series since J = 9 is a critical value Jc, discussed in
Section 2.2. Its half-width (FWHM) is equal to 2.7 cm�1. The last
very broad peak with J = 10 illustrates the situation where the
depth of the effective potential is too shallow to allow for
existence of any bound vibrational level. The last and already
broadened peak observed by Velasco was assigned as v = 0 and
J = 8. In his analysis, he correctly foresaw the existence of an
unobserved peak labeled by v = 0 and J = 9 before the molecule
breaks off due to high rotations. However, his prediction of the
existence of two other missing peaks in the spectrum, namely with
v = 1, J = 6 and v = 2, J = 3, is not confirmed by our results. The
broadening of the peak with v = 0 and J = 9 shown by our calculation
is due to quantum tunneling through the centrifugal barrier.

Fig. 2 Differences DE(v,J0,J) =  E(v,J0) � E(v,J) between rovibrational levels 
with the same vibrational quantum number v of the 11P state. Three series of 
differences are drawn for v = 0, 1 and 2. Each difference is specified by (J,J0). 
The black lines were derived from the calculated rovibrational levels. The red 
lines were derived from the experimental data of Velasco.37 The green lines 
represent our results obtained from the absorption spectrum shown in Fig. 
3.

Fig. 3 The discrete spectrum calculated from eqn (16).

Fig. 4 Time-dependent population of the wavepacket placed on the effec-
tive potential UJ(R) (J = 1,. . .,10) for the electronic energy of the 11P state. All
the lines refer to the same initial conditions at t = 0 of the wavepacket.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://dx.doi.org/10.1039/c7cp02097j
http://mostwiedzy.pl


The last figure (Fig. 4) shows the results for the time-dependent 
population of the 11P state for the same initial condition. For 
J = 10, no bound states are supported by the effective potential and 
the drop in population around 2.5 ps shows the time it takes for 
the continuum wavepacket to reach R = Rmax.

In all the cases, the population is close to the one within the first 
approximately 2.5 ps, since any continuum part of the wavepacket 
needs this time to reach Rmax. Furthermore for low values of J, the  
population is close to the one within the time window of 15 ps, 
meaning that essentially all parts of the wavepacket can be 
represented by bound states. For J = 9, the wavepacket consists 
of a continuum as well as a (quasi-) bound part. The quasibound 
part decays through tunneling, giving rise to the slow exponential 
decay with a decay constant of 2.4 ps. On the basis of the time-
energy uncertainty principle, we can estimate that this lifetime 
should give rise to a line width of approximately 2 cm�1. This is in  
good agreement with the spectrum in Fig. 3.

4 Conclusions

To describe the rotational predissociation process of the LiH 
molecule, we started by calculating the low-lying adiabatic 
potential energy curves, with particular emphasis on the 11P 
state. Our spectroscopic parameters are in very good agreement 
with the experimental values. Having the potential curve of 11P 
state, we calculated the rovibrational levels. The differences 
between these successive levels were compared with those 
derived from the experimental data of Velasco. The agreement 
again was very good, which means that the shape of the first 
excited electronic state 11P is reliable. On the other hand, since 
our difference (Te) between the potential wells of 11P and of the 
ground state 11S+ is around 50 cm�1 larger than the experi-
mental value of Stwalley et al., the direct comparison with the 
spectrum of Velasco shows a small systematic shift.

To gain insight into the complementary time-dependent 
approach, we solved the time-dependent nuclear Schrödinger 
equation. The solution shows the evolving wavepacket originally 
placed on the effective potential curve. The spectrum was calcu-
lated as a Fourier transform of the autocorrelation function. The 
differences between the successive peaks in the spectrum were 
compared with those of Velasco and ours obtained in the time-
independent approach. All three sets of values are in very good 
agreement. Our results for the time-dependent population of the 
11P state explain in detail the rotational predissociation mecha-
nism of the LiH molecule. A challenge for experimentalists would 
be to detect in real time (via pump–probe spectroscopy) the 
predissociation due to quantum tunneling through the centri-
fugal barrier.
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