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ABSTRACT
Density functional theory (DFT) is often used for simulating extended materials such as infinite crystals or surfaces, under periodic boundary
conditions (PBCs). In such calculations, when the simulation cell has non-zero charge, electrical neutrality has to be imposed, and this is often
done via a uniform background charge of opposite sign (“jellium”). This artificial neutralization does not occur in reality, where a different
mechanism is followed as in the example of a charged electrode in electrolyte solution, where the surrounding electrolyte screens the local
charge at the interface. The neutralizing effect of the surrounding electrolyte can be incorporated within a hybrid quantum–continuum model
based on a modified Poisson–Boltzmann equation, where the concentrations of electrolyte ions are modified to achieve electroneutrality.
Among the infinite possible ways of modifying the electrolyte charge, we propose here a physically optimal solution, which minimizes the
deviation of concentrations of electrolyte ions from those in open boundary conditions (OBCs). This principle of correspondence of PBCs with
OBCs leads to the correct concentration profiles of electrolyte ions, and electroneutrality within the simulation cell and in the bulk electrolyte
is maintained simultaneously, as observed in experiments. This approach, which we call the Neutralization by Electrolyte Concentration Shift
(NECS), is implemented in our electrolyte model in the Order-N Electronic Total Energy Package (ONETEP) linear-scaling DFT code, which
makes use of a bespoke highly parallel Poisson–Boltzmann solver, DL_MG. We further propose another neutralization scheme (“accessible
jellium”), which is a simplification of NECS. We demonstrate and compare the different neutralization schemes on several examples.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0021210., s

I. INTRODUCTION

Density functional theory (DFT) provides valuable insights into
material properties and phenomena at the atomic scale starting
from just the knowledge of the structural arrangement of atoms
and molecules. Due to its ab initio nature, it is extensively used in
physical and chemical sciences to model complex material systems.
The systems can be structurally very complex such as protein–ligand
systems, nanoparticles, and electrode–electrolyte interfaces, which

can involve tens of thousands of atoms. Conventional DFT scales
as O(N3), where N is the number of atoms, which makes it pro-
hibitively costly to model such large complex systems. DFT has been
reformulated in terms of the single particle density matrix to scale
linearly with the number of atoms as in the Order-N Electronic Total
Energy Package (ONETEP).1

Apart from structural complexity, in many applications, such
as in biology, electrochemistry, energy conversion, and storage, the
systems under consideration have a net non-zero charge. Under
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periodic boundary conditions (PBCs), the electrostatic potential
of a charged system diverges, making it necessary to neutralize
the overall charge. Traditional DFT approaches introduce a uni-
form background charge (“jellium”) to neutralize the charged sys-
tem, which introduces spurious charge densities and unphysical
energies, whereas, in reality, electroneutrality is maintained by the
surrounding electrolyte solution.

The surrounding electrolyte solution can be included mainly
via explicit solvation,2 implicit solvation,3 or both.4 In the former,
explicit molecules of the surrounding solvent and electrolyte are
added and considered on an equal footing as the main system. The
surrounding electrolyte molecules not only neutralize but can also
form bonds and adsorb on the main system.5 More extensive mod-
els of electrode–electrolyte interfaces can also include an explicit
counter-electrode.6,7 While consideration of the explicit solvent and
electrolyte molecules helps in describing local bonding effects and
the local effects of electric field,8 it drastically increases the config-
urational degrees of freedom. Sampling this large configurational
space leads to an increase in the computational overhead and the
loss of focus on the main system.

In many cases, one is focused in the main system and only needs
a mean-field neutralizing effect of the surrounding electrolyte solu-
tion. In such a scenario, implicit models of electrolyte solutions are
useful as they divide the system into two subsystems: an explicit
quantum subsystem whose degrees of freedom are retained and a
continuum model for the surrounding electrolyte solution, which
averages out the degrees of freedom of the electrolyte solution.9,10

One can retain a first solvation shell of the bonding solvent and
electrolyte molecules, while using an implicit description for the sur-
rounding solution, to reduce computational cost, without missing
important physics. These hybrid quantum–continuum models are
based on solving the Poisson–Boltzmann equation (P–BE).11 Many
DFT+P–BE models have been developed recently.12–18

Several approaches to electroneutrality have been proposed in
DFT+P–BE models,16 among which the jellium approach where a
uniform neutralizing background charge is introduced to ensure
electroneutrality is widely used.19 Jellium, however, does not locally
screen the charge on surfaces exposed to the electrolyte solution
and could result in unphysical estimates of the energetics and other
properties. Another approach is to modify the concentrations of
Boltzmann ions in order to ensure electroneutrality. This is done
by setting the chemical potentials of Boltzmann ions to satisfy the
electroneutrality constraint.16 Often anti-symmetric excess chemi-
cal potentials of Boltzmann ions are assumed, an approach known
as Donnan neutralization, which has been found in membrane
equilibria.20 This approach has been implemented within several
DFT packages.13,16 Another approach to electroneutrality in simula-
tions of charged interfaces is the effective screening method (ESM),
where the boundary conditions are modified to make the slab non-
periodic in the direction of the surface normal with the help of
Green’s function.21 In this study, we develop a neutralization scheme
by shifting the concentration of electrolyte ions for ensuring elec-
troneutrality in calculations of charged periodic systems via the
Poisson–Boltzmann electrolyte model of the ONETEP linear-scaling
DFT code.18

We present and study the properties of a model in which elec-
troneutrality is achieved by shifting the average concentrations of
the electrolyte ions from the asymptotic values corresponding to the

open system. For a large enough simulation cell, we show that there
is an optimal average concentration shift, which minimizes the dif-
ferences between the space-dependent electrolyte ion concentrations
associated with periodic and open boundary conditions (OBCs).
Subsequently, we show that the linear approximation of this method
leads to a new type of jellium neutralization. In Secs. II–IV, we
describe the background of the computational tools, theory, imple-
mentation details, and results of tests on several finite and extended
charged extended systems.

II. BACKGROUND OF COMPUTATIONAL TOOLS
AND METHODS
A. The ONETEP linear-scaling DFT program

The electronic structure is computed with the ONETEP linear-
scaling DFT program,1 where Kohn–Sham DFT has been refor-
mulated in terms of the single particle density matrix,22 ρe(r, r′)
= ϕα(r)Kαβϕ∗β (r

′
). Here, the matrix K is called the “density kernel,”

{ϕα} are the localized orbitals, called the Non-orthogonal General-
ized Wannier Functions (NGWFs),23 and there is implied summa-
tion over repeated Greek indices (α and β). During the computation
procedure, the NGWFs and the density kernel are self-consistently
optimized via two nested loops. Within these loops, the electrostatic
potential associated with the total charge distribution, made up of
the quantum system and the electrolyte charges, is solved for with
DL_MG, as described in Sec. II B. The NGWFs are expressed in a basis
set comprised of periodic sinc (psinc) functions,23,24 which, being
equivalent to a plane-wave basis set, are controlled by a single kinetic
energy cutoff parameter.

We demonstrate the linear-scaling behavior of ONETEP on a peri-
odic bulk graphite system and compare the computational time with
a conventional plane-wave DFT code as, shown in Fig. 1. We clearly
see linear-scaling behavior with ONETEP

1 and cubic-scaling with a
conventional plane-wave DFT code. As evident, a large calculation
of up to 20 000 atoms can be performed in less than a day’s time
with linear-scaling ONETEP, while such calculations are outside
the regime of feasibility of a conventional plane-wave DFT code.
This demonstrates the suitability of ONETEP for complex material
systems such as electrode–electrolyte interfaces and protein–ligand
systems.

B. The DL_MG Poisson–Boltzmann solver library
DL_MG is a bespoke parallel solver (MPI+OpenMP) for P–BE

and the Poisson equation described in detail in Refs. 25 and 26.
DL_MG has been interfaced with several other DFT packages such as
CASTEP

27 and PSI4.28 The discretization is done on a regular grid, the
nonlinear P–BE is solved with a global inexact Newton method,29

and the linear Poisson-type equations are solved with a parallel
multigrid method. The higher-order corrections for the finite dif-
ference derivatives are computed with a defect correction iterative
procedure.30,31

The non-linear Boltzmann term, which is of particular inter-
est in this paper, includes an accessibility function that models
the short range ion–solute repulsion and the chemical potential,
which is needed for periodic boundary conditions as described in
Ref. 18.
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FIG. 1. Comparison of the computational time using the ONETEP linear-scaling DFT code against using a conventional plane-wave DFT code for periodic graphite systems with
varying number of atoms. The computations were performed on the Iridis 5 supercomputer at the University of Southampton on 40 MPI processes with 4 OpenMP threads
each (160 cores in total).

III. THEORY
Systems studied in this work are composed of a quantum atom-

istic subsystem with charge density ρ(r) “the solute”32 in contact
with a continuum electrolyte with p distinct ion types with charges
{zi} and space-dependent number densities {ci(r)} at tempera-
ture T; hence, the electrolyte charge density is defined by ρmob(r)

=
p
∑
i=1

zici(r). The relationship between the total charge distribution

and the electrostatic potential ν(r) is modeled with the P–BE,

∇ ⋅ (ε(r)∇ν(r)) = −4πρtot(r), (1)

where ε(r) is the relative permittivity and the total charge den-
sity ρtot(r) = ρ(r) + ρmob(r). In the P–BE approach, the ion
concentrations follow the Boltzmann distribution

ci(r)∝ λ(r) exp(−βziν(r)), (2)

where β = 1/(kBT) is the inverse temperature, kB is the Boltzmann
constant, and 0 ≤ λ(r) ≤ 1 is the ion accessibility function, which
accounts for the short range repulsion between ions and solute.
In our case, where we have a quantum description for the solute,
the permittivity function [ε(r)] depends on the electronic charge
density, which is part of the solute charge distribution, see Ref. 18.

For finite volume solutes, planar or cylindrical structures, the
electrolyte extends to infinity in at least one dimension in which
the ion concentrations reach their asymptotic values ci(r) → c∞i ,
i = 1, . . ., p for large |r|. Computations done on finite domains
represent this type of configurations by using open boundary condi-
tions (OBCs) for the respective dimensions. However, in many cases,
numerical computations in a finite domain (or computational cell)
of volume V are much simpler if full periodic boundary conditions
(PBCs) are used. In this section, we show that one can use a corre-
spondence condition which allows us to map an OBC configuration
of interest to a PBC configuration to be used for computation.

An important difference between OBCs and PBCs in systems
with charges is the electroneutrality condition that must be satis-
fied when using PBCs. This can be derived from Eq. (1) by inte-
grating both sides over the volume of the computational cell. The
left-hand side integral can be transformed into a surface integral of
ε(r)∇ν(r), which vanishes due to the opposite signs of the surface
normal on the opposite sides of the simulation cell and the period-
icity of ε(r)∇ν(r). Hence, the volume integral of the total charge
density on the right-hand side must also be zero, which gives the
following electroneutrality condition:

∫
V
ρpbc

tot (r)dr = 0. (3)

In PBCs, it is useful to define bulk concentration as the average
electrolyte concentration within the electrolyte accessible volume
[Vacc = ∫Vλ(r)dr],

cbulk
i Vacc = ∫

V
ci(r)dr = Ni , i = 1, . . . , p. (4)

For cases of electrolytes under confinement such as electrolytes
in porous cavity, where there is no contact with an external reservoir
of electrolyte, the number of electrolyte particles (N i) is conserved.
For such canonical systems, the electrolyte charge is constrained fol-
lowing the “charge-conserving P–BE.”33,34 This is something which
we have considered in our previous paper also18 by fixing the bulk
concentration in PBCs. For this canonical ensemble of electrolyte,
one can minimize the free energy functional to get the concentration
for electrolyte ions,18,33,34

ci(r) = cbulk
i λ(r) exp(−βν(r) + βμex

i ) , i = 1, . . . , p, (5)

where {μex
i } is the excess chemical potential obtained from con-

servation of ions in the canonical ensemble [Eq. (4)]. Because the
electrolyte is neutral (i.e., ∑p

i zic
bulk
i = 0), one has to compensate
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the solute charge in this case in order to satisfy Eq. (3). One of the
most common solutions to this problem, borrowed from solid state
physics, is to add to the system a uniform neutralizing background
charge (“jellium”),

ρpbc-jellium
tot (r) = ρtot(r) −

1
V ∫V

ρtot(r′)dr′. (6)

As mentioned in Sec. I, using jellium neutralization for a system that
does not have a “natural” neutralization background could introduce
spurious biases in the results.

A. Neutralization by electrolyte concentration
shift (NECS)

Our approach is based on the following observation: In a
solute–electrolyte system with OBCs, a change in the solute charge
induces a response in the electrolyte which will transfer to infinity an
amount of the like charge and bring in from infinity an amount of
opposite charge through the open boundaries of the computational
cell in order to reach the new equilibrium. In the case of PBCs, if
the solute charge changes, the electroneutrality condition requires
the addition of a compensating charge into the computational cell,
which can be done in several ways as discussed in Sec. I.

An alternative, more natural approach to electroneutrality in
PBCs is to add ions of opposite solute charge and to remove ions
with like solute charge, thus mimicking the charge transfers that take
place in OBCs but with the constraint to preserve the electroneutral-
ity of the computational cell. The shifted ion concentrations {cbulk

i }

must satisfy the electroneutrality condition, which can be expressed
as follows:

∫
V
ρmob(r)dr + ∫

V
ρ(r)dr = 0,

p

∑
i=1

zi ∫
V
ci(r)dr + Zs = 0,

p

∑
i=1

zicbulk
i + Zs/Vacc = 0.

(7)

We link the shifted electrolyte average ion concentrations, {cbulk
i }, to

the asymptotic value of concentrations in the open system {c∞i } via
the shift parameters x = {xi},

cbulk
i = c∞i − xi

ZsCs

zi
, i = 1, . . . , p, (8)

p

∑
i=1

xi = 1, (9)

where we introduce the solute “average concentration” defined as
Cs = 1/Vacc for the sake of a uniform notation. The constraint on {xi},
Eq. (9), ensures the electroneutrality condition∑p

i zic
bulk
i + ZsCs = 0,

keeping in mind that the OBC uniform electrolyte is neutral as well,

i.e.,
p
∑
i=1

zic∞i = 0.

There are an infinite number of combinations in which the
electrolyte components can be mixed to achieve electroneutrality.
Physical intuition guides us to select the one that would generate
spatial distributions of the ion concentrations with the smallest devi-
ation from their OBC counterpart. A suitable mathematical measure

of the deviation between OBCs and PBCs is the L2 square norm of
the concentration differences

Δ2
=

p

∑
i=1
∫
V(S)
(cOBC

i (r) − cPBC
i (r))

2dr (10)

taken over the volume of the computation cell in the case of a finite
solute (or over the open boundary in the case of planar structure).
However, from the computational complexity point of view, this
quantity is impracticable because its minimization would require
repeated calls to ONETEP to compute the needed concentrations at
various values of the shift parameters {xi} until Δ2 is minimized. In
addition, for certain configurations, the OBCs solution might not be
available.

We propose an alternative way of finding the optimal shift
parameters, {xi}, which can be incorporated into the P–BE solver,26

and we compare the two methods for several cases. We start from
the observation that in OBCs, the concentration profiles given by
the classical Boltzmann theory,

ci(r) = c∞i λ(r)e−βziν(r), i = 1, . . . , p, (11)

satisfy the following relationship:

ci(r)
1
zi

cj(r)
1
zj

=
[c∞i ]

1
zi

[c∞j ]
1
zj

(12)

in the region fully accessible to the electrolyte, where λ(r) = 1. For
the PBC case, one can use this relationship as a condition to deter-
mine the shift parameters {xi}. Using Eqs. (5) and (12), we can derive
the following correspondence condition, for PBCs:

1
zi

ln(
cbulk
i eβμ

ex
i

c∞i
) =

1
zj

ln
⎛

⎝

cbulk
j eβμ

ex
j

c∞j

⎞

⎠
= lnX, (13)

where X is an arbitrary positive constant. Using Eq. (8), we get for
the optimal parameters {xi ≡ xopt

i },

xi ≡ xopt
i =

zic∞i
ZsCs
(1 − e−βμ

ex
i Xzi), i = 1, . . . , p. (14)

The constant X can be found from Eq. (9), which can be written as
follows:

p

∑
i
zic∞i e−βμ

ex
i Xzi + ZsCs = 0. (15)

Eq. (13) can be solved analytically in the linear approximation, which
is valid for small ZsCs. Expanding the logarithm around 1, we get

xlin
i = −

z2
i c
∞
i

ZsCs
lnX +

βμex
i zic

∞
i

ZsCs
, i = 1, . . . , p, (16)

and from the constrain condition, Eq. (9), we find

lnX =
∑

p
j βμ

ex
j zjc

∞
j − ZsCs

∑
p
j z

2
j c
∞
j

, (17)

which are combined to find the linear approximation

xlin
i =

z2
i c
∞
i

∑
p
j z

2
j c
∞
j

⎛

⎝
1 −

1
ZsCs

p

∑
j
βμex

j zjc
∞
j
⎞

⎠

+
βμex

i zic
∞
i

ZsCs
, i = 1, . . . , p. (18)
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The zeroth order solution can be obtained by setting μex
i = 0,

x0
i =

z2
i c
∞
i

p
∑
j=1

z2
j c
∞
j

i = 1, . . . , p. (19)

We conclude this section with the following observation: Com-
bining Eqs. (8) and (14), we can write

cbulk
i = c∞i e−βμ

ex
i Xzi i = 1, . . . , p,

and we define νshift = −ln(X)/β to write the previous equation as
follows:

cbulk
i = c∞i e−βziνshift−βμex

i i = 1, . . . , p.

This form shows that the correspondence condition described by
Eqs. (12) and (13) is equivalent to a potential shift in the original
P–BE. Consequently, the electrolyte concentrations in PBCs can be
written as follows:

cPBC
i (r) = c

∞
i λ(r)e−βzi(ν(r)+νshift) i = 1, . . . , p. (20)

Eq. (20) is similar to the method of Lagrange multipliers described
in detail by Melander et al.16 if the excess chemical potentials are
chosen to be proportional to the charge of the electrolyte species,

μex
i = −ziνshift i = 1, . . . , p. (21)

For a binary anti-symmetric electrolyte (z+ = −z−), this becomes
exactly equivalent to the formulation of anti-symmetric excess
chemical potentials given by Eq. (35) of Melander et al.16 and
Eq. (17) of Gunceler et al.13 Our approach generalizes this type
of neutralization, and it establishes physical grounds through
the correspondence between OBCs and PBCs. Furthermore, our
approach yields a new type of jellium neutralization, as described in
Sec. III B.

B. NECS for linearized P–BE
We show in the following that the linearization of the Boltz-

mann term with shifted concentrations leads to a new type of jellium
neutralization and a correction to the Debye length. We start from
the linear approximation of the Boltzmann term in the electrolyte
charge concentration,

p

∑
i
λ(r)zicbulk

i e−βziν(r)+βμ
ex
i

=

p

∑
i
λ(r)zi(c∞i − xi

ZsCs

zi
)e−βziν(r)+βμ

ex
i , (22)

≈

p

∑
i
λ(r)zi(c∞i − xi

ZsCs

zi
)(1 − β(ziν(r) − μex

i ))

= −ZsCsλ(r) − βλ(r)
p

∑
i
z2
i c
∞
i (1 − xi

ZsCs

zic∞i
)ν(r), (23)

where we have used the fact that for the linearized P–BE, the chem-
ical potential can be absorbed in the electrostatic potential by a uni-
form shift18 if the condition ∫Vλ(r)ν(r)dr = 0 is satisfied. The shift
parameters, {xi}, are given by Eq. (14) or Eq. (19).

We note that the integral over the computational cell of the
zero order term in Eq. (23) is the solute charge −Zs; hence, we can
introduce the “accessible jellium” neutralization for the solute as
follows:

ρpbc-acc-jellium
tot (r) = ρtot(r) − ZsCsλ(r). (24)

The coefficient of ν(r) in Eq. (23) defines a corrected Debye length,

l−2
D = 4πβ

p

∑
i
z2
i c
∞
i (1 − xi

ZsCs

zic∞i
), (25)

which in the case of linear approximation for the shift coefficients
{x0

i }, Eq. (19), reads

l−2
D = l

−2
D,OBC − 4πβZsCs

∑
p
i z

3
i c
∞
i

∑
p
i z

2
i c
∞
i

, (26)

where l−2
D,OBC = 4πβ∑p

i z
2
i c
∞
i . The previous equation shows that the

correction is exactly 0 for the two-component symmetric electrolyte
(i.e., z1 + z2 = 0), but, in general, the Debye length varies as a function
of the sign of Zs and the sign of the sum∑p

i z
3
i c
∞
i .

We note that the uniform jellium neutralization, Eq. (6), is
a particular case of this derivation for which λ(r) = 1 and
∑

p
i z

3
i c
∞
i = 0.

C. “Accessible jellium” approximation for P–BE
At this point, we can analyze the relationship between neu-

tralization by electrolyte concentration shift (NECS) and the jellium
neutralization for the full P–BE. We do this by adding and subtract-
ing the accessible jellium term in the rhs of Eq. (1), expanding the
average densities {cbulk

i }, and regrouping the terms as follows:

ρ(r) + λ(r)
p

∑
i
zicbulk

i e−βziν(r)+βμ
ex
i

= ρ(r) − ZsCsλ(r) + ZsCsλ(r) + λ(r)
p

∑
i

× (zic∞i − xiZsCs)e−βziν(r)+βμ
ex
i

= ρ(r) − ZsCsλ(r) + λ(r)
p

∑
i
zic∞i e−βziν(r)+βμ

ex
i

+ λ(r)ZsCs

p

∑
i
xi(1 − e−βziν(r)+βμ

ex
i )

= ρpbc-acc-jellium
tot + δρshift(r), (27)

where

δρshift(r) = λ(r)ZsCs

p

∑
i
xi(1 − e−βziν(r)+βμ

ex
i ). (28)

Equations (27) and (28) show that the rhs of the P–BE can be written
as a sum of the solute charge density (with the new accessibble jel-
lium neutralization), the Boltzmann term, which uses the asymptotic
electrolyte densities, {c∞i }, and a term that involves the concentra-
tion shifts {xi}. As in the linear case, we note that the standard jellium
neutralization can be derived from Eq. (27) by setting λ(r) = 1 and
dropping the term depending on {xi}.
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Equation (27) suggests an alternative, “accessible jellium neu-
tralization,” in which one replaces the term (1/V)∫Vρtot(r)dr of
Eq. (6) with ZsCsλ(r) and neglects the term δρshift(r). Dropping
δρshift(r) is an uncontrolled approximation with respect to NECS,
but there are two facts that could justify its use in certain cases: (i)
δρshift(r) ∝ 1/Vacc, while the standard Boltzmann term is indepen-
dent of the computational cell volume; (ii) ∣ − βν(r) + βμex

i ∣ ≪ 1 far
away from the solute; therefore, the product λ(r)(1 − e−βziν(r)+βμ

ex
i )

is non-negligible only in the transition region between the excluded
and fully accessible domains for the electrolyte ions. A practical
advantage of the accessible jellium neutralization approximation is
that the computation of the shift parameters {xi} is not needed. The
validity of this approximation with respect to NECS will be assessed
for several test cases in Sec. IV.

D. Numerical implementation
We have implemented the NECS procedure in the P–BE solver

DL_MG
26 as follows: after each evaluation of the excess chemical

potential, the concentration shift parameters {xi} are computed from
Eq. (14), where the parameter X is found from Eq. (15). For a two-
component symmetric electrolyte (z1 + z2 = 0), Eq. (15) can be
reduced to a quadratic equation. For the remaining cases, a one-
dimensional Newton method is used to solve it with initial guess
given by Eq. (17). The starting values of {xi} at the start of DL_MG

solver iterations are computed with Eq. (19).
Besides the NECS neutralization, the DL_MG application inter-

face provides the user with the option to use either of the following:
linear approximation [Eq. (16)], accessible jellium neutralization
[Eq. (24)], or a user provided set of shift parameters {xi}.

IV. RESULTS AND DISCUSSION
We compare the three different solute neutralization schemes

that we have presented and implemented here: jellium, accessible jel-
lium, and NECS. We show what effect each of these schemes has on
the concentration profiles of electrolyte in PBCs, its deviation from

FIG. 2. Concentration profiles for Boltzmann ions in OBCs and with different neutralization schemes in PBCs for a K+ ion in 0.5M A2B electrolyte. Red: positive electrolyte A.
Blue: negative electrolyte B.
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FIG. 3. Direct comparison of concentration profiles for positive (i = +) and negative
(i =−) Boltzmann ions in OBCs with NECS (x = xopt ) along a straight line containing
the K+ ion placed at the center of a unit cell in 0.5M A2B electrolyte.

OBCs, asymptotic deviations far away from the quantum system,
and total free energy of the system.

A. Single K+ cation solute
We start our analysis with the simple case of a single K+ ion as

the solute immersed in an electrolyte solution with PBCs. Although
this is not a natural periodic system, it is useful to illustrate the
correspondence of concentrations of electrolytes between PBCs and

OBCs. We place the K+ in a 0.5M aqueous A2B-type electrolyte at
298 K at the center of a simulation cell of size 40 × 40 × 40 Å3. The
NGWF radius is set to 8.0 a0 (≈4.2 Å), and the kinetic energy cut-
off for the psinc basis set is 1000 eV. We perform this calculation
in OBCs as well as PBCs. For PBCs, we examine all the three neu-
tralization schemes: jellium, accessible jellium, and NECS. Within
NECS, we show the results for arbitrary shift parameters x = {xi}
as well as for the optimal solution xopt found using Eqs. (14) and
(15). The concentration profiles for Boltzmann ions in OBCs and
in PBCs with different neutralization schemes are shown in Fig. 2
along a straight line with K+ at the origin. We see that in the case
of OBCs, the concentration of the Boltzmann ions asymptotically
reaches {c∞i } at the faces of the box. In the case of jellium and
accessible jellium, far away from the K+ ion, the electrolyte becomes
non-neutral, which is unphysical. In the case of NECS, we show the
effect of the shift parameters (x). We see that for the simple guesses
x = (0, 1) or x = (0.5, 0.5), the concentration profiles do not reach
the asymptotic value of {c∞i }, and only the optimal solution xopt
yields concentrations that reach the correct asymptotic limit. For
this case, xopt = (0.226, 0.774). The analytical value predicted from
Eq. (18) is xlin = (0.229, 0.771), which is quite close to the optimal
solution. The zeroth order solution from Eq. (19) is x0 = (0.333,
0.667), which is farther away from the optimal solution. We show
a direct comparison between OBCs and NECS (x = xopt) along a
straight line containing the K+ ion in Fig. 3. The similarity between
the profiles of OBCs and NECS demonstrates the principle of cor-
respondence between the two. Even though the profiles look exactly
the same between OBCs and NECS, there is a minute difference in
the actual values; the total electrolyte charge in OBCs integrates to
−1.011 68 e, while in NECS, it integrates to −1 e, required to achieve
electroneutrality with the quantum K+ ion.

The corresponding electrostatic potential profiles are shown
in Fig. 4. We note that the electrostatic potential in OBCs reaches
zero at the boundary following the asymptotic condition [as
r → ∞, ν(r) → 0, ci(r) → c∞i ]. While in NECS in PBCs, there is
a potential shift, corresponding to Eq. (20), which shifts the concen-
trations of electrolyte ions to achieve electroneutrality. We note that

FIG. 4. Electrostatic potential in OBCs and with different neutralization schemes in PBCs for a K+ ion in 0.5M A2B electrolyte.
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TABLE I. Free energy components (kcal/mol) with different schemes for charge neutrality and their comparison with OBCs.

Energy components OBCsa Jellium Ac. jellium NECS(xopt)

Electrostatic energy 1
2 ∫Vρ

pbc
tot (r)ν(r)dr 3 525.811 3 525.787 3 525.814 3 525.812

Accessibility repulsion energy kBT
p
∑
i=1
∫Vci(r) ln λ(r)dr 0.025 0.024 0.025 0.025

Osmotic pressure contribution −kBT
p
∑
i=1
∫Vci(r)dr −32.197 −34.197 −34.197 −34.293

Entropic contribution kBT
p
∑
i=1
∫Vci(r) ln(ci(r)/c○)dr −7.364 −7.786 −7.786 −7.847

Chemical potential contribution −
p
∑
i=1
∫Vμici(r)dr 7.578 7.996 7.996 8.056

DFT energy −21 403.450 −21 403.508 −21 403.476 −21 403.476
Cavitation energy 5.967 5.967 5.967 5.967
Dispersion–repulsion energy −4.290 −4.290 −4.290 −4.290
Total grand potential (Ω) −17 907.921 −17 910.007 −17 909.948 −17 910.045

aDue to difference in boundary conditions in OBCs and PBCs, the finite difference multigrid is 329 × 329 × 329 in OBCs and 336 × 336 × 336 in PBCs.

the electrostatic potential is quite similar for different neutralization
schemes in this case.

The individual energy components from OBCs and from dif-
ferent neutralization schemes in PBCs are shown in Table I. We see
that, energetically, the accessible jellium neutralization is very sim-
ilar to the neutralization by electrolyte concentration shift (NECS)
and OBCs in comparison of the electrostatic, accessibility, and
DFT energy components, while jellium and accessible jellium are
similar in comparison of the remaining energy components. All
schemes have the same cavitation and dispersion–repulsion energies
as these depend only upon the solvent cavity and are not affected
by electrolyte concentrations. We note here that the osmotic pres-
sure depends upon the total amount of electrolyte [as ∑i ∫Vci(r)dr
= ∑i Vacccbulk

i ]; hence, it is the same for jellium and accessible jel-
lium. For NECS, the total amount of electrolyte changes to maintain
electroneutrality, while for OBCs, the electroneutrality does not mat-
ter. Overall, the total grand potential is quite similar between the
three neutralization schemes, while it is different for OBCs, majorly
due to the difference in osmotic pressure for this finite system. With
the insights obtained from the study of electrolyte concentrations
and energy components for a finite system of a single K+ ion in
electrolyte solution, we next focus on truly periodic (extended) sys-
tems such as a graphene sheet with a Na+ atom adsorbed on it and a
charged graphite slab.

B. Graphene with adsorbed Na+ ion
We next turn to a simple extended system—a Na+ cation

adsorbed on graphene, immersed in three electrolytes in sequence:
AB, A2B, and AB2, all at a 1M concentration. The size of the simu-
lation cell along the graphene sheet is 17.16 × 17.33 Å2, and two dif-
ferent sizes are considered in the normal direction: 31.75 Å (“smaller
cell”) and 91.75 Å (“larger cell”). PBC are employed in all directions,
making the positioning of the system along the x–y plane irrelevant.
The positioning along z, on the other hand, is relevant, since we will
be examining the electrolyte ion concentrations at the top and bot-
tom faces of the cell. The system is positioned with the graphene

FIG. 5. rms difference in electrolyte ion concentration, relative to the bulk concen-
tration, on the faces of the simulation cell parallel to the graphene sheet (lower is
better). Top: smaller cell (17.16 × 17.33 × 31.75 Å3). Bottom: larger cell (17.16
× 17.33 × 91.75 Å3). Crosses denote the values obtained from x+ = xopt

+ .
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sheet in the middle of the cell height. We set the NGWF radius to 7.0
a0 (≈3.7 Å) and the kinetic energy cutoff to 814 eV.

We first examine the performance of NECS with varying val-
ues of the shift parameters x. Given that we have a two-component
electrolyte, we can introduce the notation x = (x+, x−) for the sake of
brevity and work only with x+ since x− = 1 − x+.

As shown in Sec. IV A (Fig. 2), an optimal choice of the shift
parameters x [determined from Eqs. (14) and (15)] leads to elec-
trolyte ion concentrations tending to their bulk values far away from
the system, while arbitrary choices result in the concentrations being
shifted. We can thus introduce a more practical measure of assessing
the quality of the choice of x,

δ2
=

p

∑
i=1

1
S ∫

S

(c∞i − c
PBC
i (r))

2dr, (29)

where the integration is carried out over the simulation cell faces
parallel to the graphene. Analogously, for a system extended in 1D
(e.g., a nanowire), we would use four cell faces, and for a system that
is not extended (like the isolated cation studied in Sec. IV A), we
would use all six. Of course, we retain formal 3D periodicity in all
cases.

In contrast to Δ defined by (10), the quantity δ—which is noth-
ing else but the rms difference between the electrolyte ion concentra-
tions obtained in PBCs and the desired bulk concentration values—
can be easily calculated at every energy evaluation. Having first run

a set of calculations with varying x+ (in increments of 0.01), in Fig. 5,
we plot the values of δ for the two system sizes (top and bottom
panels) and the three types of electrolyte (curves within each panel).
Crosses denote the optimal values determined from Eqs. (14) and
(15). As expected, the rms concentration difference is much smaller
in the larger cell, where the faces over which it is calculated are far-
ther away from the system. The calculated xopt

+ matches the actual
minima of the curves to a very good accuracy (this is best seen in the
insets).

We will now examine if and how the choice of the neutraliza-
tion method affects the total charge density due to the electrolyte.
For the same Na+:graphene system in the smaller cell, we ran cal-
culations using neutralization with the jellium, accessible jellium,
and NECS approaches. In Fig. 6, we plot the electrolyte charge
density in a 2D slice taken along the x–z plane with the y coordi-
nate set to that of the Na+ ion. We note the following features of
interest.

First, NECS predicts a larger net anionic charge density at the
point of contact of the Na+ and graphene exclusion regions. Accessi-
ble jellium neutralization does reproduce this to a degree, while jel-
lium predicts smaller concentrations. This is best seen by examining
the +0.002 isocontour. Second, jellium and accessible jellium predict
small but measurable net cationic charge density in the regions fur-
ther away from the system. Under the convention employed in the
plot, this corresponds to regions below the graphene layer and at the
top of the plot, where isocontours with small negative values can be

FIG. 6. Total charge density (e/Å3) of the electrolyte in three charge neutralization models: (a) jellium, (b) accessible jellium, and (c) NECS with x = xopt in a x–z plane cross
section through the Na+ ion. For clarity of presentation, anionic charge is shown as positive (warm colors), and the system has been shifted to position the graphene closer
to the bottom. The uniform background charge of jellium models is not shown.
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seen. NECS, in contrast, predicts the net charge density to be strictly
zero or anionic everywhere.

C. Charged graphite electrode
Finally, we test the different neutralization schemes on a model

of a charged graphite electrode, which is exposed to the electrolyte
along edge planes, as would be expected for the anode of a Li-
ion battery. An AA-stacked H-terminated graphite slab (C240H32)
with a charge of +2 is placed in a 0.5M AB-type electrolyte, within
an orthorhombic simulation cell of dimensions 13.763 × 8.535
× 77.247 Å3, as shown schematically in Fig. 7. The solvent is ethy-
lene carbonate (EC) with a bulk permittivity of 90.7 at 308 K. We use
NGWF radii of 8.0 a0 (≈4.2 Å) with four NGWFs on each C atom
and a psinc basis set kinetic energy cutoff of 1000 eV. The planar-
averaged concentration profiles of Boltzmann ions [ci(z), i = ±] are
compared in Fig. 7 for jellium, accessible jellium, and NECS with the
optimal shift parameters (xopt) found using Eqs. (14) and (15). We
can observe a build-up of negative electrolyte (blue) and a depletion
of positive electrolyte (red) at the graphite electrolyte interface for all
three neutralization schemes, resembling the formation of electric
double layers near electrode–electrolyte interfaces. The electrolyte
concentration at the interfacial plane peaks to as high as above 4M in

FIG. 7. Concentration profiles for Boltzmann ions with different neutralization
schemes for a graphite slab with +2 charge in 0.5M AB-type electrolyte. Color
scheme: red: positive electrolyte A, blue: negative electrolyte B, and green:
asymptotic value of 0.5M concentration. The top and front views of AA-stacked
H-terminated graphite slab (C240H32) are shown.

case of NECS (x = xopt), while it is around 3M for accessible jellium
and around 2M for jellium neutralization. Thus, NECS neutraliza-
tion correctly captures the physical process of charge storage at the
interface.

In the case of jellium and accessible jellium schemes, the
charged quantum system (graphite electrode) is neutralized via a fic-
titious homogeneous background charge, and the electrolyte is self
neutral (cbulk

i = 0.5M, i = ±), which leads to the breaking of elec-
troneutrality (∑i zic

∞
i ≠ 0) far away in the bulk electrolyte, seen as a

deviation from the green line at extreme z values. In the case of the
NECS, there is no fictitious neutralization; the electrolyte bulk con-
centrations (cbulk

i , i = ±) are allowed to vary so as to neutralize the
quantum system (graphite electrode) and at the same time reach the
correct asymptotic limit (c∞i = 0.5M, i = ±) in the bulk electrolyte.
The optimal solution for this case is xopt = (0.240, 0.760). The analyt-
ical value predicted from the linearized equation (18) [xlin = (0.364,
0.636)] does not strictly coincide with the full non-linear optimal
solution (xopt). The zeroth order solution from Eq. (19) is x0 = (0.5,
0.5), which is farther away from the optimal solution.

We compare the electrostatic potential for the three neutraliza-
tion schemes in Fig. 8. The Debye length is 4.7 Å, which is quite
smaller than the size of the simulation cell (77.247 Å). From the
plot, we see that the profiles of electrostatic potential for the case
of accessible jellium and NECS (x = xopt) become flat much closer
to the graphite surface than the jellium neutralization. This indi-
cates an accumulation of counter-charge at the interface for the
NECS method, which is not seen to the same extent in jellium
neutralization.

We also compare the energy components from different neu-
tralization schemes, as shown in Table II. We observe that the elec-
trostatic energy, DFT energy, and the total grand potential are very
similar between accessible jellium and NECS most likely because
accessible jellium stems out from applying NECS to linearized P–
BE. However, the predictions of the conventional jellium model are
quite different in all the three aforementioned free energy compo-
nents. We further observe that the osmotic pressure component is

FIG. 8. Planar average electrostatic potential with different neutralization schemes
for the graphite slab with +2 charge in 0.5M AB-type electrolyte.
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TABLE II. Free energy components (kcal/mol) with different schemes for the charged graphite–electrolyte interface.

Energy components Jellium Acc. jellium NECS(xopt)

Electrostatic energy 1
2 ∫Vρ

pbc
tot (r)ν(r)dr 148 982.432 148 944.742 148 944.566

Accessibility repulsion energy kBT
p
∑
i=1
∫Vci(r) ln λ(r)dr 0.025 0.043 0.060

Osmotic pressure contribution −kBT
p
∑
i=1
∫Vci(r)dr −2.200 −2.200 −2.836

Entropic contribution kBT
p
∑
i=1
∫Vci(r) ln(ci(r)/c○)dr −1.285 −0.935 −0.462

Chemical potential contribution −
p
∑
i=1
∫Vμici(r)dr 1.778 2.126 1.456

DFT energy −1 026 071.506 −1 025 950.769 −1 025 950.770
Cavitation energy 30.844 30.844 30.844
Dispersion–repulsion energy −22.174 −22.174 −22.174
Total grand potential (Ω) −877 082.087 −876 998.323 −876 999.316

identical for the two jelliums due to the same total electrolyte charge
in the simulation cell [∑i ∫Vci(r)dr = ∑i Vacccbulk

i ], whereas dif-
ferent for NECS as the amount of electrolyte is varied to achieve
electroneutrality.

V. CONCLUSIONS
We have developed a new scheme for DFT calculations of

charged materials (e.g., electrodes) in periodic boundary conditions
(PBCs) within the Poisson–Boltzmann electrolyte model where elec-
trical neutrality is achieved via the electrolyte, as in real experi-
ments. Our new method of neutralization by electrolyte concen-
tration shift (NECS) neutralizes the quantum charge directly by
electrolyte charge and allows the asymptotic electrolyte concentra-
tions to reach their bulk values, in contrast with the commonly
employed neutralization by a uniform background charge (jellium).
Our approach is based on a principle of correspondence of the PBC
concentration profiles with those under open boundary conditions
that leads to the correct asymptotic concentrations, something that
we demonstrated also numerically for the case of a K+ cation. In
further tests, we systematically scanned across a range of shifted
bulk concentrations for a Na+–graphene system and showed that
the NECS approach produces the most physical results. Further-
more, the application of NECS for the linearized P–BE led to a
new kind of jellium-like neutralization within the electrolyte acces-
sible region. This “accessible jellium” model is an improvement over
conventional jellium and simpler to implement than NECS. All the
neutralization schemes were finally tested on a charged graphite sys-
tem (a simple electrode model), which is relevant for electrochemical
applications. We have found that the jellium-based models break
electroneutrality in the bulk electrolyte, while concentration profiles
obtained with NECS reach the correct asymptotic limits and produce
a realistic description of the behavior of electrolyte around charged
interfaces. We expect the NECS model, which we have implemented
in the ONETEP linear-scaling DFT code for large-scale DFT calcula-
tions, will enable accurate simulations in technologically important
areas such as Li-ion batteries and electrocatalysis.
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