
PHYSICAL REVIEW A 90, 052323 (2014)

Elemental and tight monogamy relations in nonsignaling theories

R. Augusiak,1 M. Demianowicz,1 M. Pawłowski,2 J. Tura,1 and A. Acı́n1,3
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Physical principles constrain the way nonlocal correlations can be distributed among distant parties. These
constraints are usually expressed by monogamy relations that bound the amount of Bell inequality violation
observed among a set of parties by the violation observed by a different set of parties. We prove here that much
stronger monogamy relations are possible for nonsignaling correlations by showing how nonlocal correlations
among a set of parties limit any form of correlations, not necessarily nonlocal, shared among other parties. In
particular, we provide tight bounds between the violation of a family of Bell inequalities among an arbitrary
number of parties and the knowledge an external observer can gain about outcomes of any single measurement
performed by the parties. Finally, we show how the obtained monogamy relations offer an improvement over the
existing protocols for device-independent quantum key distribution and randomness amplification.
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I. INTRODUCTION

It is a well established fact that entanglement and nonlocal
correlations (cf. Refs. [1,2]), i.e., correlations violating a
Bell inequality [3], are fundamental resources of quantum
information theory. It has been confirmed by many instances
that, when distributed among spatially separated observers,
they give an advantage over classical correlations at certain
information-theoretic tasks, many of them being considered
in the multipartite scenario. For instance, nonlocal correla-
tions outperform their classical counterpart at communication
complexity problems [4] and allow for security not achievable
within classical theory [5,6].

Physical principles impose certain constraints on the way
these resources can be distributed among separated parties;
these are commonly referred to as monogamy relations. For
instance, in any three-qubit pure state, one party cannot share
a large amount of entanglement, as measured by concurrence,
simultaneously with both remaining parties [7]. Analogous
monogamy relations, both in qualitative [8–11] and quantita-
tive [12,13] form, were demonstrated for nonlocal correlations,
with the measure of nonlocality being the violation of specific
Bell inequalities. In particular, Toner and Verstraete [12] and
later Toner [13] showed that if three parties A, B, and C share,
respectively, quantum and general nonsignaling correlations,
then only a single pair can violate the Clauser-Horne-Shimony-
Holt (CHSH) Bell inequality [14]. These findings were
generalized to more complex scenarios [15,16] (see also
Ref. [17]), and in particular, in Ref. [15] a general construction
of monogamy relations for nonsignaling correlations from any
bipartite Bell inequality was proposed.

In this work, we demonstrate that nonsignaling correlations
are monogamous in a much stronger sense: the amount of
nonlocality observed by a set of parties may imply severe
limitations on any form of correlations with other parties. That
is, instead of comparing nonlocality between distinct groups of
parties, we rather relate it to the knowledge that external parties
can gain on outcomes of any of the measurements performed
by the parties (see Fig. 1). To be more illustrative, consider
again parties A, B, and C performing a Bell experiment with

M observables and d outcomes. We construct tight bounds
between the violation of certain Bell inequalities [10] among
any pair of parties, say A and B, and classical correlations
that the third party C can establish with outcomes of any
measurement performed by A or B. This means that the
amount of any correlations—classical or nonlocal—that C

could share with A or B is bounded by the strength of the Bell
inequality violation between A and B. Our monogamies are
further generalized to the scenario with an arbitrary number of
parties N [(N,M,d) scenario], with nonlocality measured by
the recent generalization of the Bell inequalities [10] presented
in Ref. [11]. The obtained monogamy relations are logically
independent from, and are in fact stronger than, the existing
relations involving only nonlocal correlations, as a bound on
nonlocal correlations does not necessarily imply any nontrivial
constraint on the amount of classical correlations.

Our monogamy relations prove useful in device-
independent protocols [6,18–21]. First, we show that they
impose tight bounds on the guessing probability, the com-
monly used measure of randomness, that are significantly
better than the existing ones [10,11]. We then argue that
this translates into superior performance in protocols for
device-independent quantum key distribution (DIQKD) [22]
using measurements with more than two outputs. Finally,
we show that they allow for a generalization of the results
of [19] on randomness amplification to any number of parties
and outcomes, demonstrating, in particular, that an arbitrary
amount of arbitrarily good randomness can be amplified in a
bipartite setup.

Before turning to the results, we provide some background.
Consider N parties A(1), . . . ,A(N) (for N = 3 denoted by
A,B,C), each measuring one of M possible observables
A(i)

xi
(xi = 1, . . . ,M) with d outcomes (enumerated by ai =

1, . . . ,d) on their local physical systems. The produced
correlations are described by a collection of probabili-
ties p(A(1)

x1
= a1, . . . ,A

(N)
xN

= aN ) ≡ p(a1 . . . aN |x1 . . . xN ) ≡
p(a|x) of obtaining results a ≡ a1 . . . aN upon measuring
x ≡ x1 . . . xN . One then says that the correlations {p(a|x)}
are (i) nonsignaling (NC) if any of the marginals describing a
subset of parties is independent of the measurement choices
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FIG. 1. (Color online) (a) The usual monogamies compare non-
locality (measured by the value of some Bell expression I ) between
different groups of parties (here between two pairs of parties AB

and AC). Instead, (b) our monogamy relations compare nonlocality
observed by a group of parties (here AB) to the knowledge,
represented by the probability p(A = C), the third party C can have
about the outcomes observed by either of the parties. As such, they
are qualitatively different, and in fact stronger than those of type (a).

made by the remaining parties and (ii) quantum (QC) if they
arise by local measurements on quantum states (cf. [2]).

II. ELEMENTAL AND TIGHT MONOGAMIES FOR
NONSIGNALING CORRELATIONS

We start with the derivation of our monogamy relations in
the case of nonsignaling correlations. For clarity, we begin with
the simplest tripartite scenario. We will use the Bell inequality
introduced by Barrett, Kent, and Pironio (BKP) [10]. Denoting
by 〈�〉 the mean value of a random variable �, that is, 〈�〉 =∑d−1

i=1 iP (� = i), it reads

I
2,M,d
AB :=

M∑
α=1

(〈[Aα − Bα]〉 + 〈[Bα − Aα+1]〉) � d − 1, (1)

with [�] being � modulo d, and �M+1 := [�1 + 1]. For d =
2, inequality (1) reproduces the chained Bell inequalities [23],
while for M = 2 the Collins-Gisin-Linden-Massar-Popescu
(CGLMP) inequalities [24]. The maximal nonsignaling viola-
tion of (1) is I

2,M,d
AB = 0.

The only monogamy relations for (1) have been formulated
in terms of its violations between Alice and M Bobs [15],
which is a natural quantitative extension of the concept of
M shareability [8]. In the following theorem we show that
the BKP Bell inequalities allow one to introduce elemental
monogamies obeyed by any NC.

Theorem 1. For any tripartite nonsignaling correlations
{p(abc|xyz)} with Md-outcome measurements, the inequality

I
2,M,d
AB + 〈[Xi − Cj ]〉 + 〈[Cj − Xi]〉 � d − 1 (2)

holds for any pair i,j = 1, . . . ,M and X denoting A or B.
Proof. Let us start with the case of X = A and then notice

that for a random variable � it holds that 〈[�]〉 + 〈[−� −
1]〉 = d − 1 (see Appendix A). Consequently,

M∑
β = 1
β �= i

(〈[Cj − Aβ − 1]〉 + 〈[Aβ − Cj ]〉) − (M − 1)(d − 1)

(3)
is equal to zero. The fact that for any β and j

it holds that 〈[Cj − Aβ − 1]〉 + 〈[Aβ − Cj ]〉 = d − 1 =

〈[Aβ − Cj − 1]〉 + 〈[Cj − Aβ]〉 allows us to rewrite (3) in the
following way:

i−1∑
β=1

(〈[Cj − Aβ − 1]〉 + 〈[Aβ+1 − Cj ]〉)

+
M∑

β=i+1

(〈[Aβ − Cj − 1]〉

+〈[Cj − Aβ]〉) − (M − 1)(d − 1). (4)

Then, by adding 〈[Ai − Cj ]〉 + 〈[Cj − Ai]〉 to both sides
of the above and rearranging some terms in the resulting
expression, one obtains

〈[Ai − Cj ]〉 + 〈[Cj − Ai]〉

=
i−1∑
β=1

(〈[Cj − Aβ − 1]〉 + 〈[Aβ+1 − Cj ]〉)

+
M−1∑
β=i

(〈[Aβ+1 − Cj − 1]〉 + 〈[Cj − Aβ]〉)

+〈[A1 − Cj ]〉 + 〈[Cj − AM ]〉 − (M − 1)(d − 1). (5)

In an analogous way, we may decompose I
2,M,d
AB :

I
2,M,d
AB =

i−1∑
α=1

(〈[Aα − Bα]〉 + 〈[Bα − Aα+1]〉)

+
M−1∑
α=i

(〈[Aα − Bα]〉 + 〈[Bα − Aα+1]〉)

+〈[AM − BM ]〉 + 〈[BM − A1 − 1]〉. (6)

In the last step of these manipulations, we add line by line
Eqs. (5) and (6) in order to finally obtain

I
2,M,d
AB + 〈[Ai − Cj ]〉 + 〈[Cj − Ai]〉

=
i−1∑
α=1

(〈[Cj − Aα − 1]〉 + 〈[Aα − Bα]〉 + 〈[Bα − Aα+1]〉

+ 〈[Aα+1 − Cj ]〉) +
M−1∑
α=i

(〈[Cj − Aα]〉 + 〈[Aα − Bα]〉

+ 〈[Bα − Aα+1]〉+〈[Aα+1 − Cj − 1]〉)+〈[Cj − AM ]〉
+ 〈[AM−BM ]〉 + 〈[BM − A1 − 1]〉
+ 〈[A1 − Cj ]〉 − (M − 1)(d − 1). (7)

What we have arrived at is basically the sum of M Bell
expressions I 2,2,d but “distributed” among three parties in such
a way that Bob and Charlie measure only a single observable.
It was shown in [15] that the minimal value such an expression
can achieve over nonsignaling correlations is precisely its
classical bound d − 1. As a result, I

2,M,d
AB + 〈[Ai − Cj ]〉 +

〈[Cj − Ai]〉 � M(d − 1) − (M − 1)(d − 1) = d − 1, finish-
ing the proof for the case X = A.
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If X = B in inequality (2), then it suffices to rewrite the
Bell expression from (1) as

I
2,M,d
AB =

M∑
α=1

(〈[Bα − Aα+1]〉 + 〈[Aα+1 − Bα+1]〉), (8)

add to it the zero expression (3) with A replaced by B, and
repeat the above manipulations. This completes the proof. �

Interestingly, all these inequalities are tight in the sense
that for any values of I

2,M,d
AB and 〈[Xi − Cj ]〉 + 〈[Cj − Xi]〉

saturating (2), one can find NC realizing these values. Take,
for instance, a probability distribution {p(a,b,c|x,y,z) =
p(a,b|x,y)p(c|z)}, with {p(a,b|x,y)} being a mixture of a
nonlocal model maximally violating (1) and a local determin-
istic model saturating it. Then, {p(c|z)} is the same distribution
as that used by A or B in the local model saturating (1).

The physical interpretation of our monogamies can be now
concluded if we rewrite them in a bit different form. Using
the fact that for any variable �, 〈[�]〉 + 〈[−�]〉 = dP ([�] �=
0) = d[1 − P ([�] = 0)] (see Appendix A), inequalities (2)
transform to

I
2,M,d
AB + 1 � dp(Xi = Cj ) (9)

for X = A,B, and any pair i,j = 1, . . . ,M . These relations
hold if AB is replaced by any pair of parties and if
any m = 1, . . . ,d − 1 is added modulo d to the argument
of probability. The meaning of the introduced monogamy
relations is now transparent. The probability p(Xi = Cj ) that
parties X and C obtain the same results upon measuring the
ith and j th observables is a measure of how the outcomes of
these measurements are classically correlated. Consequently,
inequalities (2) establish tradeoffs between nonlocality, as
measured by (1), that can be generated between any two parties
and classical correlations that the third party can share with
the results of any measurement performed by any of these
two parties. Furthermore, they are tight. In fact, it is known
that the maximal NC violation of (1), I

2,M,d
AB = 0, implies

p(Xi = Cj ) = 1/d for any i,j = 1, . . . ,M , meaning that at
the point of maximal violation C cannot share any correlations
with any other party’s measurement outcomes [10]. On the
other hand, it is well known that at the point of no violation C

can be arbitrarily correlated with A and B. For intermediate
violations, the best one can hope for is a linear interpolation
between these two extreme values, and this is precisely what
our monogamy relations predict (see Fig. 2).

Let us now move to the general case of an arbitrary number
of parties each having M d-outcome observables at their
disposal. To this end, we will utilize the generalization of
the Bell inequality (1) introduced in Ref. [11], which, most
conveniently, can be stated in a recursive form as

I
N,M,d

A = 1

M

M∑
αN−1=1

I
N−1,M,d

A(1)...A(N−1) (αN−1) ◦ A(N)
αN−1

� d − 1, (10)

where A = A(1) . . . A(N). The notation ◦A(i)
γ means insertion

of A(i)
γ to the average 〈·〉 with the opposite sign to the one

of A
(i−1)
δ with any γ,δ, while I

N−1,M,d

A(1)...A(N−1) (αN−1) is the same
Bell expression as in (10), but for N − 1 parties, and with
observables of the last party relabeled as αN−2 → αN−2 +

d 1 4 d 1 d2 0

1 d

1
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FIG. 2. (Color online) Comparison of the upper bounds on GP:
present bound (32) (red line) and (33) (purple line). Our bound is
tight—for any value 0 � I

N,M,d

A � d − 1, it provides the maximum
attainable value of GP. Instead, the bound (33) is nontrivial only in
some restricted range of I

N,M,d

A , namely, when I
N,M,d

A < 4(d − 1)/d2,
which tends to zero for d → ∞.

αN−1 − 1 with αN−1 = 1, . . . ,M . The maximal nonsignalling
violation of (10) is I

N,M,d

A = 0. Then, the generalization of
Theorem 1 to arbitrary N goes as follows:

Theorem 2. For any (N + 1)–partite NC {p(a|x)} with M

d-outcome measurements per site, the following inequality,

I
N,M,d

A + 〈[
A(k)

xk
− A(N+1)

xN+1

]〉 + 〈[
A(N+1)

xN+1
− A(k)

xk

]〉
� d − 1,

(11)
is satisfied for any xk,xN+1 = 1, . . . ,M and k = 1, . . . ,N .

Proof. The recursive formula in inequality (10), which for
convenience we restate here

I
N,M,d

A = 1

M

M∑
αN−1=1

I
N−1,M,d

A(1)...A(N−1) (αN−1) ◦ A(N)
αN−1

, (12)

allows us to demonstrate the theorem inductively. The case of
N = 2 has already been proved as Theorem 1, so we consider
N = 3. Exploiting Eq. (12), one can express I

3,M,d

A(1)A(2)A(3) as

I
3,M,d

A(1)A(2)A(3) = 1

M

M∑
α2=1

I
2,M,d

A(1)A(2) (α2) ◦ A(3)
α2

. (13)

It is clear that for every α2 = 1, . . . ,M ,

I
2,M,d

A(1)A(2) (α2) =
M∑

α1=1

(〈[
A(1)

α1
− A

(2)
α1+α2−1

]〉
+ 〈[

A
(2)
α1+α2−1 − A

(1)
α1+1

]〉)
� d − 1 (14)

is a Bell inequality equivalent to (1), in which the observables
of the second party A(2) have been relabelled according
to α1 → α1 + α2 − 1. It must then fulfil the monogamy
relations (2) (with N = 2) independently of the value of α2.
In order to see it in a more explicit way, let us consider
the case k = 1, and in Eq. (7) just rename A → A(1), B →
A(2), and C → A(3), and also α → α1 for the first party,
while α → α1 + α2 − 1 for the second one. Then, for those
observables A

(2)
α1+α2−1 for which α1 + α2 − 1 > M we use the

rule Xi×M+γ = [Xγ + i] to get [A(2)
γ + i] with some γ and

i, and later replace the latter by another variable Ã(2)
γ (this is
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just A(2)
γ with outcomes shifted by a constant). With the aid of

formula (8), the same reasoning can be repeated for k = 2.
Now, we prove that each term in Eq. (13) fulfills (11) for

N = 3, that is, that the inequalities

I
2,M,d

A(1)A(2) (α2) ◦ A(3)
α2

+ 〈[
A(k)

xk
− A(4)

x4

]〉 + 〈[
A(4)

x4
− A(k)

xk

]〉
� d − 1

(15)

hold for any α2 = 1, . . . ,M , any pair xk,x4 = 1, . . . ,M , and
any k = 1,2,3.

First assume k = 1. Let us write explicitly I
2,M,d

A(1)A(2) (α2) ◦ A(3)
α2

as

I
2,M,d

A(1)A(2) (α2) ◦ A(3)
α2

=
M∑

α1=1

(〈[
A(1)

α1
− A

(2)
α1+α2−1 + A(3)

α2

]〉
+ 〈[

A
(2)
α1+α2−1 − A

(1)
α1+1 − A(3)

α2

]〉)
.

(16)

For any fixed α2, the last party measures solely a single
observable, and therefore we treat A

(2)
α1+α2−1 − A(3)

α2
as a

single variable, or, in other words, for any α2 = 1, . . . ,M ,
A

(2)
α1+α2−1 − A(3)

α2
is a d-outcome observable [recall that in

Eq. (16) all variables are modulo d]. Effectively, (15) is a
three-partite inequality of the form (11) (with N = 2) that has
just been proven. In the k = 2 case we insert the third party
into the alternative expression (8) and further apply the same
reasoning as above.

In order to show (11) for k = 3, we use the fact that the
Bell inequality (10) for N = 3 is invariant under the exchange
of the first and the third party [11], meaning that we can,
analogously to Eq. (13), write it down as

I
3,M,d

A(1)A(2)A(3) = 1

M

M∑
α2=1

I
2,M,d

A(3)A(2) (α2) ◦ A(1)
α2

. (17)

Now, it is enough to repeat the above reasoning to complete
the proof of the monogamy relations (11) for N = 3.

Having it proven for N = 3, let us now assume that the
theorem is true for N parties (any N -partite nonsignaling
probability distribution). In order to complete the proof, we
again refer to the recursive formula (12). By grouping together
the last two parties, each term in the sum in Eq. (12) is
effectively an (N − 1)-partite Bell expression for which we
have just assumed (11) to hold for any xk,xN and k = 1, . . . ,N .
Performing the summation over αN−1 and dividing further
by MN−2, we obtain (11) for any i,j and k = 1, . . . ,N − 1.
The case k = N can be reached by using the fact that IN,M,d

is invariant under exchange of the last and the (N − 2)th
party [11]. �

All the properties of the three-partite monogamy relations
persist for any N . In particular, all inequalities (11) are tight.
Moreover, they can be rewritten as

I
N,M,d

A + 1 � dp
(
A(k)

xk
= [

A(N+1)
xN+1

+ m
])

(18)

for any xk,xN+1 = 1, . . . ,M , k = 1, . . . ,N , and m =
0, . . . ,d − 1 and remain valid if the nonlocality is tested
among any N -element subset of N + 1 parties. Analogously
to the three-partite case, inequalities (18) tightly relate the
nonlocality observed by any N parties, as measured by I

N,M,d

A ,

and correlations that (N + 1)th party can share between
measurement outcomes of any of these N parties. It is worth
pointing out that for d = 2 it holds that 〈[X − Y ]〉 = 〈[Y −
X]〉, and inequalities (11) simplify to I

N,M,2
A + 2〈[A(k)

xk
−

A(N+1)
xN+1

]〉 � 1, which can be rewritten in a more familiar

form as |〈A(k)
xk

A(N+1)
xN+1

〉| � I
N,M,2
A , where A(k)

xk
stand now for

dichotomic observables with outcomes ±1, while 〈XY 〉 =
P (X = Y ) − P (X �= Y ). Thus the strength of violation of (10)
imposes tight bounds on a single mean value 〈A(k)

xk
A(N+1)

xN+1
〉 for

any xk,xN+1 and k = 1, . . . ,N , which is also a measure of
how outcomes of a measurement performed by the external
party A(N+1) are correlated to those of A(k) for any k. In
particular, when I

N,M,2
A = 0 (maximal nonsignaling violation),

all these means are zero, while maximal correlations between a
single pair of measurements, i.e., 〈A(k)

xk
A(N+1)

xN+1
〉 = ±1 for some

xk,xN+1, making the N parties unable to violate I
N,M,2
A � 1.

III. ELEMENTAL MONOGAMIES FOR QUANTUM
CORRELATIONS

One may further ask if it is possible to formulate analogous
monogamy relations for QC. In general, the quantum case is
much more difficult to handle and the only progress in this
direction has been achieved for Bell inequalities with two
dichotomic settings [12,16] (see also Ref. [17]). Here, we
show that in the simplest (3,2,2) scenario, one can derive
quantum analogs of the nonsignaling monogamies (2). To this
end, we use a one-parameter modification of the CHSH Bell
inequality [14], with the latter being a particular case of the
Bell inequality (1) with M = d = 2. However, here we write
it down in its “standard” form

Ĩ α
AB = α(〈A1B1〉 + 〈A1B2〉)+〈A2B1〉−〈A2B2〉 � 2α (19)

with α � 1. Here Ai and Bi are local quantum observables with
eigenvalues ±1 and 〈XY 〉 = Tr[ρ(X ⊗ Y )] for some quantum
state ρ and local observables X,Y . Actually, one proves the
following more general theorem, generalizing the result of
Ref. [12] for the Bell inequality (19).

Theorem 3. Any three-partite quantum correlations with
two dichotomic measurements per site must satisfy the
following inequalities:

α2 max
{(

Ĩ α
AB

)2
,
(
Ĩ α
AC

)2} + min
{(

Ĩ α
AB

)2
,
(
Ĩ α
AC)2

}
� 4α2(1 + α2) (20)

and (
Ĩ α
AB

)2 + 4〈AiCj 〉2 � 4(1 + α2) (21)

for any α � 1 and i,j = 1,2.
Proof. The proof is nothing more but a slight modification

of the considerations of Ref. [12] (see also Ref. [25]).
Nevertheless, we attach it here for completeness.

We start by noting that the monogamy regions, that is, the
two-dimensional sets of allowed (realizable) within quantum
theory pairs {Ĩ α

AB,Ĩ α
AC} for inequality (20) and {Ĩ α

AB,〈AiCj 〉}
with fixed i and j for inequality (21), must be convex.
Therefore, as it is shown in Ref. [12] (see also Ref. [26]),
every point of their boundaries can be realized with a real
three-qubit pure state and real local one-qubit measurements.
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Recall that the latter assume the form

X = x · σ , (22)

with x ∈ R2 being a unit vector and σ = [σx,σz] denoting a
vector consisting of the standard Pauli matrices σx and σz.

Then, it follows from a series of papers [12,25,27] that
for a given two-qubit state ρAB , the maximal value of Ĩ α

AB

over local, real, and traceless observables [i.e., those of the
form (22)] measured by Alice Ai and Bob Bi amounts to

max
Ai,Bj

(
Ĩ α
AB

) = 2
√

α2λ1 + λ2. (23)

Here, λi (i = 1,2) denotes the eigenvalues of TABT T
AB put in

a decreasing order, i.e., λ1 � λ2, and TAB is the following
reduced correlation matrix:

TAB =
(〈σx ⊗ σx〉AB 〈σx ⊗ σz〉AB

〈σz ⊗ σx〉AB 〈σz ⊗ σz〉AB

)
. (24)

We added the subscript AB in (24) to indicate that the mean
values are taken in the state ρAB . In particular, one can similarly
compute the maximal value of a single average 〈AB〉 in the
state ρAB over local observables A and B of the form (22) to be

max
A,B

〈AB〉 = λ1. (25)

Equipped with these facts, we can now turn to the proof of
the inequalities (20) and (21). We start from the first one and
note that it suffices to demonstrate it in the case of Ĩ α

AB � Ĩ α
AC ,

in which it becomes

α2
(
Ĩ α
AB

)2 + (
Ĩ α
AC

)2 � 4α2. (26)

The opposite case will follow immediately by exchanging
B ↔ C.

Then let |ψABC〉 be a pure real three-qubit state. By ρAB

and ρAC we denote its subsystems arising by tracing out the
third and the second party, respectively, and by TAB and
TAC the corresponding correlation matrices [cf. Eq. (24)].
Finally, let λi and λ̃i (i = 1,2) be eigenvalues of TABT T

AB

and TACT T
AC , respectively, where we keep the convention that

λ1 � λ2 and λ̃1 � λ̃2. It was pointed out in Ref. [12] that the
latter matrices are diagonal in the same basis, which allows
one to simultaneously maximize both Ĩ α

AB and Ĩ α
AC with the

same observables on Alice site. This, together with Eq. (23),
means that

max
Ai,Bj ,

Ck

[
α2

(
Ĩ α
AB

)2 + (
Ĩ α
AC

)2] = 4[α2(α2λ1 + λ2) + α2̃λ1 + λ̃2]

= 4[α4λ1 + α2(λ2 + λ̃1) + λ̃2]. (27)

In order to complete the proof, we make use of the Toner-
Verstraete monogamy relation for the CHSH Bell inequal-
ity [12], which we state here in terms of λi and λ̃i as

λ2 + λ̃1 � 2 − λ1 − λ̃2. (28)

When applied to (27), it leads us to

max
Ai,Bj ,

Ck

[
α2

(
Ĩ α
AB

)2 + (
Ĩ α
AC

)2] � 4[(α2 − 1)(α2λ1 − λ̃2) + 2α2]

= 4[α2(α2 − 1) + 2α2]

= 4α2(1 + α2), (29)

where the second line follows form the facts that λ1 � 1, λ̃2 �
0, and α � 1.

To prove inequality (21), we follow the above reasoning to
obtain

max
Ai,Bj ,Cl

[(
Ĩ α
AB)2 + 4〈AkCl

〉2] = 4(α2λ1 + λ2) + 4̃λ1

= 4α2λ1 + 4(λ2 + λ̃1) (30)

for k = 1,2. Subsequent application of (28) to the term in
parentheses in the second line of the above directly gives
inequality (21), completing the proof. �

For i = 1 and j = 1,2, the relations (21) are tight since
any pair of values of Ĩ α

AB and 〈A1Cj 〉 saturating them can
be realized with the state (β+|01〉 + β−|10〉)|0〉, where β± =
(1/2)(1 ± √

2 sin θ )1/2 and θ ∈ [0,π/4]. It is, however, no
longer true for i = 2. In this case we numerically found tight
monogamy relations for particular values of α (see Fig. 3).

(a)

(b)

FIG. 3. (Color online) (a) Guessing probability (and simultane-
ously the tight analogs of monogamies in Theorem 3) for i = 2
as a function of (Ĩ α

AB − 2α)/2(
√

1 + α2 − α) for various values of
α. All curves were found using two methods. First, we maximized
the guessing probability for a given value of Ĩ α

AB over two-ququart
states and one-ququart dichotomic measurements. Then, we used
the hierarchy of Ref. [29] and with its third level we arrived at
curves that coincide with those obtained with the first method
with precision 10−7. For comparison, (b) presents the corresponding
nontight monogamies proven in theorem 3 (i = 2) for α = 1,3 (the
curves for α = 1.5,2 fall in between these two). The black curve is
the same on both plots.
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FIG. 4. (Color online) Minimal number of measurements M on
a maximally entangled state of local dimension d necessary for the
secret-key rate R secure against nonsignaling eavesdroppers to be at
least one (dots), log2 3 (squares), and two (triangles) bits, when (32)
(green) and (33) (red) are used to bound R. Using our bound the
parties need to use many fewer measurements to reach the same key
rate. Moreover, contrary to what is predicted by the previously known
bound, the number of measurements decreases with the dimension.

IV. BOUNDS ON RANDOMNESS

Our monogamies are of particular importance for device-
independent applications, since they imply upper bounds
on the guessing probability (GP) of the outcomes of any
measurement performed by any of the N parties by the
additional party, here called E. Recall that one defines the
guessing probability of an outcome of the measurement xk

performed by the kth party as

Pg(xk) := max
ak

p(A(k)
xk

= ak) = max
ak

p(ak|xk). (31)

Now, in order to derive bounds on Pg(xk), assume that E has
full knowledge about all parties devices and their measurement
choices and wishes to guess the outcomes of, say A(k)

xk
. The

best E can do for this purpose is to simply measure one of
its observables, say the zth one, and, irrespectively of the
obtained result, deliver the most probable outcome of A(k)

xk
.

Then, maxak
p(A(k)

xk
= ak) = p(Ez = A(k)

xk
), and inequalities

(18) imply that for any xk and k, GP is bounded as

max
ak

p(ak|xk) ≡ max
ak

p
(
A(k)

xk
= ak

)
� 1

d

(
1 + I

N,M,d

A

)
. (32)

These bounds are tight and significantly stronger than the
previously existing one,

max
ak

p(ak|xk) � 1

d

[
1 + dN

4
(N − 1)IN,M,d

A

]
, (33)

derived in Refs. [10] and [11] (see Fig. 2).
Finally, let us notice that the quantum monogamies (21) im-

pose the following upper bounds on the guessing probability:

max
j

p(Xi = j ) � 1
2

{
1 + [

1 + α2 − (
Ĩ α
AB/2

)2]1/2}
, (34)

with X = A,B, i = 1,2, and α � 1. This bound was already
derived in Ref. [27], and, as already said, it is tight only
for i = 1. In the case i = 2, we determined the tight bounds
numerically for a few values of α and present them in Fig. 3.

V. APPLICATIONS

Here we show how our bounds on the guessing probabil-
ity (32) apply in device-independent tasks such as quantum
key distribution and randomness amplification.

A. Quantum key distribution

Let us now discuss how the bound (32) performs in
comparison to (33) in security proofs of DIQKD against
no-signaling eavesdroppers. At the moment, a general security
proof in this scenario is missing and the strongest proof
requires the assumption that the eavesdropper E is not only
limited by the no-signaling principle but also lacks a long-term
quantum memory (the so-called bounded-storage model) [22].
Assume that Alice and Bob share a two-qudit maximally
entangled state and they use it to maximally violate (1) by
performing the optimal measurements for this setup (see,
e.g., [10]). To generate the secure key, Bob performs one
more measurement that is perfectly correlated to one of Alice’s
measurements. The key rate of this protocol is lower bounded
as R � − log2[τ (I 2,M,d

AB )] − H (A|B) [22], where τ is any
upper bound on GP for nonsignaling correlations, and H (A|B)
is the conditional Shannon entropy between Alice and Bob for
the measurements used to generate the secret key. As the state
is maximally entangled, this term is equal to zero. Figure 4
compares bounds on the secret key obtained by using our
bound (32) and the previous bound (33) in this protocol. We fix
the key rate and compute the minimal number of measurements
needed to attain this rate using these bounds as a function of
the number of outputs. As shown in Fig. 4, the number of
measurements when using our bound is much smaller and, in
particular, decreases with the number of outputs.

B. Randomness amplification

Let us finally show the usefulness of our monogamy
relations in randomness amplification. Assume that each party
is given a sequence of bits produced by the Santha-Vazirani
(SV) source (or the ε-source). Its working is defined as follows:
it produces a sequence y1,y2, . . . ,yn of bits according to

1
2 − ε � p(yk|w) � 1

2 + ε, k = 1, . . . ,n, (35)

where w denotes any space-time variable that could be the
cause of yk . Thus the bits are possibly correlated with each
other, retaining, however, some intrinsic randomness—we say
that they are ε-free. The goal is now to obtain a perfectly
random bit (or more generally dit) from an arbitrarily long
sequence of ε-free bits by using quantum correlations that
violate the Bell inequality (10). This procedure is called
randomness amplification (RA).

It is useful to recast this task in the adversarial picture [19],
in which one assumes that an adversary E, using the ε-sources,
wants to simulate the quantum violation of (10) by NC, in
particular, the local ones. The random variable W is now
held by E, who uses it to control both the ε-sources and
the physical devices possessed by the parties. That is, for
every value w of W , the former provides settings x with
probabilities obeying (35), while these devices generate the
N -partite probability distribution {p(a|x,w)}a,x . Let us then
denote by {p(ak,w|x)}ak,w correlations between outcomes
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obtained by party k and the random variable W for a particular
choice of measurement settings x. Also, let {p̃(a)} be the
one-party uniform probability distribution, i.e., p̃(a) = 1/d

for any a. Introducing then the variational distance

D({p(x)},{q(x)}) = 1

2

∑
x

|p(x) − q(x)| (36)

between two probability distributions {p(x)} and {q(x)}, we
can now restate and generalize Lemma 1 of [19] (see also
Appendix B for an alternative proof).

Theorem 4. Let for any w, {p(a|x,w)}a,x be an N -
partite nonsignaling probability distribution. Then for any
k = 1, . . . ,N and any choice of measurement settings x:

D({p(ak,w|x)}ak,w,{p̃(ak)p(w|x)}ak,w)

= 1

2

∑
ak,w

|p(ak,w|x) − p̃(ak)p(w|x)|

� (d − 1)2 + 1

2d
QM (x)IN,M,d

A , (37)

where I
N,M,d
A is taken in the probability distribution observed

by the parties {p(a|x)}. Then

QM (x) = max
w

[
p(w|x)

pmin(w)

]
, (38)

where pmin(w) = minx{p(w|x)} with the minimum taken over
all measurement settings x appearing in the Bell inequal-
ity (10).

Proof. For simplicity, but without any loss of generality, we
prove this theorem for the bipartite case. The generalization to
the multipartite case is straightforward.

As before, we denote the parties by A and B, while the
adversary is denoted by E. Then, the corresponding inputs and
outputs are denoted by x, y, z, and a, b, and e, respectively.

Let us start by noting that for any probability distribu-
tion {p(a,b|x,y,w)}a,b,x,y , the maximal probability of local
outcomes obtained by any of the parties, say, for simplicity,
Alice, must obey the inequalities on the guessing probability
[see inequality (7) in the main text]. That is,

max
a

p(a|x,w) � 1

d

(
1 + I 2,M,d

w

)
(39)

for any x = 1, . . . ,M , where by I 2,M,d
w we have denoted the

value of the Bell expression (1) computed for the probability
distribution {p(a,b|x,y,w)}a,b,x,y . Clearly, this bound holds
also for any p(a|x,w), which together with the normalization

p(a|x,w) = 1 −
∑
α �=a

p(α|x,w), (40)

means that p(a|x,w) � (1/d)[1 − (d − 1)I 2,M,d
w ], and there-

fore the inequality∣∣∣∣p(a|x,w) − 1

d

∣∣∣∣ � d − 1

d
I 2,M,d
w (41)

holds for any a and x. Using then the inequality (39) for
maxa p(a|x,w) and (41) for the rest of p(a|x,w), we obtain

that for any strategy w and a measurement setting x,

D({p(a|x,w)}a,{p̃(a)}) = 1

2

∑
a

|p(a|x,w) − p̃(a)|

� (d − 1)2 + 1

2d
I 2,M,d
w . (42)

The remainder of the proof goes along exactly the same
lines as in Ref. [19]; however, for completeness, we will recall
it here.

Due to the fact that the observers do not have access
to the variable W , one has to average inequality (42)
over the probability distribution {p(w|x,y)}w for a par-
ticular choice of measurements x and y. Together with
the facts that p(a|x,w) = p(a|x,y,w) (no-signaling) and
p(w|x,y)p(a|x,y,w) = p(a,w|x,y), this allows one to write

D({p(a,w|x,y)}a,w,{p̃(a)p(w|x,y)}a,w)

= 1

2

∑
a,w

|p(a,w|x,y) − p̃(a)p(w|x,y)|

� (d − 1)2 + 1

2d

∑
w

p(w|x,y)I 2,M,d
w . (43)

Let us now concentrate on the right-hand side of inequal-
ity (43). By using Eq. (1), we can bound it from above in the
following way:∑

w

p(w|x,y)I 2,M,d
w

=
∑
w,α

p(w|x,y)(〈[Aα − Bα]〉w + 〈[Bα − Aα+1]〉w)

=
∑
w,α

(
p(w|α,α)

p(w|x,y)

p(w|α,α)
〈[Aα − Bα]〉w

+p(w|α + 1,α)
p(w|x,y)

p(w|α + 1,α)
〈[Bα − Aα+1]〉w

)

� QM (x,y)
∑
w,α

[p(w|α,α)〈[Aα − Bα]〉w

+p(w|α + 1,α)〈[Bα − Aα+1]〉w]

= QM (x,y)
∑

α

(〈[Aα − Bα]〉 + 〈[Bα − Aα+1]〉)

= QM (x,y)I 2,M,d
AB , (44)

where the subscript w in the expectation values 〈[Aα − Bα]〉w
and 〈[Bα − Aα+1]〉w means that they are computed for the
probability distribution {p(a,b|x,y,w)}a,b,x,y , and also the
convention p(M + 1,M|w) ≡ p(1,M|w) is used. Then, I 2,M,d

AB

is computed for the probability distribution {p(a,b|x,y)}
observed by A and B.

By substituting inequality (44) into inequality (43), one
finally obtains inequality (37), completing the proof. �

It then follows that if correlations {p(a|x)} violate maxi-
mally the Bell inequality (10), then the dits observed by the
parties are perfectly random and uncorrelated from W [19].

Let us now show that one can amplify partially random
input bits to almost perfectly random dits by using QC that
produce an arbitrarily high violation of I

N,M,d

A . To generate
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one of the M measurement settings, each party uses its SV
source r = log2 M� times. Hence for any x,

Qr (x) �
(

1 + 2ε

1 − 2ε

)Nr

(45)

(cf. Ref. [19]). Then, there is a state and measurement
settings [10,11] such that for large M ,

I
N,M,d

A ≈ λ(d)/M � λ(d)/2r−1, (46)

where λ(d) is a function of d. After plugging everything
into (37), one checks that its right-hand side tends to zero
for M → ∞ if and only if

ε < εN := 1

2

21/N − 1

21/N + 1
. (47)

As a result, QC violating (46) can be used to amplify
randomness of any ε-source provided ε < εN . In particular,
for N = 2, the above reproduces the value ε2 = (

√
2 − 1)2/2

found in [19], and, because εN is a strictly decreasing function
of N , the larger the value of N , the lower the critical epsilon
εN for this method to work. Notice, however, that εN is
independent of d, so almost perfectly random dits are obtained
from partially random bits. This means that by using the setup
from Ref. [19] we can in fact achieve both amplification and
expansion of randomness simultaneously.

Recently, with the same Bell inequality but for N = d = 2,
the critical ε was shifted from ε2 ≈ 0.086 to ε′

2 ≈ 0.096 1 [20].
We will now show that by using a slightly different approach
the critical epsilon can be almost doubled. To this end, we
exploit the fact that only 2MN−1 measurement settings out of
all possible MN appear in I

N,M,d

A . However, to generate them
a common source has to be used. Assuming then that this is
the case, R = log2(2MN−1) = 1 + (N − 1)r (instead of Nr)
uses of the SV source are enough to generate all measurement
settings in I

N,M,d

A . Thus

Qr (x) �
(

1 + 2ε

1 − 2ε

)1+(N−1)r

, (48)

which together with (46) implies that the right-hand side
of (37) vanishes for M → ∞ if and only if

ε < ε′′
N = 1

2

21/(N−1) − 1

21/(N−1) + 1
, (49)

and, in particular, ε′′
2 = 1/6 > ε′

2.

VI. CONCLUSIONS

We have introduced a class of monogamy relations obeyed
by any nonsignaling physical theory. They tightly relate the
amount of nonlocality, as quantified by the violation of Bell
inequalities [10,11], that N parties have generated in an
experiment to the classical correlations an external party
can share with outcomes of any measurement performed
by the parties. Such tradeoffs find natural applications in
device-independent protocols, and here we have discussed how
they apply in quantum key distribution (cf. also Ref. [28]) and
generation and amplification of randomness. We have finally
shown that bipartite quantum correlations allow one to amplify
ε-free dits for any ε < 1/6.

Our results provoke further questions. First, it is natural to
ask if analogous monogamies hold for quantum correlations,
and, in fact, such elemental monogamies can be derived
in the simplest (3,2,2) scenario. From a more fundamental
perspective, it is of interest to understand what is the (minimal)
set of of monogamy relations generating the same set of
multipartite correlations as the no-signaling principle.
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APPENDIX A: A SIMPLE FACT

Here we prove a simple fact. Recall for this purpose that
〈�〉 is the standard mean value of a random variable �, that
is, 〈�〉 = ∑d−1

i=1 iP (� = i) and [�] stands for � modulo d.
Fact 1. It holds that for any random variable �,

(a) 〈[�]〉 + 〈[−� − 1]〉 = d − 1, (A1)

(b) 〈[�]〉 + 〈[−�]〉 = d[1 − p([�] = 0)]. (A2)

Proof. Both equations follow from the very definition of
〈[·]〉. To prove (a) we notice that [−� − 1] + [�] = d − 1,
and hence

〈[−� − 1]〉 =
d−1∑
i=1

ip([�] = d − i − 1)

=
d−2∑
i=0

(d − i − 1)p([�] = i)

= (d − 1)
d−2∑
i=0

p([�] = i) −
d−2∑
i=0

iP ([�] = i)

= (d − 1)
d−1∑
i=0

p([�] = i) − 〈[�]〉

= (d − 1) − 〈[�]〉, (A3)

where the second equality is a consequence of the changing of
the summation index, the fourth one stems from the definition
of 〈[�]〉 and rearranging terms, and the last equality follows
from normalization.

To prove (b), we write

〈[�]〉 + 〈[−�]〉 =
d−1∑
i=1

i[p([�] = i) + p([−�] = i)]

=
d−1∑
i=1

i[p([�] = i) + p([�] = d − i)]
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=
d−1∑
i=1

ip([�] = i) +
d−1∑
i=1

(d − i)p([�] = i)

= d

d−1∑
i=1

p([�] = i)

= d[1 − p([�] = 0)], (A4)

where the second equality is a consequence of the fact that
[�] + [−�] = d, while the third equality follows from the
shifting of the summation index in the second sum. �

APPENDIX B: ALTERNATIVE PROOF OF THEOREM 4

Let us also notice that one can derive inequality (37) using
a slightly different approach, which, for completeness, we
present below.

Theorem 5. Let {p(a|x,w)}a,x be a nonsignaling probability
distribution for any w and let the probabilities p(x) be all equal.
Then for any k = 1, . . . ,N and any choice of measurement
settings x,

D({p(ak,w|x)}ak,w,{p̃(ak)p(w|x)}ak,w)

= 1

2

∑
ak,w

|p(ak,w|x) − p̃(ak)p(w|x)|

� (d − 1)2 + 1

2d
Q̃M (x)IN,M,d

A , (B1)

where I
N,M,d

A is taken in the probability distribution observed
by the parties {p(a|x)} and

Q̃M (x) = max
w

[
p(x|w)

p̃min(w)

]
, (B2)

where p̃min(w) = minx{p(x|w)} with the minimum taken over
all measurement settings x appearing in the Bell inequal-
ity (10).

Proof. For simplicity but without any loss of generality, we
prove this theorem for the bipartite case. The generalization to
the multipartite case is straightforward.

As before, we denote the parties by A and B, while the
adversary is denoted by E. Then, the corresponding inputs and
outputs are denoted by x, y, z, and a, b, and e, respectively.

Let us start by noting that, by analogy to the case considered
in the main text [see inequality (6) there], for any w,
the probability distribution {p(a,b|x,y,w)}a,b,x,y satisfies the
following monogamy relations:

I 2,M,d
w

p̃min(w)
+ 1 � dp(Xi = Ej |w) (X = A,B) (B3)

for any pair {i,j} (i,j = 1, . . . ,M). In the above,

I 2,M,d
w =

M∑
α=1

[p(α,α|w)〈[Aα − Bα]〉w

+p(α + 1,α|w)〈[Bα − Aα+1]〉w] (B4)

is a modified BKP Bell expression, taking into account that
the inputs x,y are generated with the biased probabilities
p(x,y|w), all correlators 〈[Aα − Bα]〉w and 〈[Bα − Aα+1]〉w

are computed for the distribution {p(a,b|x,y,w)}a,b,x,y , and
now

p̃min(w) = min
α=1,...,M

{p(α,α|w),p(α + 1,α|w)}, (B5)

where the convention p(M + 1,M|w) ≡ p(1,M|w) is used.
The monogamy relations (B3) imply (see the main text for

the argument in favor of this fact) the bound on the probability
of the adversary when using the strategy w to guess the
outcomes of any of the measurements performed by one of
the parties, say, for concreteness, Alice (but the same bound
holds for outcomes of party B):

max
a

p(a|x,w) � 1

d

(
1 + I 2,M,d

w

p̃min(w)

)
(x = 1, . . . ,M).

(B6)
Clearly, this bound holds also for any p(a|x,w), which together
with the normalization

p(a|x,w) = 1 −
∑
α �=a

p(α|x,w), (B7)

means that p(a|x,w) � (1/d) − (d − 1)[I 2,M,d
w /dp̃min(w)],

and therefore the inequality

∣∣∣∣p(a|x,w) − 1

d

∣∣∣∣ � d − 1

d

I 2,M,d
w

p̃min(w)
(B8)

holds for any a and x. Using then the inequality (B6) for
maxa p(a|x,w) and (B8) for the rest of p(a|x,w), we obtain
that for any strategy w,

D({p(a|x,w)}a,{p̃(a)}) = 1

2

∑
a

|p(a|x,w) − p̃(a)|

� (d − 1)2 + 1

2d

I 2,M,d
w

p̃min(w)
. (B9)

Now, since the parties do not have access to W , one needs fur-
ther to average inequality (B9) over the probability distribution
{p(w|x,y)}w for a particular choice of measurements x and y.
This, together with the facts that p(a|x,w) = p(a|x,y,w) (no-
signaling) and p(w|x,y) = p(x,y|w)p(w)/p(x,y), implying
that p(w|x,y)p(a|x,y,w) = p(a,w|x,y), allows one to write

D({p(a,w|x,y)}a,w,{p̃(a)p(w|x,y)}a,w)

= 1

2

∑
a,w

|p(a,w|x,y) − p̃(a)p(w|x,y)|

� (d − 1)2 + 1

2d

∑
w

p(x,y|w)

p̃min(w)

p(w)

p(x,y)
I 2,M,d
w

� (d − 1)2 + 1

2d
Q̃M (x,y)

∑
w

p(w)

p(x,y)
I 2,M,d
w , (B10)

with Q̃M (x,y) = maxw [p(x,y|w)/p̃min(w)] . In order to ob-
tain inequality (B1) from inequality (B10), it is enough to
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notice that

p(a,b|x,y) =
∑
w

p(w|x,y)p(a,b|x,y,w), (B11)

which, with the aid of the assumption that all the probabilities
p(x,y) are equal, further translates to

I
2,M,d
AB =

∑
w

p(w)

p(x,y)
I 2,M,d
w , (B12)

where I
2,M,d
AB is computed for the observed probability

distribution {p(a,b|x,y)} and the probabilities p(x,y) =∑
w p(w)p(x,y|w) are assumed to be equal for all x,y. This

completes the proof. �
Let us finally notice that under the assumption, which we

make above, that all p(x,y) are equal, it holds that QM (x) =
Q̃M (x).
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