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Elimination of Impulsive Disturbances From Stereo
Audio Recordings Using Vector Autoregressive
Modeling and Variable-order Kalman Filtering

Maciej Niedzwiecki,Senior Member, IEEEMarcin Ciotek, and Krzysztof Cisowski

Abstract—This paper presents a new approach to elimination with the analogous results of backward-time detection. The
of impulsive disturbances from stereo audio recordings. The |atter can be obtained by means of processing audio signal
proposed solution is based on vector autoregressive modelingpackward in time, provided, of course, that the entire recording
of audio signals. On-line tracking of signal model parameters is . . T ’ L
performed using the exponentially weighted least squares algo- is available. In ad-d!t|on.to reducing Fhe number and length
rithm. Detection of noise pulses and model-based interpolation of Of false alarms, bidirectional processing allows one to carve
the irrevocably distorted samples is realized using an adaptive, detection alarms more carefully (smaller number of overlooked
variable-order Kalman filter. The proposed approach is evaluated nojse pulses, better front/end matching of noise pulses).
on a set of clean audio signals contaminated with real click An alternative approach to detection of noise pulses, based
waveforms extracted from old gramophone recordings. . . . '

on double thresholding, was proposed in [12]. Unlike sequen-

Index Terms—Elimination of impulsive disturbances, vector tja| prediction-based methods mentioned before, the double

autoregressive models, adaptive Kalman filtering. threshold approach incorporates block processing. The signal
is divided into blocks (possibly overlapping), each of which is
. INTRODUCTION analyzed separately. For each block the best-fitting AR signal

RCHIVE audio files, such as old gramophone recording@©del is determined and used to compute the sequence of
A are often degraded by impulsive disturbances. C"Ckrse&dua! errors. The dgtectlon procedure is two-step. The aim
pops, ticks and record scratches are caused by aging andloie first, prescreening step is to find the abnormally large
mishandling of the surface of gramophone records, specks'gfues Of residual errors (attributed to the presence of noise
dust and dirt, faults in the record stamping process etc. Ri{IS€S). This is achieved by means of using an outlier detector
the case of magnetic tape recordings, impulsive disturban&@uiPped with a relative high detection threshold. The purpose

the second step is to precisely localize the beginning and

can be usually attributed to transmission or equipment artifa X " ) )
(e.g. electric or magnetic pulses). Elimination of such distuf'd Points of each preliminary detection alarm found during

bances from archive audio documents is an important ebmgﬁ(?screening. Localization is performed using outlier detector
of saving our cultural heritage. equipped with a small detection threshold.

Most of the known approaches to elimination of impulsive Once the impulsive disturbance is localized, the corrupted

disturbances from archive audio signals are based on adapﬁ@g]ples are reconstructed using the AR-model based projec-

prediction — the autoregressive (AR) model of the analyzéiﬂm te.chnique [13] or its Bayesian extension known as Gibbs
signal is continuously updated and used to predict consecutR"Ping 4], [5]. . o

signal samples [1]-[10]. Whenever the absolute value of the/lthough two tracks of a stereophonic audio signal can

one-step-ahead prediction error becomes too large, namify SPlit and processed separately, this is certainly not the
when it exceeds a prescribed multiple of its estimated stand&fpt approach to restoration of stereo _reco_rdlngs. We will
deviation, a “detection alarm” is raised, and the predicted saﬁh—ow that both detection and reconstruction (interpolation) of

ple is scheduled for reconstruction. The test is then extendE§vocably distorted samples can be performed more reliably

to multiple-step-ahead prediction errors — detection alarm‘?@e” two channels are analyzed jointly using the vector

terminated when a given number of samples in a row remzﬂHtoregress_ive modeling tech_nique. Fig. 1 compares one-step-
sufficiently close to the predicted signal trajectory (or Wheﬁheffid pred|ct|on_err0rs obtained — for a typl_cal clean sFereo
the length of detection alarm reaches its maximum allowadig'dio signal — using scalar and vector modeling, respectively.

value). As shown in [11], detection results can be furthdf Doth cases model parameters were estimated using the
improved if the results of forward-time detection are combindg€thod of exponentially weighted least squares with forgetting
factors chosen so as to equalize estimation memory of the

Copyright (c) 2013 IEEE. Personal use of this material is permite¢ompared approaches (for more details see Section 2.D). Note
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UMO-2013/09/B/ST7/ 01582. variance of the prediction errors was reduced by the factor
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Fig. 1: Comparison of the one-step-ahead prediction errors o2 : !
obtained — for a typical stereo audio signal (top plots in o | l
each group) — using scalar signal modeling (middle plots in T 0 ! |
each group) and vector signal modeling (bottom plots in each o2 | |
group). The upper group of three plots corresponds to the : :
left stereo channel, and the lower group — to the right stereo 04 50 100 150 200 250 300
channel. Note the scale difference between top plots anerlow t
plots in each group. Fig. 2: Typical impulsive noise patterns encountered iiaee

stereo gramophone recordings: impulsive disturbanceuporr
ing only one of two stereo tracks (the upper two plots), and
has two potential benefits. First, since most of the existingpulsive disturbance corrupting both tracks (the loweo tw
noise pulse detection procedures are based on adaptighthrelots). Broken vertical lines show the beginning and the end
olding of signal prediction errors, vector processing nsakef each noise pulse.
them more sensitive to abnormal signal patterns. Second,
more accurate models usually guarantee better interpolafi

irrevocably distorted samples called in question by thdi@ut normalized (dimensionless) discrete time andt)/y»(t) de-
detector. notes the left/right audio track.

When the restored audio material originates from stereowe will assume that the signgl(t) can be written down in
gramophone recordings, there is an additional incentives® the form
the vector approach. In the case of archive stereo gramephon
recordings, the local groove damages or imperfectionsiogu y(t) =s(t) +6(t) (1)
clicks, are often asymmetric, i.e., they are more strongly
emphasized on the left or right edge of the groove, or thagheres(t) = [si(t),s2(t)]" denotes the clean audio signal
affect only one side of the groove. Since the typical steré@®d d(t) = [d1(t),d2(t)]" is a signal made up of sparsely
recording/playback system is half vertical - half horizint distributed noise pulses (such as clicks, pops and record
i.e., it preserves asymmetry mentioned above(see Fig. $§ratches). To keep the analysis simple, we will assume that
restoration can be performed more re|iab|y when two Chm’]ngﬂe measured Signal is not contaminated with an additive-wid
are analyzed jointly, simply because the uncorrupted rizate?and noise (the so-called surface noise), i.e., that immuls
in one channel may be helpful in detecting and interpolatifiipise is the only disturbance that should be eliminated.
corrupted samples in the other channel. The clean audio signal will be modeled as a two-

dimensional vector autoregressive (VAR) process of order

[14], [15], [16]
Il. SIGNAL IDENTIFICATION

The measured stereo audio signal will be denoted by s(t) :ZAis(t—i)+n(t) 2
y(t) = [y1(t),y2(t)]", wheret = ..., —1,0,1,..., denotes i=1
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where Due to the block-diagonal structure @f(k), the estimator (7)
can be rewritten in a decomposed form as

[Z At_’“so(k)yj(k)]
k=1

T
a1, Q124 (6 2] .
Ai[ " = Holi=1,...,r

21,5 Q22 (8571 -1

t
n _ t—k T
are the2 x 2 matrices of AR coefficients andn(¢)}, 0;(t) = [Z)‘ p(k)e” (k)
n(t) = [n1(t),n2(t)]", denotes two-dimensional zero-mean =1

white noise with a covariance matrix j=12 )
A o] A similar technique can be used to track the covariance matri
covin(t)] = s | =p. ) . .
P12 ps of the forming noisen(t). The local estimate op(t) can be

obtained from
Denote by6; = [aj),...,aj,]" the vector of coefficients
characterizing thej-th channel, and byp(t) = [yT(t — 5(t) = R(t) ©)
1),...,yT(t—n)]T — the corresponding regression vector (the P I(t
same for both channels). Denote @y the 2r x 1 null vector,
and by O, andI, — the2r x 2r null and identity matrices,

respectively. Furthermore, let

where R(t) denotes the exponentially weighted sum of
“squared” residual errors

p(t) 0, 0, ] : —k a

(P t - 0 - . = t—k —_ T

®) [or ¢®}’ [@ R() =3 [y(k) = @ (1)0(1)]

Using these shorthands, in the absence of noise pulses the CaTnanlt

model (2) can be rewritten in the form : {y(k) ® (k)O(t)} (10)
y(t) = ()0 +n(t). (3)

A. Recursive Estimation Algorithms
Finally, to account for nonstationarity of audio signallse t

following time-varying version of (3) will be used Both 6(t) and p(t) can be computed recursively. The

recursive algorithm for computation ég—(t) has a well-known
y(t) = ®T(H0(t) +n(t), covln(t) =p(t) (4) form[17]

where 0(t) denotes the slowly time varying vector of au- gj(tlt — 1) = y;(t) — cpT(t)éj (t—1)
toregressive cogﬁiciepts, _and(t) is_the time—yariant npise gj (1) = §j(t — 1) + k(£ (¢t — 1)
covariance matrix. Estimation (tracking) &(t) will be carried .
out using the method of exponentially weighted least square j=12 Q ol
(EWLS), namely K(f) — t—1)p(t
t O e mat - U
o~ . —k 1
0(t) = argmin Y A"F | y(k) - 2T (k)0 *  (5) Q) =1 [L—k®e' O] QE-1).  (11)
k=1

where), 0 < A < 1, denotes the so-called forgetting constariYote that the gain vectde() does not depend of i.e., it is
which decides upon the effective estimation memory of t{B€ same for both channels. Recursive computatiop(of is

EWLS estimator, given by based on the following relationships
t —
11—\t I(t) =Mt —1)+1 (12)
— t—k _
l(t)—;)\ =T (6)

The value of A should be chosen so as to trade off the  R(¢) = \R(t—1)+ e(tlt — et (¢t —1)
bias and variance components of the mean-squared parameter A+eT(1)Q(t — 1)ep(t)
tracking errorE|[|| 6(t) — 6(¢) ||?]. Short-memory algorithms
are “fast” (yield small tracking bias) but “inaccurate” ¢l
large tracking variance), whereas long-memory algoritanes
“slow” but “accurate”. The best results are obtained if th
estimation memory of a tracking algorithm “matches” th
degree of nonstationarity of the identified process [173][1  Suppose that the identified process is stationary, i.et itha

(13)

wheree(t|t — 1) = [e1(t|t — 1), ea(t|t — 1)]T.

eE' Relationship to Maximum Likelihood Estimation

Evaluation of (5) is straightforward and leads to obeys (3). Under Gaussian assumptions the statisticdily ef
. cient estimators ob and p, givenY(t) = {y(1),...,y(t)},
t t .
. be obtained f
0(t) = lz AE@ (k)@ (k) [Z /\tk@(k)y(k)] , canbe oblamedirom
. et {67(t), p" (1)} = arg max p(Y(t) Vo, 0, p)
(7) {0.p}
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where )y = {y(1 —r),...,y(0)} denotes the set of initial to make it work in the presence of noise pulses. Denote by

conditions and d(t) = [d1(t),do(t)]" the pulse location function
i 0 if &(t)=0
p(Y(t)|Vo. 0. p) =I};[lp(Y(k)ly(k—1)7---,y(1),yo,07p) d;(t) :{ i e ()20 0 =02
= (2m)"{det[p]} ~*/*x and by d(t) = [di(t),d2(t)]" — the output of the outlier

detector (which will be described later)

x exp {—% S 1) — 210 ||i1}
k=1

denotes the so-called conditional likelihood function.eTh _ . - _
resulting conditional maximum likelihood (CML) estimasor T0 Make parameter estimates insensitive to noise pulses,

can be evaluated iteratively using the following relatips €stimation of model parameters is stopped each time when
[14] detection alarm is raised, i.e., whelit) # 0. Estimation is

resumed once the reconstruction of the questioned fragisient

dj(t) =

{ 0 if noise pulse not detected =12

1 if noise pulse detected

’ -1 T S :
. . finished (using interpolated samples in place of the coedpt
i (t) = {Z B(k) [p; (1) i’T(k?)} x ones).
k=1
t
X { (k) [pr ()" y(k)} D. Fair Comparison of VAR and AR Models
k:tl Since the purpose of this paper is to compare detection/re-
. 1 T . construction results based on vector signal modeling with
P () = ?; [y (k) = @7 (K)07. (1)] those obtained using scalar modeling, one must be sure
=1 . . T that, under time-invariant conditions, the correspondirg-
x [Y(k?) - (k) i+1(ﬁ)] tor/scalar signal identification algorithms have the saste e
KN s X Wi 1 X mation capabilities — otherwise one would compare “apples
0°(t) = iliglo 0;t), p°(t) = iliglo pi(t)- with oranges” [17].

Kashyap and Rao [14] have proved that in the special casd‘S @ measure of the algorithm’s estimation capability one
where all channels share the same regression vector (wH@7 @dopt the variance of the excess prediction error. @ensi
is the situation considered here), the CML estima®@rg) & stationary VAR signal governed by (2). Note that the one-

and p* (t) coincide with the LS (least squares) estima@j‘s) step-ahead prediction error yielded by the EWLS trackej (11

and p(t) obtained from (5) after setting = 1 — see Theorem Can be written down in the form

6a.l in [14]_. This is an intrigging result siqce,_accordim;g t ei(t+ 1[t) = m;(t+ 1t) +ny(t), j=1,2

(8), the estimatol,(t) is obtained by considering only the

j-th equation in (3) without reference to the other equatiowhere

The collection of such “decoupled” estimators yields thelCM ~
When process coefficients are time-varying, they can Benotes the so-called excess prediction error, i.e., tispo-

tracked using the finite-memory variant of the CML estimatopent of the prediction error which can be solely attributed t
obtained by maximizing the following exponentially weight parameter estimation errors.

likelihood function When the parameter tracking algorithm has a “sufficiently
t - long” estimation memory, the variance of the excess priegtict
H p(y(F)ly(k —1),...,¥(1),,0, /0)]A error can be approximately evaluated using the averaging
k=1 technique — since variations of the parameter estimatimrser
= (27) 7" {det[p]} T®/2x 6,(t)— 6, are in the case considered much slower than varia-
1 tions of the components of the regression VegQr), it holds
X exp {—5 STNE |y (k) - (k)6 |i1} . that 12 (¢ + 1]¢) = [0, (t) - 6;]" @t + D)@ (¢ + 1) [6;(t) —
k=1 0;] where(-) denotes local time averaging. This leads to the

Since the equivalence proof given in [14] can be easily efallowing approximation
tended to such exponentially weighted conditional maximum 9 N I T A
likelihood (EWCML) estimators, the EWLS estimators (8) and Elj(t +1)] = E {[ej(t) — 6] ®0[6;(t) — Oj]}

(9) can be also regarded as EWCML estimators. —tr {Cov[gj (t)]@o}
C. Estimation in the Presence of Outliers where ®, = E[p(t)¢ " (t)]. Furthermore, since it holds that
. . 17
The estimates EWLS were obtained under the assumpt!on]
_that 6(_t) = 0, i.e., that th_e measurt_aq s_ignal _is free of lim cov[éj(t)] ~ 1= A !
impulsive disturbances. A simple modification will be used t—o0 1+X77


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

A\ MOST

the steady state value &f[n?(t + 1|t)] can be expressed in I1l. DETECTION OF NOISE PULSES AND SIGNAL

the form INTERPOLATION
2r(1 — A\ . i
lim E[n?(t +1)] = 7( ) ? (14) A. State space problem formulation
tmroe L+A We will start from solving a simpler problem of recovering

In order to obtain the analogous formula in the case whete b@n isolated block ofmn irrevocably distorted samples of a
audio channels are modeled separately, suppose tftatand stationary AR process governed by (2). The block, which
so(t) are stationary AR signals governed by starts at the instanty + 1 and ends at the instany + m
(e, d(to+1) =...=d(to+m) = 1, wherel = [1,1]7), is
preceded and succeeded by undistorted samplesi(it¢.—= 0

for t < to andt > ty + m). We will assume that the
location of the sequence of noise pulses is known exacty; [i.

sj(t) = Z bjisj(t — 1) +mn;(t)

— T _ _ P S

= (0B; +n;(8), j=1,2 (15) d(t) = d(t)]. We will also assume that noise puls&g,+1),
where83; = [bj1,...,b;,]T denotes the vector of AR coeffi- - - -»0(to +m) can be modeled as a sequence of mutually
cients andu;(t) = [s;(t — 1),...,s;(t — r)]T denotes the uncorrelated Gaussian variables, independertugf)}, with

corresponding regression vector. Note that the VAR modg&lOWn covariance matrices
(2) r_educes plown to (15) if all off-diagonal elements of the A(t) = cov[d(t)], to+1<t < to+m.
matrices A;,i = 1,...,r, are equal to zero. Suppose that
the parameter vectqs; is estimated/tracked using the scalarhe solution, based on Kalman filtering [19], will be a stagti
version of the EWLS algorithm point for derivation of a more realistic algorithm combigin
. adaptive detection of arbitrarily shaped noise pulses WA
3.(1) — : —k [, 2 del based signal interpolation.
Bj(t) = argmin Y A7 [y; (k) — ) (1)B 16) MO : _ _
(1) & B ; / [ i) 5 () } (16) To design Kalman filter we need a state space equivalent of
) the input-output description (1)-(2). Lgt= 2r 4+ m. Define
yvher_e_)\j,lo <A < 1, denotes _forgettlng con§tant useq fofhe 2¢ x 1 state vectorx, (t) = [sT(t), ..., sT(t — g+ 1)]T
identification of thej-th track. Using the averaging techniquey,aqe up of the; most recent signal samples.
one can show that The overdetermined state space model of (1)-(2) can be
written down in the augmented companion form [to describe
(1)-(2), it is sufficient to sety = r; the adopted higher-

Bt + 10)] = tr [cov[B; (0] 9]

lim cov[ﬁj(t)] ~ —Aj ?‘I,__1 prder (nqn-minimal) model is needed to solve the signal
t—o0 1+ J interpolation problem].
where ®; = Elg; ()] (¢)]. xq(t+ 1) = Agxq(t) +Con(t +1)
This leads to the following formula y(t) = C;qu(t) () (20)
. 2 ~ T(l — )‘J) 2
Jim Eln;(t+1]t)] = T, o (17) where
Ay Ay A, O O O
which should be compared with (14). Requiring that the I O O O O O
variance of the excess prediction errors should be in both A-| O 1 O O O O
cases the same, one arrives at the following condition of “fa 1
comparison” : E :
O O O O ... 1 O

21-))  1-X a8 - |
T+A 1+ is the2q x 2¢ state transition m.atrlx ang, =[L,0,...,0]"
denotes the2q x 2 output matrix, andO = O; andI = I,
Since, under normal operating conditions, the forgettiog-c denote2 x 2 null and identity matrices, respectively.
stants\ and\; are close to one, i.el,+ A =1+); =2,the  Based on (20) and on the available prior knowledge, the

condition (18) is approximately equivalent to Kalman filter (KF) recursions can be written down as follows
[(00) = 21, (0c0 19
(o) £ 21;(ce) (19) Ry (tlt — 1) = A%, (t — 1]t — 1)

wherel(co) = 1/(1 — A) andl;(c0) = 1/(1 — A;) denote P,(tt—1) = AP, (t — 1|t — 1)A;f +quCqT

the steady state values of the effective memory spans of the

_ _ T3 _
VAR and AR trackers, respectively. Note that since in the e(t) =y(t) —CgX,(tft — 1)
t) =C Py (t|t — 1)Cq + A(t)
2r per one audio track, i.e., it is two times larger than the L,(t) =P, (t|t — 1)CqS‘1(t)

analogous quantity in the scalar case, under the conditidn (
the average effective number of samples used to estimate one
model coefficient is in both cases the same.

tlt) = R4(t|t — 1) + Ly (t)e(t)

)
)
)
)
)
)
tlt) = Py(t|t — 1) — Ly(t)S(t)Ly (t).  (21)

(

vector case the number of estimated coefficients is equal to S(
(

q(|

(|

X
P,
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Since we have assumed tt#t) = 0 for t < ¢y, the algorithm
should be started at the instamgt+ 1, with initial conditions
Xq(tolto) = [y (to), .-,y " (to — g + D], Py(tolto) = O,
and stopped at the instatyf + m + r, after reading- undis-

wheree(t|ty) denotes thét —t,)-step-ahead signal prediction
error andX. (¢|ty) denotes the corresponding error covariance
matrix. Both quantities can be easily computed using the
Kalman filtering algorithm (21). In order to do this, one shibu

turbed signal samples at the end of the corrupted fragméet. Betq = 2r + my,., and enforce

filtered state vector at the termination potgt+m +r has the
formX,(to+m+rlto+m+r) = [y(to+m+r),...,y(to+m+
1),8(to+m),...,8(to+1), y(to),...,y(to —r+1)]T where

A(t)[g H v o0, for t>1t).  (26)

S(to +1),...,8(to +-m) is the block of interpolated samples.The latter condition means that the sampiés, + 1),y (to +
Since, in the case considered, the signal estimates yieldgd .. should be regarded as corrupted with infinite-variance
by the Kalman algorithm do not depend on measurememigise and — as such — completely eliminated from the estima-

collected at instant$y + m + r + 1,0 + m + r + 2, etc.,

there is no point in continuing operation of the Kalman filteg—1(t) —=

after reaching the pointy + m + r.

B. Signal Prediction and Detection of Noise Pulses

Similar to [6], our pulse detection scheme will be based on

monitoring signal prediction errors. In the univariate (rop
case considered in [6], where the signal is governed by

s(t) = Z ais(t — i) +n(t), var[n(t)] =p

~

detection alarm is raised at the instagt-1 (i.e.,d(to+1) is set

tion process. It is easy to check that in the case considered
O, which results inX,(t|[t) = X, (¢t — 1),
P,(tlt) = Py(t|t — 1) for all t > t,. Under such conditions
Kalman filter works as a multi-step-ahead predictor yieddin
e(t|to) = e(t) and

3. (tlto) = covle(t)] = Co Py (t|t — 1)C,
_ { o2 (t)  o12(t) ] _ s,

ai2(t)  o3(t)

Unfortunately, the solution presented above, does notvallo
one to differentiate between audio channels (both tracks ar
analyzed jointly) and for this reason it is not suitable fair o

purposes. We will replace it with the following decoupled

(27)

to 1) if the magnitude of the one-step-ahead signal prexdfictigecision rule

errore(tg + 1[to) = y(to + 1) — T (to + 1)0, wherep(t) =
[y(t —1),...,y(t — )" and@ = [ay,...,a,]T, exceedsu
times its standard deviation

le(to + 1[to)| > poe(to + 1[to) (22)

wherec?(to+1Jty) = p andp is a constant multiplier, usually
chosen in the range [3/5]

The test is then extended to multi-step-ahead prediction

errors. Detection alarm is terminated at the instantty +m

if » consecutive prediction errors are sufficiently small, nigme

if
le(tlto)] < poc(tlto)

t=to+m+1,....00+m+r (23)

or if t — 2o reaches its maximum allowable valve,,.,. The
output of the outlier detector is in this case equaldf +

~ ~

lej (D] < po;(t)

~ 0 if .
LO=11 il ety - I=12 @
and more selective noise covariance scheduling
it dy(t) =da(t) =0
it dy(t) =0Ada(t) =1
Alt) = = (29)

2 O OO0 =R ©O OO

O O OO0 oo

vy — o0.

It is straightforward to check that under (29) the correstiog
values ofS~1(¢) are given by

1)=...=d{to+m)=1,dto+m+1)=...=d(to+m+
r=0 _ _ _ _ S i d() =da(t) =0
The detection technique briefly summarized above can be 1 0 N

extended to the multivariable case. The detection triggeri { "fét) 0 } if di(t)=0Ada(t) =1
condition (22) has the following multivariate equivalent S™(t) = 0 0

ET(tO T 1|t0)25_1(ﬁ0 + 1|ﬁ0)€(t0 T 1|t0) > u2 (24) |: 0 021(t) :| if dl(ﬁ) =1A Q(t) =0

2 ~ o~

whereX. (t, + 1|to) = p denotes the covariance matrix of the if  di(t) =da(t) =1
one-step-ahead prediction error. The stopping condit&®) ( (30)

can be reformulated in an analogous way

et (tlto) S (tto)e(tlto) < 4®

t=to+m+1,...tg+m+r (25)

IWhen 1 is set to 3, condition (22) is usually referred to as “3-sigma

outlier detection rule.

allowing one to: accept both componentsyaft) = [y1(?),
y2(t)]" if both channels are regarded as outlier-frég({) =
dy(t) = 0], rejectyy(t) if only the second channel is corrupted
[di(t) = 0Ada(t) = 1], rejecty: (t) if only the first channel is
corrupted {l(t) = 1 A da(t) = 0], or reject both components
of y(¢) if both channels are corrupted;[(t) = d2(t) = 1].
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C. Adaptive Detection and Interpolation

The adaptive version of the detection/interpolation proce
dure described above can be obtained by combining the KF
algorithm (21) with the EWLS algorithm (11) - (13), i.e., by
replacing the true model parameté?sand p, which were
previously assumed to be constant and known, with their most
recent estimate®(¢) and p(¢), respectively. According to
[13], the AR-model based reconstruction of samples called
in question by the outlier detector can be carried out indepe
dently — without any information loss — for each local anelys
frame starting and ending withundistorted samplesg(¢). For
this reason we will focus our attention on a single detection
episode which starts when at least one of two predictiorrgrro
evaluated for a stereo signal takes an excessive value naisd e
when r consecutive prediction errors take for both channels
sufficiently small values.

Suppose that the outlier detector is triggered at the ihstan
to + 1, i.e.,

e (0 + 1fto)] = lys(to + 1) — " (to + 1)8;(to)| > 17; (to)
for j =1 and/or 2. (31)

Once this happens, the parameter tracking procedure is tem-
porarily stopped, and the KF-based detection procedure, de
scribed earlier, is started. However, we will introduce an
important modification — the fixed-order Kalman filter will
be replaced with the variable-order one. Such modificaton i
possible due to the special structure of the matridgsC, and

P, (to|to) incorporated in (21). Taking advantage of this struc-
ture, one can show that the order of the Kalman filter (21) can
be — without affecting estimation results — gradually irased,
starting fromr + 1, until the stopping condition is met. The
variable-order Kalman filter offers significant computatb
savings over its fixed-ordel; & gmax = 2r + Mmax) VErsion.

D. Algorithm

Denote by®,.(t) = [6:(t)|6,(t)] the 2r x 2 matrix made
up of the estimated process coefficients, and by

P~ _ 01(t Og(t) :|
O, = , >

(0= o 20
— the analogous matrix extended with zeros. Denot&by
and X(® the vectors made up of the first column and the
second column of the matriX, respectively. Denote b (1-2)
the matrix made up of the first two columns Xf Finally, let
q(t) = r+t—to. The adaptive algorithm which combines (21

(Lt — 1) = O, (to)Rgy—1 (t — 1]t — 1)
e(t) = y(t) = y(tlt — 1) = [ex(t), e2(t)]"
;(q(t) (t|7f -1)= [ )A{q(t)irl(gtﬁz _ 1) ]
Hy()-1(t) = Pygoy -1 (t = 1t = 1)Ogqr) 1 (t0)
B(t) = O )1 (to)Hyry—1 () + plto)
_ [ ot (t) 0122(15) }
o12(t)  03(t)

P,y (tlt —1) =

Hi)—1 (2) ]

{ =(t)
Hy)_1(t) Py (t—1t—1)

Outlier detection step

S [0 e Spoyt)
dﬂ(”{l it Jeg(0)] > poy(t) * 9= 2

Measurement update stepX to + 1)

Caselifcﬁ():c@()zo or t > to+ Mmax then

() =PL - 1)= 71 (1)
q@) <t|t> = Ry(0) (1t — 1) + Ly (t)e(?)
Py (tlt) =Py (¢t — 1)

— Ly () B(H) Ly (1)

Case 21if A( ) =0 and Jg(t) =1 then
Ty () = ( Pyt = 1)
Xq(t) (t]t) = q(t)(t|t = 1)+ 1w (e (t)
Py (t]t) = Py (2]t — 1)

— 7 ()g00) (g (1)
Case 3if A()_l and dy(t) = 0 then
Loy (1) = ( 5 Pyt —1)
q(t (t|t) q(t (t|t 1)+ lq(t)(t)eg(t)

Py (tlt) = Py (¢t — 1)
= 03 ()0 (D)gqey (2)

Case 4 if dl()fd()flthen

Xg(t) () = Xy (¢t — 1)
Py (tlt) =Py (tlt — 1)

F Comparison with other approaches

with (28)-(29) can be summarized as follows:

Initialization

X, (tolto) = [y (to),
P,.(t0|ﬁ0) =0,

Time update stept & to + 1)

oyt —r+ )T

Apart from vector processing, which replaced scalar pro-
cessing, the main difference between the approach sumenariz
above and that described earlier [11] lies in the way the
multi-step-ahead signal prediction is carried out. Unltke
open-loop prediction scheme that was used in [11], signal
predictions yielded by the Kalman filter algorithm depend no
only on samples collected prior to the instagpt+ 1, but also
on samples that were provisionally accepted afterwardsh su
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predictions can be called decision-feedback since thegmtkp

on detection decisions made earlier. It was observed tiat th 0.2F .
approach based on open-loop prediction shows tendency to < OW\M
raise too short detection alarms, i.e., alarms that end well * _;,|@ ]
before the entire pulse waveform is complete. Fig. 3f shows
a typical open-loop prediction based detection scenanmeS s 1r b [ 1 1
0
the primary detection alarm, raised at the beginning of the 0.2f ]
noise pulse, is terminated too soon, it causes acceptance of T OMM
corrupted signal samples. This, in turn, evokes the seegnda -0.2t ¢ :
detection alarm, triggered when outlier detection is restim é; 1r q — 1
after the break. As a result, the reconstructed signal ay. =~ 0
is heavily (and audibly) distorted. = %3 1
The results improve considerably if the decision-feedback (S ng

approach is used, since samples provisionally accepted in
the middle of detection alarms may significantly decrease % é
the prediction error variance, which increases sengitioit 0.2
the outlier detector. Therefore detection alarms raisedhky 0
scheme based on decision-feedback predictions are usually <_;,l g

1

0

2

0

longer than those yielded by the open-loop scheme — see Figs. =

3h and 3i. -2
Unlike the prediction-based approaches, the double thresh ~_ 0.2f ‘ ‘ ‘ ‘ ]

old approach shows tendency to produce overly long detectio g MM

alarms. It is not difficult to explain this effect. Supposatth -0.2t ;

the pulse waveform starts at the instagt+ 1 and ends at

the instantty + ko + 1. Note that, even though the sample

to + ko + 1) is outlier-free, the corresponding value of the.. . .
y 0 + Ko + ) . . ponding ?ﬁg. 3: Comparison of three detection schemes. The corre-
residual error usually still remains large as it is evalddtased : ] o .
onding plots show: clean audio signal (a), exact location

. . . S
onr_precedmg S|gnal sa_mples, aF least some of which are C%‘? the inserted noise pulse (b), corrupted audio signal (c),
taminated by outliers. It is not until the samplgo+ko+r+1) . .
. . : detection alarm yielded by the double-threshold approach
is reached, that residual errors are entirely unaffectethby . . .

. d). and the corresponding signal reconstruction (e), dietec
detected noise pulse. As a result, when the adopted orde : o

alarms yielded by the open-loop prediction approach (f) and

autoregression is larger (> 10 is a recommended ChOicethe corresponding signal reconstruction (g), and detectio
under 44.1 and 48 kHz sampling), the corresponding detectio b 9 sl 9.

" » __alarm yielded by the decision-feedback prediction apgroac
alarms are usually much longer than the “ground truth on?ﬁ) angthe corr?a/sponding signal reconstrrl)Jction () P
— see Figs. 3d and 3e. '

The common limitation of all schemes compared above
is the lack of precision in determining the end points of
detection alarms. This drawback, caused by the fact thedtimation memory of the EWLS tracker, allowing the outlier
detection decisions are based on the results of forward-timetector to react faster to sudden changespinHowever,
(i.e., unidirectional) signal analysis, can be allevidtganeans even though application of the modified covariance estimato

50 100 150 200 250 300
t

of bidirectional processing — see Section IV D. (32) yields better detection results, signal interpolatis
consistently better when the original EWLS estimator (9) is
IV. |MPLEMENTATION ISSUES used. For this reason the best results are obtained wherithe K

A. Alternative Noise Covariance Estimation Scheme algorithm is run twice: first to det_ect noise pul_ses, usirg),3
and second — to reconstruct the irrevocably distorted sssnpl
When the EWLS algorithm (11) - (13) is used for idenysjng (9).

tification of the VAR model (4), bothd(t) and p(t) are

tracked with the same speed/accuracy, determined by the

forgetting constant\. Since experiments, incorporating real

audio signals, show that the coefficients of the covariange Elimination of Channel Offsets

matrix p(t) often vary faster than autoregressive coefficients

6(t), for outlier detection purposes it may be beneficial to Adopting the VAR model (2), one implicitly assumes that

replace (9) with the following exponentially weighted estite the modeled signal is zero-meaR(s(t)] = 0. Since for a
N N typical stereo audio recording such an assumption is nat,val
pt) = Xop(t — 1) + (1= NoJe(tlt = e (¢t —=1)  (32) e problem of non-zero channel offsets should be solved in

where \p, 0 < )¢ < 1, is a forgetting constant differentSOme way.

from A. When )y < A (which is recommended), the effective The direct solution is to incorporate offsets into the VAR

estimation memory of the algorithm (32) is smaller thamodel, i.e., to use the following signal description in laxf
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(2 an entirely new sound starts to build up, all causal preaticti
r based detection schemes are prone to generate false dietecti
s(t) = ZAiS(t — i)+ +n(t) (33) alarms, calling in question uncorrupted signal sampleplsim
im1 because they do not match the signal past. Since such samples
are consistent with the signal “future”, rather than itssgia
‘the number of false alarms can be significantly reduced
if results of forward-time detection are combined with the

where~y = [y1,72]", and~;, 72 denote unknown constants
Since after adopting; = [o,...,aj,,v;]" and o(t) =

Ty _ T+ _ T ] L
ly (t—1),....y" (t—r), 1] the shorthand signal deSCr'pt'onanalogous results of backward-time detection. The lather c

(8) remains unchanged, identif_ication of ihe bias-cordact%e obtained by means of processing audio signal, using the
ZAR r%o%el (3?) cag bet:andled nan exat<r:]tly the_ s;ilme Véay 3lman filtering algorithm, backward in time (provided, of
escribed earlier. For e same reason e varable-orier g, s that the entire recording is available). Kalmarfilt

algorlthm_does not _need any mod|f|cat|ons._ applied to time-reversed data will be further referred to as
The indirect solution to the offset problem is to remove NON ckward Kalman filter

zero signal means prior 10 ‘z‘e\pplym.g tt\e deteqtlonllntas ; . The set of local, case-dependent fusion rules that can be
procedure. Such a signal “centering” operation can beeasil

realized by means of passing the siggél) through a high- used to combine forwgfrd and bgckward detection alarms,
pass filterH(g—1) of the form denoted respectively by; () and d;(t), was proposed and

experimentally verified in [11]. First, the beginning of bac

Hia-1) = c(1—q7h forward/backward detection alarm is shifted back by a small
(@)= 1—cq? fixed number of sampleAt. Then such extended alarms are

wherec, 0 < ¢ < 1 denotes a bandwidth-controlling constan?ombmed in a way that depends on their mutual configuration

which should be sufficiently close to 1. The advantage of thcc‘e"lllecj a detection pattern. For example, when forward and

- . . o backward detection alarms in channglform solid blocks
indirect solution, compared to the direct one, is its gneatﬁ1at at least partially overlap (which is the most frequent
flexibility due to the fact that the constanisand ¢ can be X y P que

chosen independently of each other (when the extended V’Eﬁcountered detection pattern)
model (33) is used, the t_rgcklng rate, determined\bys the Jf(ﬁ) 1 for te [tf,tf]
same for all model coefficients). J 907

YA b 1b
di(t)=1 for te [ﬁ,tj]

C. Closing Detection Gaps [ﬁf_ ﬁf_] N[ g] £0
237

One of the consequences of adopting the decentralized S+
detection rule (28), instead of (25), is that detectionrakar the best results can be obtained using the “front edge / front
may not form solid blocks of “ones” preceded and succeededge” fusion rule. According to this rule, the combined ilar

by at leastr “zeros”. While detection alarms raised foris started attheinstatgi corresponding to the front edge of the

unipolar noise pulses usually have this property, for &polt,nyard alarm, and terminated at the insta_gﬁt:orresponding

pulses, or pulses of even more complicated shapes, it of{gNhe front edge of the backward alarm”(which, after time
happens that the outlier detector accepts a few sample®tbcaayarsal becomes its back edge)

in the transition zone between the positive and negativegpea

of the click waveform — even though such measurements are jfb(t) =1 for te [tf,ﬁ].

not reliable. It was observed that such “accidental accegis! ! =+

of samples located in the middle of long-lasting artifacs ¢ Fusion rules applicable to other detection patterns canined
adversely affect reconstruction results. For this reagas i in [11].

recommended that all detection gaps of length smaller thanSuppose that the combined forward-backward detection
r are removed prior to reconstruction. We note that a similafarm starts at the instang + 1, ends at the instart + m,
technique was used in [12] to eliminate detection errorsedu and that it is preceded and succeeded by at leasidistorted

by “destructive interference”, occurring when some realdusamples:

errors take values close to zero in the middle of long noise

pulses. dPto+1)=1 or d’(to+1)=1
Of course, _each time_ when a detection alarm _is modified, E{b(to +m)=1 or Cgb(to +m)=1

the Kalman filter algorithm should be rerun to incorporate ~fb ~b

changes. dy () = dy"(t) = 0

te€fto—r+1,to)Ulto+m+1,to+m+r].

D. Bidirectional Processing Since the combined alarm differs from its forward/backward

So far we have assumed that the archive audio signalcesmponents, the samples scheduled for reconstructioridshou
analyzed sequentially, forward in time. In such a case a Eampe reestimated. In this case the Kalman filter algorithm is ru
is regarded as an outlier if it is “inconsistent” with thersdd in a non-adaptive mode, i.e., its operation is not contdolle
past, which is indicated by excessive values of predictidry the internal outlier detector — the aggregated detection
errors. When signal characteristics change abruptly,vehgn sequencedA{b(t) and E{b(t) are used instead.
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E. Model Stability Monitoring and Enforcement F. Numerical Safeguards

In majority of audio applications, including the adaptive When c?l(t) =0 and/orcfg(t) = 0, the applied covariance
detection/reconstruction problem considered in this papecheduling (30) puts Kalman filter in a difficult numerical
stability of the signal model must be guaranteed to maktuation. For example, whe, (t) = d(t) = 0 (Case 1),
the model-based analysis well-posed. The VAR model (2) tise measurement update step should set the wpperblock

asymptotically stable iff all zeros;;,i = 1,...,2r, of the of the Kalman gain matris, ., (¢) to the identity matrix.
characteristic polynomial This in turn should result in setting the first two elementthef
r vectorx, 1+, (t[t) to y1(t) andyz(t), respectively, and zero-
A(z7Y) = det ll — Z Aizi] ing the2 x 2 upper-left corner block of tha posteriorimatrix
i=1 P+, (t|t). Since the “theoreticala posteriori covariance
lie inside the unit circle in the complex plang;| < 1,i = Mmatrix (i.e., the one evaluated with infinite precision)rngthis

L 2r case singular, its computed version — due to numerical rror

Unfortunately, when true signal parametérs are replaced — May easily lose nonnegative definiteness, causing erratic
with their EWLS estimatesgi(ﬁ), the resulting VAR model behavior of Kalman filter afterwards. Similar problems aris
is not guaranteed to be stable. For this reason, wheneveWhend:(t) = 0Ada(t) = 1 (Case 2) oddy(t) = 1Ada(t) =0
detection alarm is raised, the model is checked for stgbilifCase 3). The ill-conditioning problem pointed out above ca
If stability conditions are not met, model coefficients arB€ solved using square-root filtering [18] but, in the specifi
reestimated using the stability-preserving Whittle-Wiggg  application considered in this paper, a much simpler round-
Robinson (WWR) algorithm (the multivariate extension a thOff technique proved to guarantee numerical robustness —
Levinson-Durbin algorithm) — for a detailed descriptiortinis ~ after each cycle of computations (performed in MATLAB) the
algorithm and discussion of its properties see Complemdggults were rounded to the 12-th decimal place. The direct
C8.6 in [20]. The localized version of the WWR algorithnfonsequence of rounding-off is that all “almost zero” and

1

solves forKl(t), L ,Ar(t) and p(t) the set of Yule-Walker “almost one” elements of the computed matrices/vectors are
type equations of the form replaced with zeros and ones, respectively. This allowstone
~ —~ ~ R avoid numerical problems while preserving the variablgeor
L —A1(), ... — A R() = [p(1), O,...,0] (34 grycture of the Kalman filtering algorithm.
where O denotes the x 2 null matrix,
Ro(t) Ri(t) ... R,(t) V. EXPERIMENTAL RESULTS
N ﬁT(t) R () : To evaluate the proposed approach, we used 20 clean audio
R(t) = ! 0 ' recordings, 10 containing classical music and 10 contginin
: R, (t) jazz music (5 vocal pieces and 5 purely instrumental ones),
RT(t) ... Ro(t) sampled at the rate of 48 kHz with 16-bit resolution, and con-

I _ taminated with real click waveforms extracted from sileattp
andRy(t), k = 0,...,r, denote local estimates of the autoyt olg gramophone recordings. Our repository of clicks was
covariance matriceRy, = E[y(t)y™ (t — k)] made up of 1003 pairs of click waveforms (found in the left

R 1 Nkt and right channel, respectively). Clean recordings coetai
Ry (t) = N Z y(t =)y (t —i— k). (35) from 25 to 33 seconds of audio material. Prior to adding
i=0 noise pulses, all audio signals were scaled so as to make thei
To comply with memory settings of the EWLS algorithnenergy in the corrupted part identical. The 20 second long

(7), the value ofN is set to the equivalent widthk(t) = click template, which was added to clean audio (the same for
(1+X)/(1—X) of the exponential window [different from its all recordings), consisted of 3200 pairs of equally spacssen
effective widthi(¢)] [17]. pulses picked at random from the click database: 807 pulses

The important property of the WWR algorithm is thecorrupting the left channel only, 800 pulses corruptingrtpbt
guaranteed stability of the resultant VAR model providegt thchannel only, and 1593 pulses corrupting both channels. The
the matrixR(t) is positive definite (which is always the casdotal number of corrupted samples was equal to 44013, which
when the biased estimates (35) are used). constitutes 2,% of all samples in the analyzed fragment.

It should be stressed that the WWR algorithm is a “res- Performance evaluation was made for 4 unidirec-
cue” estimation procedure, usedly when the EWLS-based tional/bidirectional approaches: the scalar doublesihoil
model is not stable at the moment of triggering detectidmased approach (A), the scalar open-loop prediction based
alarm (which does not happen frequently). If the WWRpproach (B8*), the scalar decision-feedback prediction
algorithm is used permanently, i.e., instead of the EWLSased approach (Cf), and the vector decision-feedback
algorithm, the detection/reconstruction results detatdue prediction based approach proposed in this papeb{p/
to evidently worse predictive capabilities of the corresgiag All compared detection/reconstruction algorithms in@rp
VAR models. This seems to be the price paid for the guararated AR/VAR models of order = 10. For the residual error
teed model stability. On the other hand, if stability monito based double-threshold approachAA/ the default values
ing/enforcement is skipped, signal reconstruction erray of internal parameters recommended in [12] were adopted.
occasionally become very large. For the prediction error based approache8B/C/C* and
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D/D*, signal identification was carried out using the EWL! o.

2 T T T T T
algorithm equipped with forgetting factors: = 0.999 — in g OWW
the case of vector processing, and [in agreement with (1€ ;83% 1 1 1 1 :

A = X = 0.998 — in the case of scalar processing. Th 3 of " o e s N A
-0.2 L L L L I

detection multiplier was set tqu = 4.5. The bandwidth
coefficient of the high-pass filter was set to = 0.995, S
and the forgetting constant used for covariance updatirng —
Ao = 0.993. The alarm extension parameter was sehto= 2.
Our evaluation of audio reconstruction results was pe <oz w w w w w
formed using the Perceptual Evaluation of Audio Qualit = R i AR S VAt
(PEAQ) tool [21], [22]. PEAQ scores take negative values th < o2 ; ; ; ; ;
range from -4 (very annoying distortions) to O (impercegtib ~ * Y S N A e NIV
distortions). The PEAQ standard uses a number of psyct =
acoustical evaluation techniques which are combined te gi
a measure of the quality difference between the originglg. 4. Comparison of AR and VAR signal reconstructions.
audio signal and its processed version. Even though it waso top plots show a fragment of a stereo archive audio signal
introduced as an objective method to measure the qualitywith corrupted left track. Two middle plots show decisioris o
perceptual coders, without any reference to audio restorat the outlier detector. Two bottom plots show results of signa
we have found it useful for our purposes as it gives scorgsconstruction based on the scalar model (upper plot) and
that are well correlated with the results of time consumingector model (lower plot).
listening tests. We have found out experimentally that, in
the case of elimination of impulsive disturbances, the PEAQ
threshold above which signal distortions can be regarded sige modeling technique. The proposed approach combines
imperceptible is roughly equal to -0.1. Similarly, accoglto an exponentially weighted least squares model identitinati
our experience, the differences between two approaches thigorithm with variable-order Kalman filter, used to detactl
reach or exceed the level of 0.1 in terms of the associatéderpolate irrevocably distorted signal samples. It wWaswa
PEAQ scores, i.e.]PEAQ;, — PEAQ,| > 0.1, are usually that restoration results improve when both stereo chararels

audible. analyzed and processed jointly.
Tab. | summarizes performance statistics for the compared
approaches. Qualitative comparison of the results givaiain REFERENCES

| is presented in Tab. I, which shows the number of cas@$ s.v. vaseghi and P.J.W. Rayner, “Detection and supjassf impulsive
where a given approach obtained a better PEAQ score than jtgnoise in speech communication systemEE Proceedingsvol. 137, pp.
competitor. The number of “strong wins”, i.e., the number %5] 38-46, 1990.

1

[3]

- S.V. Vaseghi and R. Frayling-Cork, “Restoration of oldagophone
cases where the compared PEAQ scores differ by at least srecordings,”J. Audio Eng. Sogwvol. 40, pp. 791-801, 1992.
are shown in curly brackets.

M. Niedzwiecki and K. Cisowski, “Adaptive scheme foriralnation
. of broadband noise and impulsive disturbances from audimais,”

Thefr(_e are several COhCIU_SIOﬂS that can be drawn after Proc. Quatrozieme Colloqgue GRETSluan-les-Pins, France, pp. 519-

examining results presented in Tabs. | and I 522, 1993.

[4] S.J. Godsill and P.J.W. Rayner, “A Bayesian approacth&orestoration

. . of degraded audio signalslEEE Trans. Speech, Audio Processl. 3,
1) In almost all cases the vector decision-feedback predic- pp. 267278, 1995,

tion based approach yields better results than approactsss.J. Godsill and P.J.W. Rayner, “Statistical recorettom and analysis of
based on double thresholding and open-loop prediction autoregressive signa}ls in impulsive noise using the Gilabspter,”IEEE
— see A vs. D, B vs. DA* vs. D* and B* vs. D* in Tran;. Spe_ech,_ Audio Progessol._G, pp. 35_2—372, 1995. _ ‘
g : S : [6] M. Niedzwiecki and K. Cisowski, “Adaptive scheme foriralnation
Tab. Il. The performance gains are usually large. of broadband noise and impulsive disturbances from AR andlAR
2) In almost all cases the vector decision-feedback predic- signals,”IEEE Transactions on Signal Processingl. 44, pp. 528-537,

. . . 1996.
tion based approach ylelds better res?'ts than its Scafﬂr M. Niedzwiecki, “Identification of time-varying prosses in the presence
counterpart — see C vs. D afitf vs. D* in Tab. Il. The of measurement noise and outliersProc. 11th IFAC Symposium on

performance improvement is noticeable in abou3fF System IdentificatignFukuoka, Japan, pp. 1765-1770, 1997.
- l{ﬁbJ.S. Godsill and J.P.W. Raynemigital Audio Restoration Springer-
cases (usually those where local correlation between Verlag, 1998.

left and right audio tracks is strong — see Fig. 2). [9] S.V. Vaseghi,Advanced Signal Processing and Digital Noise Redugtion

3) All approaches benefit from bidirectional processing [IO]V\Q'GB(/:' 2008. G De Poli and G.A. Mian. “Restoration afiawd
* * « * . Canazza, G. De Poli, an A. Mian, “Restoration ofliaudocu-
see AvsA™, B VS'B ,Cvs.C*and DvsD" in T_ab'_ I_I' ments by means of extended Kalman filtdEEE Trans. Audio, Speech
The performance improvements are usually significant. Language Processvol. 18, pp. 1107-1115, 2010.

Random listening tests, performed on real archive audfd! M. Niedzwiecki and M. Ciotek, “Elimination of impulse disturbances
! from archive audio signals using bidirectional proces8itigEE Transac-

recordings, support these findings. tions on Audio, Speech and Language Processioly 21, pp. 1046—1059,
2013.
VI. CONCLUSION [12] P.A.A. Esquef, L.W.P. Biscainho, P.S.R Diniz, and FReeland, “A

Th bl f elimi . fi Isive di b f double-threshold-based approach to impulsive noise ftimten audio
e problem of elimination of impulsive disturbances from signals,” Proc. European Signal Process. Cqonfampere, Finland, pp.

stereo audio recordings was solved using the vector augseg  2041-2044, 2000.
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TABLE I: Comparison of the PEAQ scores obtained for 4 unidti@al/bidirectional approaches: the scalar doubleshold
based approach (Ar), the scalar open-loop prediction based approacB{B/the scalar decision-feedback prediction based
approach (GZ*), and the vector decision-feedback prediction based a@gprproposed in this paper (D). All results were
obtained for 20 artificially corrupted audio files: 10 wittassical music and 10 with jazz music. REF denotes the scaieeof
input (corrupted) recording. Interpretation of PEAQ scor@ = imperceptible (signal distortions),1 = perceptible but not
annoying,—2 = slightly annoying,—3 = annoying,—4 = very annoying.

classical music

input file unidirectional processing bidirectional processing
No. REF A B C D A* B* C* D*
1 -3.73 -3.01 | -3.88 | -0.45 | -0.42 -0.78 | -2.24 | -0.23 | -0.24
2 -3.78 || -0.68 | -3.76 | -0.25 | -0.24 || -0.43 | -1.00 | -0.09 | -0.08
3 -350 || -3.36 | -3.90 | -0.43 | -031 || -1.29 | -2.51 | -0.18 | -0.18
4 -3.72 || -231 | -3.88 | -0.59 | -0.40 || -1.33 | -2.48 | -0.25 | -0.20
5 -3.75 || -140 | -3.78 | -0.43 | -0.37 || -0.68 | -1.23 [ -0.23 | -0.18
6 -3.88 || -3.26 | -3.89 | -0.31| -030 || -142 | -3.30 | -0.14 | -0.12
7 -3.83 || -3.36 | -3.90 | -0.35| -0.33 || -1.36 | -3.45 | -0.18 | -0.15
8 -391 || -356 | -3.86 | -1.01 | -091 || -2.21 | -3.42 | -0.78 | -0.69
9 -390 || -3.56 | -3.90 | -0.88 | -0.85 || -1.87 | -3.59 | -0.70 | -0.67
10 | -3.83 || -3.33| -3.89| -0.35 | -0.50 [[ -1.07 | -2.61 | -0.19 | -0.27
jazz music

input file unidirectional processing bidirectional processing
No. REF A B C D A* B* C* D*

-3.81 || -2.06 | -3.78 | -0.81 | -0.72 || -0.95 | -2.20 | -0.53 | -0.41
-3.89 || -1.03 | -3.67 | -1.01 | -1.00 || -1.18 | -0.87 | -0.74 | -0.55
-3.73 || -0.48 | -3.15| -0.60 | -0.55 || -0.44 | -0.42 | -0.33 | -0.32
-3.52 || -2.00 | -3.68 | -2.27 | -2.30 || -1.42 | -1.82 | -1.39 | -1.13
-3.51 || -0.57 | -3.07 | -0.61 | -0.59 || -0.52 | -0.38 | -0.39 | -0.36
-3.60 || -1.37 | -3.49 | -1.10 | -1.08 || -0.99 | -1.17 | -0.77 | -0.76
-3.51 || -1.68 | -3.38 | -1.16 | -1.08 || -2.06 | -1.09 | -1.10 | -0.66
-3.37 || -0.93 | -2.87 | -0.71 | -0.53 || -1.22 | -0.61 | -0.64 | -0.46
-3.65 || -0.74 | -3.40 | -0.59 | -0.44 || -0.84 | -0.53 | -0.44 | -0.20
-3.81 || -1.77 | -3.63 | -0.75 | -0.55 || -2.29 | -0.99 | -0.66 | -0.34
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TABLE II: Direct comparison of different unidirectionaiftirectional approaches: the scalar double-thresholédapproach
(A/A¥), the scalar open-loop prediction based approacB(B/the scalar decision-feedback prediction based appr@ich),

and the vector decision-feedback prediction based appr@®*). The competing approaches are listed in the first column.
The remaining columns present the number of instances vehgireen approach earned a better PEAQ score than its coompetit
The number of “strong wins” is shown in curly brackets.

compared approacheg classical music azz music total

Avs. D 0{0} /10 {10 3{1}/ 7{ 6} 3 {1} /17{16}

Bvs. D 0 {0} /10 {10 0 {0} /10{10} 0 {0} /20 {20}

Cvs.D 1{1}7 9{3} | 1{0}/ 9{ 4} 2{1}718{ 7}

A* vs. D* 0{0} /10 {10 0 {0} /10 {10} 0 {0} /20 {20}

B* vs. D* 0 {0} /10{10 0{0}/10{ 9} 0 {0} /20{19}

C* vs.D* 2{0}/ 8{ 0} | 0{0}/10{ 6} 2 {0} /718{ 6}

Avs. A* 0 {0} /10 {10 5{5}/ 5{ 3} 5{5}/15{13}

B vs. B* 0{0} /10 {10 0 {0} /10 {10} 0 {0} /20 {20}

Cvs.C* 0 {0} /10 {10 0{0}/10{ 7} 0{0}/20{17}

D vs. D* 0 {0} /10{10 0{0}/10{ 9} 0 {0} /20 {19}
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