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Abstract—This paper presents a new approach to elimination
of impulsive disturbances from stereo audio recordings. The
proposed solution is based on vector autoregressive modeling
of audio signals. On-line tracking of signal model parameters is
performed using the exponentially weighted least squares algo-
rithm. Detection of noise pulses and model-based interpolation of
the irrevocably distorted samples is realized using an adaptive,
variable-order Kalman filter. The proposed approach is evaluated
on a set of clean audio signals contaminated with real click
waveforms extracted from old gramophone recordings.

Index Terms—Elimination of impulsive disturbances, vector
autoregressive models, adaptive Kalman filtering.

I. I NTRODUCTION

A RCHIVE audio files, such as old gramophone recordings,
are often degraded by impulsive disturbances. Clicks,

pops, ticks and record scratches are caused by aging and/or
mishandling of the surface of gramophone records, specks of
dust and dirt, faults in the record stamping process etc. In
the case of magnetic tape recordings, impulsive disturbances
can be usually attributed to transmission or equipment artifacts
(e.g. electric or magnetic pulses). Elimination of such distur-
bances from archive audio documents is an important element
of saving our cultural heritage.

Most of the known approaches to elimination of impulsive
disturbances from archive audio signals are based on adaptive
prediction – the autoregressive (AR) model of the analyzed
signal is continuously updated and used to predict consecutive
signal samples [1]–[10]. Whenever the absolute value of the
one-step-ahead prediction error becomes too large, namely
when it exceeds a prescribed multiple of its estimated standard
deviation, a “detection alarm” is raised, and the predicted sam-
ple is scheduled for reconstruction. The test is then extended
to multiple-step-ahead prediction errors – detection alarm is
terminated when a given number of samples in a row remain
sufficiently close to the predicted signal trajectory (or when
the length of detection alarm reaches its maximum allowable
value). As shown in [11], detection results can be further
improved if the results of forward-time detection are combined
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with the analogous results of backward-time detection. The
latter can be obtained by means of processing audio signal
backward in time, provided, of course, that the entire recording
is available. In addition to reducing the number and length
of false alarms, bidirectional processing allows one to carve
detection alarms more carefully (smaller number of overlooked
noise pulses, better front/end matching of noise pulses).

An alternative approach to detection of noise pulses, based
on double thresholding, was proposed in [12]. Unlike sequen-
tial prediction-based methods mentioned before, the double
threshold approach incorporates block processing. The signal
is divided into blocks (possibly overlapping), each of which is
analyzed separately. For each block the best-fitting AR signal
model is determined and used to compute the sequence of
residual errors. The detection procedure is two-step. The aim
of the first, prescreening step is to find the abnormally large
values of residual errors (attributed to the presence of noise
pulses). This is achieved by means of using an outlier detector
equipped with a relative high detection threshold. The purpose
of the second step is to precisely localize the beginning and
end points of each preliminary detection alarm found during
prescreening. Localization is performed using outlier detector
equipped with a small detection threshold.

Once the impulsive disturbance is localized, the corrupted
samples are reconstructed using the AR-model based projec-
tion technique [13] or its Bayesian extension known as Gibbs
sampling [4], [5].

Although two tracks of a stereophonic audio signal can
be split and processed separately, this is certainly not the
best approach to restoration of stereo recordings. We will
show that both detection and reconstruction (interpolation) of
irrevocably distorted samples can be performed more reliably
when two channels are analyzed jointly using the vector
autoregressive modeling technique. Fig. 1 compares one-step-
ahead prediction errors obtained – for a typical clean stereo
audio signal – using scalar and vector modeling, respectively.
In both cases model parameters were estimated using the
method of exponentially weighted least squares with forgetting
factors chosen so as to equalize estimation memory of the
compared approaches (for more details see Section 2.D). Note
that the joint left/right channel analysis allows one to model
audio signal more accurately – in the case considered the
variance of the prediction errors was reduced by the factor
of 1.7 for the left channel, and by the factor of 2.1 for the
right channel.

When it comes to signal restoration, more accurate modeling
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Fig. 1: Comparison of the one-step-ahead prediction errors
obtained – for a typical stereo audio signal (top plots in
each group) – using scalar signal modeling (middle plots in
each group) and vector signal modeling (bottom plots in each
group). The upper group of three plots corresponds to the
left stereo channel, and the lower group – to the right stereo
channel. Note the scale difference between top plots and lower
plots in each group.

has two potential benefits. First, since most of the existing
noise pulse detection procedures are based on adaptive thresh-
olding of signal prediction errors, vector processing makes
them more sensitive to abnormal signal patterns. Second,
more accurate models usually guarantee better interpolation of
irrevocably distorted samples called in question by the outlier
detector.

When the restored audio material originates from stereo
gramophone recordings, there is an additional incentive touse
the vector approach. In the case of archive stereo gramophone
recordings, the local groove damages or imperfections, causing
clicks, are often asymmetric, i.e., they are more strongly
emphasized on the left or right edge of the groove, or they
affect only one side of the groove. Since the typical stereo
recording/playback system is half vertical - half horizontal,
i.e., it preserves asymmetry mentioned above(see Fig. 2),
restoration can be performed more reliably when two channels
are analyzed jointly, simply because the uncorrupted material
in one channel may be helpful in detecting and interpolating
corrupted samples in the other channel.

II. SIGNAL IDENTIFICATION

The measured stereo audio signal will be denoted by
y(t) = [y1(t), y2(t)]

T, where t = . . . ,−1, 0, 1, . . ., denotes
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Fig. 2: Typical impulsive noise patterns encountered in archive
stereo gramophone recordings: impulsive disturbance corrupt-
ing only one of two stereo tracks (the upper two plots), and
impulsive disturbance corrupting both tracks (the lower two
plots). Broken vertical lines show the beginning and the end
of each noise pulse.

normalized (dimensionless) discrete time andy1(t)/y2(t) de-
notes the left/right audio track.

We will assume that the signaly(t) can be written down in
the form

y(t) = s(t) + δ(t) (1)

where s(t) = [s1(t), s2(t)]
T denotes the clean audio signal

and δ(t) = [δ1(t), δ2(t)]
T is a signal made up of sparsely

distributed noise pulses (such as clicks, pops and record
scratches). To keep the analysis simple, we will assume that
the measured signal is not contaminated with an additive wide-
band noise (the so-called surface noise), i.e., that impulsive
noise is the only disturbance that should be eliminated.

The clean audio signal will be modeled as a two-
dimensional vector autoregressive (VAR) process of orderr
[14], [15], [16]

s(t) =

r∑

i=1

Ais(t− i) + n(t) (2)
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where

Ai =

[
a11,i a12,i
a21,i a22,i

]
=

[
αT

1i

αT
2i

]
, i = 1, . . . , r

are the 2 × 2 matrices of AR coefficients and{n(t)},
n(t) = [n1(t), n2(t)]

T, denotes two-dimensional zero-mean
white noise with a covariance matrix

cov[n(t)] =

[
ρ21 ρ12
ρ12 ρ22

]
= ρ.

Denote byθj = [αT
j1, . . . ,α

T
jr]

T the vector of coefficients
characterizing thej-th channel, and byϕ(t) = [yT(t −
1), . . . ,yT(t−r)]T – the corresponding regression vector (the
same for both channels). Denote by0r the2r× 1 null vector,
and byOr and Ir – the 2r × 2r null and identity matrices,
respectively. Furthermore, let

Φ(t) =

[
ϕ(t) 0r

0r ϕ(t)

]
, θ =

[
θ1
θ2

]
.

Using these shorthands, in the absence of noise pulses the
model (2) can be rewritten in the form

y(t) = ΦT(t)θ + n(t). (3)

Finally, to account for nonstationarity of audio signals, the
following time-varying version of (3) will be used

y(t) = ΦT(t)θ(t) + n(t), cov[n(t)] = ρ(t) (4)

where θ(t) denotes the slowly time varying vector of au-
toregressive coefficients, andρ(t) is the time-variant noise
covariance matrix. Estimation (tracking) ofθ(t) will be carried
out using the method of exponentially weighted least squares
(EWLS), namely

θ̂(t) = argmin
θ

t∑

k=1

λt−k ‖ y(k) −ΦT(k)θ ‖2 (5)

whereλ, 0 < λ < 1, denotes the so-called forgetting constant
which decides upon the effective estimation memory of the
EWLS estimator, given by

l(t) =

t∑

k=1

λt−k =
1− λt

1− λ
. (6)

The value ofλ should be chosen so as to trade off the
bias and variance components of the mean-squared parameter
tracking errorE[‖ θ(t) − θ̂(t) ‖2]. Short-memory algorithms
are “fast” (yield small tracking bias) but “inaccurate” (yield
large tracking variance), whereas long-memory algorithmsare
“slow” but “accurate”. The best results are obtained if the
estimation memory of a tracking algorithm “matches” the
degree of nonstationarity of the identified process [17], [18].

Evaluation of (5) is straightforward and leads to

θ̂(t) =

[
t∑

k=1

λt−kΦ(k)ΦT(k)

]−1 [ t∑

k=1

λt−kΦ(k)y(k)

]
.

(7)

Due to the block-diagonal structure ofΦ(k), the estimator (7)
can be rewritten in a decomposed form as

θ̂j(t) =

[
t∑

k=1

λt−kϕ(k)ϕT(k)

]−1 [ t∑

k=1

λt−kϕ(k)yj(k)

]

j = 1, 2. (8)

A similar technique can be used to track the covariance matrix
of the forming noisen(t). The local estimate ofρ(t) can be
obtained from

ρ̂(t) =
R(t)

l(t)
(9)

where R(t) denotes the exponentially weighted sum of
“squared” residual errors

R(t) =
t∑

k=1

λt−k
[
y(k)−ΦT(k)θ̂(t)

]
×

×
[
y(k) −ΦT(k)θ̂(t)

]T
. (10)

A. Recursive Estimation Algorithms

Both θ̂(t) and ρ̂(t) can be computed recursively. The
recursive algorithm for computation of̂θj(t) has a well-known
form [17]

εj(t|t− 1) = yj(t)−ϕ
T(t)θ̂j(t− 1)

θ̂j(t) = θ̂j(t− 1) + k(t)εj(t|t− 1)

j = 1, 2

k(t) =
Q(t− 1)ϕ(t)

λ+ϕT(t)Q(t− 1)ϕ(t)

Q(t) =
1

λ

[
Ir − k(t)ϕT(t)

]
Q(t− 1). (11)

Note that the gain vectork(t) does not depend onj, i.e., it is
the same for both channels. Recursive computation ofρ̂(t) is
based on the following relationships

l(t) = λl(t− 1) + 1 (12)

R(t) = λR(t− 1) +
ε(t|t− 1)εT(t|t− 1)

λ+ϕT(t)Q(t− 1)ϕ(t)
(13)

whereε(t|t− 1) = [ε1(t|t− 1), ε2(t|t− 1)]T.

B. Relationship to Maximum Likelihood Estimation

Suppose that the identified process is stationary, i.e., that it
obeys (3). Under Gaussian assumptions the statistically effi-
cient estimators ofθ andρ, givenY(t) = {y(1), . . . ,y(t)},
can be obtained from

{θ∗(t),ρ∗(t)} = arg max
{θ,ρ}

p(Y(t)|Y0, θ,ρ)
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whereY0 = {y(1 − r), . . . ,y(0)} denotes the set of initial
conditions and

p(Y(t)|Y0, θ,ρ) =

t∏

k=1

p(y(k)|y(k − 1), . . . ,y(1),Y0, θ,ρ)

= (2π)−t{det[ρ]}−t/2×

× exp

{
−
1

2

t∑

k=1

‖ y(k) −ΦT(k)θ ‖2ρ−1

}

denotes the so-called conditional likelihood function. The
resulting conditional maximum likelihood (CML) estimators
can be evaluated iteratively using the following relationships
[14]

θ∗i+1(t) =

{
t∑

k=1

Φ(k) [ρ∗i (t)]
−1

ΦT(k)

}−1

×

×

{
t∑

k=1

Φ(k) [ρ∗i (t)]
−1

y(k)

}

ρ∗i+1(t) =
1

t

t∑

k=1

[
y(k) −ΦT(k)θ∗i+1(t)

]
×

×
[
y(k) −ΦT(k)θ∗i+1(t)

]T

θ∗(t) = lim
i→∞

θ∗i (t), ρ∗(t) = lim
i→∞

ρ∗i (t).

Kashyap and Rao [14] have proved that in the special case
where all channels share the same regression vector (which
is the situation considered here), the CML estimatorsθ∗(t)
andρ∗(t) coincide with the LS (least squares) estimatorsθ̂(t)
andρ̂(t) obtained from (5) after settingλ = 1 – see Theorem
6a.1 in [14]. This is an intriguing result since, according to
(8), the estimator̂θj(t) is obtained by considering only the
j-th equation in (3) without reference to the other equation.
The collection of such “decoupled” estimators yields the CML
estimator ofθ.

When process coefficients are time-varying, they can be
tracked using the finite-memory variant of the CML estimator,
obtained by maximizing the following exponentially weighted
likelihood function

t∏

k=1

[p(y(k)|y(k − 1), . . . ,y(1),Y0, θ,ρ)]
λt−k

= (2π)−l(t){det[ρ]}−l(t)/2×

× exp

{
−
1

2

t∑

k=1

λt−k ‖ y(k) −ΦT(k)θ ‖2ρ−1

}
.

Since the equivalence proof given in [14] can be easily ex-
tended to such exponentially weighted conditional maximum
likelihood (EWCML) estimators, the EWLS estimators (8) and
(9) can be also regarded as EWCML estimators.

C. Estimation in the Presence of Outliers

The estimates EWLS were obtained under the assumption
that δ(t) ≡ 0, i.e., that the measured signal is free of
impulsive disturbances. A simple modification will be used

to make it work in the presence of noise pulses. Denote by
d(t) = [d1(t), d2(t)]

T the pulse location function

dj(t) =

{
0 if δj(t) = 0
1 if δj(t) 6= 0

, j = 1, 2

and by d̂(t) = [d̂1(t), d̂2(t)]
T – the output of the outlier

detector (which will be described later)

d̂j(t) =

{
0 if noise pulse not detected
1 if noise pulse detected

, j = 1, 2.

To make parameter estimates insensitive to noise pulses,
estimation of model parameters is stopped each time when
detection alarm is raised, i.e., when̂d(t) 6= 0. Estimation is
resumed once the reconstruction of the questioned fragmentis
finished (using interpolated samples in place of the corrupted
ones).

D. Fair Comparison of VAR and AR Models

Since the purpose of this paper is to compare detection/re-
construction results based on vector signal modeling with
those obtained using scalar modeling, one must be sure
that, under time-invariant conditions, the correspondingvec-
tor/scalar signal identification algorithms have the same esti-
mation capabilities – otherwise one would compare “apples
with oranges” [17].

As a measure of the algorithm’s estimation capability one
can adopt the variance of the excess prediction error. Consider
a stationary VAR signal governed by (2). Note that the one-
step-ahead prediction error yielded by the EWLS tracker (11)
can be written down in the form

εj(t+ 1|t) = ηj(t+ 1|t) + nj(t), j = 1, 2

where

ηj(t+ 1|t) = ϕT(t+ 1)[θj − θ̂j(t)]

denotes the so-called excess prediction error, i.e., this compo-
nent of the prediction error which can be solely attributed to
parameter estimation errors.

When the parameter tracking algorithm has a “sufficiently
long” estimation memory, the variance of the excess prediction
error can be approximately evaluated using the averaging
technique – since variations of the parameter estimation errors
θ̂j(t)−θj are in the case considered much slower than varia-
tions of the components of the regression vectorϕ(t), it holds
that η2j (t+ 1|t) ∼= [θ̂j(t) − θj]

T ϕ(t+ 1)ϕT(t+ 1) [θ̂j(t) −

θj ] where(·) denotes local time averaging. This leads to the
following approximation

E[η2j (t+ 1|t)] ∼= E
{
[θ̂j(t)− θj ]

TΦ0[θ̂j(t)− θj]
}

= tr
[
cov[θ̂j(t)]Φ0

]

whereΦ0 = E[ϕ(t)ϕT(t)]. Furthermore, since it holds that
[17]

lim
t→∞

cov[θ̂j(t)] ∼=
1− λ

1 + λ
ρ2jΦ

−1
0
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the steady state value ofE[η2j (t + 1|t)] can be expressed in
the form

lim
t→∞

E[η2j (t+ 1|t)] ∼=
2r(1− λ)

1 + λ
ρ2j . (14)

In order to obtain the analogous formula in the case where both
audio channels are modeled separately, suppose thats1(t) and
s2(t) are stationary AR signals governed by

sj(t) =

r∑

i=1

bjisj(t− i) + nj(t)

= ψT
j (t)βj + nj(t), j = 1, 2 (15)

whereβj = [bj1, . . . , bjr]
T denotes the vector of AR coeffi-

cients andψj(t) = [sj(t − 1), . . . , sj(t − r)]T denotes the
corresponding regression vector. Note that the VAR model
(2) reduces down to (15) if all off-diagonal elements of the
matricesAi, i = 1, . . . , r, are equal to zero. Suppose that
the parameter vectorβj is estimated/tracked using the scalar
version of the EWLS algorithm

β̂j(t) = argmin
β

t∑

k=1

λt−k
j

[
yj(k)−ψ

T
j (t)β

]2
(16)

whereλj , 0 < λj < 1, denotes forgetting constant used for
identification of thej-th track. Using the averaging technique,
one can show that

E[η2j (t+ 1|t)] ∼= tr
[
cov[β̂j(t)]Ψj

]

lim
t→∞

cov[β̂j(t)] ∼=
1− λj

1 + λj
ρ2jΨ

−1
j

whereΨj = E[ψj(t)ψ
T
j (t)].

This leads to the following formula

lim
t→∞

E[η2j (t+ 1|t)] ∼=
r(1 − λj)

1 + λj
ρ2j (17)

which should be compared with (14). Requiring that the
variance of the excess prediction errors should be in both
cases the same, one arrives at the following condition of “fair
comparison”

2(1− λ)

1 + λ
=

1− λj

1 + λj
. (18)

Since, under normal operating conditions, the forgetting con-
stantsλ andλj are close to one, i.e.,1+λ ∼= 1+λj

∼= 2, the
condition (18) is approximately equivalent to

l(∞) ∼= 2lj(∞) (19)

where l(∞) = 1/(1 − λ) and lj(∞) = 1/(1 − λj) denote
the steady state values of the effective memory spans of the
VAR and AR trackers, respectively. Note that since in the
vector case the number of estimated coefficients is equal to
2r per one audio track, i.e., it is two times larger than the
analogous quantity in the scalar case, under the condition (19)
the average effective number of samples used to estimate one
model coefficient is in both cases the same.

III. D ETECTION OF NOISE PULSES AND SIGNAL

INTERPOLATION

A. State space problem formulation

We will start from solving a simpler problem of recovering
an isolated block ofm irrevocably distorted samples of a
stationary AR process governed by (2). The block, which
starts at the instantt0 + 1 and ends at the instantt0 + m
(i.e.,d(t0+1) = . . . = d(t0+m) = 1, where1 = [1, 1]T), is
preceded and succeeded by undistorted samples (i.e.,d(t) = 0

for t ≤ t0 and t > t0 + m). We will assume that the
location of the sequence of noise pulses is known exactly [i.e.,
d̂(t) ≡ d(t)]. We will also assume that noise pulsesδ(t0+1),
. . . , δ(t0 + m) can be modeled as a sequence of mutually
uncorrelated Gaussian variables, independent of{n(t)}, with
known covariance matrices

∆(t) = cov[δ(t)], t0 + 1 ≤ t ≤ t0 +m.

The solution, based on Kalman filtering [19], will be a starting
point for derivation of a more realistic algorithm combining
adaptive detection of arbitrarily shaped noise pulses withAR-
model based signal interpolation.

To design Kalman filter we need a state space equivalent of
the input-output description (1)-(2). Letq = 2r +m. Define
the 2q × 1 state vectorxq(t) = [sT(t), . . . , sT(t − q + 1)]T

made up of theq most recent signal samples.
The overdetermined state space model of (1)-(2) can be

written down in the augmented companion form [to describe
(1)-(2), it is sufficient to setq = r; the adopted higher-
order (non-minimal) model is needed to solve the signal
interpolation problem].

xq(t+ 1) =AAAqxq(t) + CCCqn(t+ 1)

y(t) = CCCT
q xq(t) + δ(t) (20)

where

AAAq =




A1 A2 . . . Ar O . . . O O

I O . . . O O . . . O O

O I O O . . . O O
...

. . .
...

O O O O . . . I O




is the2q× 2q state transition matrix andCCCq = [I,O, . . . ,O]T

denotes the2q × 2 output matrix, andO = O1 and I = I1
denote2× 2 null and identity matrices, respectively.

Based on (20) and on the available prior knowledge, the
Kalman filter (KF) recursions can be written down as follows

x̂q(t|t− 1) =AAAqx̂q(t− 1|t− 1)

Pq(t|t− 1) =AAAqPq(t− 1|t− 1)AAAT
q + CCCqρCCC

T
q

e(t) = y(t) −CCCT
q x̂q(t|t− 1)

S(t) = CCCT
q Pq(t|t− 1)CCCq +∆(t)

Lq(t) = Pq(t|t− 1)CCCqS
−1(t)

x̂q(t|t) = x̂q(t|t− 1) + Lq(t)e(t)

Pq(t|t) = Pq(t|t− 1)− Lq(t)S(t)L
T
q (t). (21)
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Since we have assumed thatδ(t) = 0 for t ≤ t0, the algorithm
should be started at the instantt0 + 1, with initial conditions
x̂q(t0|t0) = [yT(t0), . . . ,y

T(t0 − q + 1)]T, Pq(t0|t0) = Oq,
and stopped at the instantt0 +m+ r, after readingr undis-
turbed signal samples at the end of the corrupted fragment. The
filtered state vector at the termination pointt0+m+r has the
form x̂q(t0+m+r|t0+m+r) = [y(t0+m+r), . . . ,y(t0+m+
1), ŝ(t0+m), . . . , ŝ(t0+1), y(t0), . . . ,y(t0 − r+1)]T where
ŝ(t0 + 1), . . . , ŝ(t0 +m) is the block of interpolated samples.
Since, in the case considered, the signal estimates yielded
by the Kalman algorithm do not depend on measurements
collected at instantst0 + m + r + 1, t0 + m + r + 2, etc.,
there is no point in continuing operation of the Kalman filter
after reaching the pointt0 +m+ r.

B. Signal Prediction and Detection of Noise Pulses

Similar to [6], our pulse detection scheme will be based on
monitoring signal prediction errors. In the univariate (mono)
case considered in [6], where the signal is governed by

s(t) =

r∑

i=1

ais(t− i) + n(t), var[n(t)] = ρ

detection alarm is raised at the instantt0+1 (i.e., d̂(t0+1) is set
to 1) if the magnitude of the one-step-ahead signal prediction
error ε(t0 + 1|t0) = y(t0 + 1)−ϕT(t0 + 1)θ, whereϕ(t) =
[y(t − 1), . . . , y(t − r)]T and θ = [a1, . . . , ar]

T, exceedsµ
times its standard deviation

|ε(t0 + 1|t0)| > µσε(t0 + 1|t0) (22)

whereσ2
ε (t0+1|t0) = ρ andµ is a constant multiplier, usually

chosen in the range [3,5]1.
The test is then extended to multi-step-ahead prediction

errors. Detection alarm is terminated at the instantt = t0+m
if r consecutive prediction errors are sufficiently small, namely
if

|ε(t|t0)| ≤ µσε(t|t0)

t = t0 +m+ 1, . . . , t0 +m+ r (23)

or if t− t0 reaches its maximum allowable valuemmax. The
output of the outlier detector is in this case equal to:d̂(t0 +
1) = . . . = d̂(t0+m) = 1, d̂(t0+m+1) = . . . = d̂(t0+m+
r) = 0.

The detection technique briefly summarized above can be
extended to the multivariable case. The detection triggering
condition (22) has the following multivariate equivalent

εT(t0 + 1|t0)Σ
−1
ε (t0 + 1|t0)ε(t0 + 1|t0) > µ2 (24)

whereΣε(t0+1|t0) = ρ denotes the covariance matrix of the
one-step-ahead prediction error. The stopping condition (23)
can be reformulated in an analogous way

εT(t|t0)Σ
−1
ε (t|t0)ε(t|t0) ≤ µ2

t = t0 +m+ 1, . . . ,t0 +m+ r (25)

1When µ is set to 3, condition (22) is usually referred to as “3-sigma”
outlier detection rule.

whereε(t|t0) denotes the(t− t0)-step-ahead signal prediction
error andΣε(t|t0) denotes the corresponding error covariance
matrix. Both quantities can be easily computed using the
Kalman filtering algorithm (21). In order to do this, one should
setq = 2r +mmax and enforce

∆(t) =

[
γ 0
0 γ

]
, γ → ∞, for t > t0. (26)

The latter condition means that the samplesy(t0 +1),y(t0 +
2), . . . should be regarded as corrupted with infinite-variance
noise and – as such – completely eliminated from the estima-
tion process. It is easy to check that in the case considered
S−1(t) = O, which results in x̂q(t|t) = x̂q(t|t − 1),
Pq(t|t) = Pq(t|t − 1) for all t > t0. Under such conditions
Kalman filter works as a multi-step-ahead predictor yielding
ε(t|t0) = e(t) and

Σε(t|t0) = cov[e(t)] = CCCT
q Pq(t|t− 1)CCCq

=

[
σ2
1(t) σ12(t)

σ12(t) σ2
2(t)

]
= Σ(t). (27)

Unfortunately, the solution presented above, does not allow
one to differentiate between audio channels (both tracks are
analyzed jointly) and for this reason it is not suitable for our
purposes. We will replace it with the following decoupled
decision rule

d̂j(t) =

{
0 if |ej(t)| ≤ µσj(t)
1 if |ej(t)| > µσj(t)

, j = 1, 2 (28)

and more selective noise covariance scheduling

∆(t) =





[
0 0
0 0

]
if d̂1(t) = d̂2(t) = 0

[
0 0
0 γ

]
if d̂1(t) = 0 ∧ d̂2(t) = 1

[
γ 0
0 0

]
if d̂1(t) = 1 ∧ d̂2(t) = 0

[
γ 0
0 γ

]
if d̂1(t) = d̂2(t) = 1

(29)

γ → ∞.

It is straightforward to check that under (29) the corresponding
values ofS−1(t) are given by

S−1(t) =





Σ−1(t) if d̂1(t) = d̂2(t) = 0[ 1
σ2

1
(t)

0

0 0

]
if d̂1(t) = 0 ∧ d̂2(t) = 1

[
0 0
0 1

σ2

2
(t)

]
if d̂1(t) = 1 ∧ d̂2(t) = 0

O if d̂1(t) = d̂2(t) = 1
(30)

allowing one to: accept both components ofy(t) = [y1(t),
y2(t)]

T if both channels are regarded as outlier-free [d̂1(t) =
d̂2(t) = 0], rejecty2(t) if only the second channel is corrupted
[d̂1(t) = 0∧ d̂2(t) = 1], rejecty1(t) if only the first channel is
corrupted [̂d1(t) = 1 ∧ d̂2(t) = 0], or reject both components
of y(t) if both channels are corrupted [d̂1(t) = d̂2(t) = 1].
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C. Adaptive Detection and Interpolation

The adaptive version of the detection/interpolation proce-
dure described above can be obtained by combining the KF
algorithm (21) with the EWLS algorithm (11) - (13), i.e., by
replacing the true model parametersθ and ρ, which were
previously assumed to be constant and known, with their most
recent estimateŝθ(t) and ρ̂(t), respectively. According to
[13], the AR-model based reconstruction of samples called
in question by the outlier detector can be carried out indepen-
dently – without any information loss – for each local analysis
frame starting and ending withr undistorted samplesy(t). For
this reason we will focus our attention on a single detection
episode which starts when at least one of two prediction errors
evaluated for a stereo signal takes an excessive value, and ends
when r consecutive prediction errors take for both channels
sufficiently small values.

Suppose that the outlier detector is triggered at the instant
t0 + 1, i.e.,

|εj(t0 + 1|t0)| = |yj(t0 + 1)−ϕT(t0 + 1)θ̂j(t0)| > µρ̂j(t0)

for j = 1 and/or 2. (31)

Once this happens, the parameter tracking procedure is tem-
porarily stopped, and the KF-based detection procedure, de-
scribed earlier, is started. However, we will introduce an
important modification – the fixed-order Kalman filter will
be replaced with the variable-order one. Such modification is
possible due to the special structure of the matricesAAAq, CCCq and
Pq(t0|t0) incorporated in (21). Taking advantage of this struc-
ture, one can show that the order of the Kalman filter (21) can
be – without affecting estimation results – gradually increased,
starting fromr + 1, until the stopping condition is met. The
variable-order Kalman filter offers significant computational
savings over its fixed-order (q = qmax = 2r+mmax) version.

D. Algorithm

Denote byΘ̂r(t) = [θ̂1(t)|θ̂2(t)] the 2r × 2 matrix made
up of the estimated process coefficients, and by

Θ̂q(t) =

[
θ̂1(t) θ̂2(t)
0q−r 0q−r

]
, q > r

– the analogous matrix extended with zeros. Denote byX(1)

and X(2) the vectors made up of the first column and the
second column of the matrixX, respectively. Denote byX(1,2)

the matrix made up of the first two columns ofX. Finally, let
q(t) = r+t−t0. The adaptive algorithm which combines (21)
with (28)-(29) can be summarized as follows:

Initialization

x̂r(t0|t0) = [yT(t0), . . . ,y
T(t0 − r + 1)]T

Pr(t0|t0) = Or

Time update step (t ≥ t0 + 1)

ŷ(t|t− 1) = Θ̂T
q(t)−1(t0)x̂q(t)−1(t− 1|t− 1)

e(t) = y(t) − ŷ(t|t− 1) = [e1(t), e2(t)]
T

x̂q(t)(t|t− 1) =

[
ŷ(t|t− 1)

x̂q(t)−1(t− 1|t− 1)

]

Hq(t)−1(t) = Pq(t)−1(t− 1|t− 1)Θ̂q(t)−1(t0)

Σ(t) = Θ̂T
q(t)−1(t0)Hq(t)−1(t) + ρ̂(t0)

=

[
σ2
1(t) σ12(t)

σ12(t) σ2
2(t)

]

Pq(t)(t|t− 1) =
[

Σ(t) HT
q(t)−1(t)

Hq(t)−1(t) Pq(t)−1(t− 1|t− 1)

]

Outlier detection step

d̂j(t) =

{
0 if |ej(t)| ≤ µσj(t)
1 if |ej(t)| > µσj(t)

, j = 1, 2

Measurement update step (t ≥ t0 + 1)

Case 1: if d̂1(t) = d̂2(t) = 0 or t ≥ t0 +mmax then

Lq(t)(t) = P
(1,2)
q(t) (t|t− 1)Σ−1(t)

x̂q(t)(t|t) = x̂q(t)(t|t− 1) + Lq(t)(t)e(t)

Pq(t)(t|t) = Pq(t)(t|t− 1)

− Lq(t)(t)Σ(t)LT
q(t)(t)

Case 2: if d̂1(t) = 0 and d̂2(t) = 1 then

lq(t)(t) =
1

σ2
1(t)

P
(1)
q(t)(t|t− 1)

x̂q(t)(t|t) = x̂q(t)(t|t− 1) + lq(t)(t)e1(t)

Pq(t)(t|t) = Pq(t)(t|t− 1)

− σ2
1(t)lq(t)(t)l

T
q(t)(t)

Case 3: if d̂1(t) = 1 and d̂2(t) = 0 then

lq(t)(t) =
1

σ2
2(t)

P
(2)
q(t)(t|t− 1)

x̂q(t)(t|t) = x̂q(t)(t|t− 1) + lq(t)(t)e2(t)

Pq(t)(t|t) = Pq(t)(t|t− 1)

− σ2
2(t)lq(t)(t)l

T
q(t)(t)

Case 4: if d̂1(t) = d̂2(t) = 1 then

x̂q(t)(t|t) = x̂q(t)(t|t− 1)

Pq(t)(t|t) = Pq(t)(t|t− 1)

E. Comparison with other approaches

Apart from vector processing, which replaced scalar pro-
cessing, the main difference between the approach summarized
above and that described earlier [11] lies in the way the
multi-step-ahead signal prediction is carried out. Unlikethe
open-loop prediction scheme that was used in [11], signal
predictions yielded by the Kalman filter algorithm depend not
only on samples collected prior to the instantt0 + 1, but also
on samples that were provisionally accepted afterwards – such
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predictions can be called decision-feedback since they depend
on detection decisions made earlier. It was observed that the
approach based on open-loop prediction shows tendency to
raise too short detection alarms, i.e., alarms that end well
before the entire pulse waveform is complete. Fig. 3f shows
a typical open-loop prediction based detection scenario. Since
the primary detection alarm, raised at the beginning of the
noise pulse, is terminated too soon, it causes acceptance ofr
corrupted signal samples. This, in turn, evokes the secondary
detection alarm, triggered when outlier detection is resumed
after the break. As a result, the reconstructed signal (Fig.3g)
is heavily (and audibly) distorted.

The results improve considerably if the decision-feedback
approach is used, since samples provisionally accepted in
the middle of detection alarms may significantly decrease
the prediction error variance, which increases sensitivity of
the outlier detector. Therefore detection alarms raised bythe
scheme based on decision-feedback predictions are usually
longer than those yielded by the open-loop scheme – see Figs.
3h and 3i.

Unlike the prediction-based approaches, the double thresh-
old approach shows tendency to produce overly long detection
alarms. It is not difficult to explain this effect. Suppose that
the pulse waveform starts at the instantt0 + 1 and ends at
the instantt0 + k0 + 1. Note that, even though the sample
y(t0 + k0 + 1) is outlier-free, the corresponding value of the
residual error usually still remains large as it is evaluated based
on r preceding signal samples, at least some of which are con-
taminated by outliers. It is not until the sampley(t0+k0+r+1)
is reached, that residual errors are entirely unaffected bythe
detected noise pulse. As a result, when the adopted order of
autoregression is large (r ≥ 10 is a recommended choice
under 44.1 and 48 kHz sampling), the corresponding detection
alarms are usually much longer than the “ground truth” ones
– see Figs. 3d and 3e.

The common limitation of all schemes compared above
is the lack of precision in determining the end points of
detection alarms. This drawback, caused by the fact that
detection decisions are based on the results of forward-time
(i.e., unidirectional) signal analysis, can be alleviatedby means
of bidirectional processing – see Section IV D.

IV. I MPLEMENTATION ISSUES

A. Alternative Noise Covariance Estimation Scheme

When the EWLS algorithm (11) - (13) is used for iden-
tification of the VAR model (4), bothθ(t) and ρ(t) are
tracked with the same speed/accuracy, determined by the
forgetting constantλ. Since experiments, incorporating real
audio signals, show that the coefficients of the covariance
matrix ρ(t) often vary faster than autoregressive coefficients
θ(t), for outlier detection purposes it may be beneficial to
replace (9) with the following exponentially weighted estimate

ρ̂(t) = λ0ρ̂(t− 1) + (1− λ0)ε(t|t− 1)εT(t|t− 1) (32)

where λ0, 0 < λ0 < 1, is a forgetting constant different
from λ. Whenλ0 < λ (which is recommended), the effective
estimation memory of the algorithm (32) is smaller than
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Fig. 3: Comparison of three detection schemes. The corre-
sponding plots show: clean audio signal (a), exact location
of the inserted noise pulse (b), corrupted audio signal (c),
detection alarm yielded by the double-threshold approach
(d) and the corresponding signal reconstruction (e), detection
alarms yielded by the open-loop prediction approach (f) and
the corresponding signal reconstruction (g), and detection
alarm yielded by the decision-feedback prediction approach
(h) and the corresponding signal reconstruction (i).

estimation memory of the EWLS tracker, allowing the outlier
detector to react faster to sudden changes inρ. However,
even though application of the modified covariance estimator
(32) yields better detection results, signal interpolation is
consistently better when the original EWLS estimator (9) is
used. For this reason the best results are obtained when the KF
algorithm is run twice: first to detect noise pulses, using (32),
and second – to reconstruct the irrevocably distorted samples,
using (9).

B. Elimination of Channel Offsets

Adopting the VAR model (2), one implicitly assumes that
the modeled signal is zero-mean:E[s(t)] = 0. Since for a
typical stereo audio recording such an assumption is not valid,
the problem of non-zero channel offsets should be solved in
some way.

The direct solution is to incorporate offsets into the VAR
model, i.e., to use the following signal description in place of
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(2)

s(t) =

r∑

i=1

Ais(t− i) + γ + n(t) (33)

whereγ = [γ1, γ2]
T, andγ1, γ2 denote unknown constants.

Since after adoptingθj = [αT
j1, . . . ,α

T
jr , γj ]

T and ϕ(t) =
[yT(t−1), . . . ,yT(t−r), 1]T the shorthand signal description
(3) remains unchanged, identification of the bias-corrected
VAR model (33) can be handled in an exactly the same way as
described earlier. For the same reason the variable-order KF
algorithm does not need any modifications.

The indirect solution to the offset problem is to remove non-
zero signal means prior to applying the detection/interpolation
procedure. Such a signal “centering” operation can be easily
realized by means of passing the signaly(t) through a high-
pass filterH(q−1) of the form

H(q−1) =
c(1− q−1)

1− cq−1

wherec, 0 < c < 1 denotes a bandwidth-controlling constant
which should be sufficiently close to 1. The advantage of the
indirect solution, compared to the direct one, is its greater
flexibility due to the fact that the constantsλ and c can be
chosen independently of each other (when the extended VAR
model (33) is used, the tracking rate, determined byλ, is the
same for all model coefficients).

C. Closing Detection Gaps

One of the consequences of adopting the decentralized
detection rule (28), instead of (25), is that detection alarms
may not form solid blocks of “ones” preceded and succeeded
by at least r “zeros”. While detection alarms raised for
unipolar noise pulses usually have this property, for bipolar
pulses, or pulses of even more complicated shapes, it often
happens that the outlier detector accepts a few samples located
in the transition zone between the positive and negative peaks
of the click waveform – even though such measurements are
not reliable. It was observed that such “accidental acceptances”
of samples located in the middle of long-lasting artifacts can
adversely affect reconstruction results. For this reason it is
recommended that all detection gaps of length smaller than
r are removed prior to reconstruction. We note that a similar
technique was used in [12] to eliminate detection errors caused
by “destructive interference”, occurring when some residual
errors take values close to zero in the middle of long noise
pulses.

Of course, each time when a detection alarm is modified,
the Kalman filter algorithm should be rerun to incorporate
changes.

D. Bidirectional Processing

So far we have assumed that the archive audio signal is
analyzed sequentially, forward in time. In such a case a sample
is regarded as an outlier if it is “inconsistent” with the signal
past, which is indicated by excessive values of prediction
errors. When signal characteristics change abruptly, e.g.when

an entirely new sound starts to build up, all causal prediction-
based detection schemes are prone to generate false detection
alarms, calling in question uncorrupted signal samples simply
because they do not match the signal past. Since such samples
are consistent with the signal “future”, rather than its “past”,
the number of false alarms can be significantly reduced
if results of forward-time detection are combined with the
analogous results of backward-time detection. The latter can
be obtained by means of processing audio signal, using the
Kalman filtering algorithm, backward in time (provided, of
course, that the entire recording is available). Kalman filter
applied to time-reversed data will be further referred to as
backward Kalman filter.

The set of local, case-dependent fusion rules that can be
used to combine forward and backward detection alarms,
denoted respectively bŷdfj (t) and d̂bj(t), was proposed and
experimentally verified in [11]. First, the beginning of each
forward/backward detection alarm is shifted back by a small
fixed number of samples∆t. Then such extended alarms are
combined in a way that depends on their mutual configuration
called a detection pattern. For example, when forward and
backward detection alarms in channelj form solid blocks
that at least partially overlap (which is the most frequently
encountered detection pattern)

d̂fj (t) = 1 for t ∈ [tfj , t
f
j ]

d̂bj(t) = 1 for t ∈ [tbj , t
b
j ]

[tfj ,t
f
j ] ∩ [tbj , t

b
j ] 6= ⊘

the best results can be obtained using the “front edge / front
edge” fusion rule. According to this rule, the combined alarm
is started at the instanttfj corresponding to the front edge of the

forward alarm, and terminated at the instanttbj corresponding
to the front edge of the backward alarm (which, after time
reversal, becomes its back edge)

d̂fbj (t) = 1 for t ∈ [tfj , t
b
j ].

Fusion rules applicable to other detection patterns can be found
in [11].

Suppose that the combined forward-backward detection
alarm starts at the instantt0 + 1, ends at the instantt0 +m,
and that it is preceded and succeeded by at leastr undistorted
samples:

d̂fb1 (t0 + 1) = 1 or d̂fb2 (t0 + 1) = 1

d̂fb1 (t0 +m) = 1 or d̂fb2 (t0 +m) = 1

d̂fb1 (t) = d̂fb2 (t) = 0

t ∈ [t0 − r + 1, t0] ∪ [t0 +m+ 1, t0 +m+ r].

Since the combined alarm differs from its forward/backward
components, the samples scheduled for reconstruction should
be reestimated. In this case the Kalman filter algorithm is run
in a non-adaptive mode, i.e., its operation is not controlled
by the internal outlier detector – the aggregated detection
sequenceŝdfb1 (t) and d̂fb2 (t) are used instead.
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E. Model Stability Monitoring and Enforcement

In majority of audio applications, including the adaptive
detection/reconstruction problem considered in this paper,
stability of the signal model must be guaranteed to make
the model-based analysis well-posed. The VAR model (2) is
asymptotically stable iff all zeros,zi, i = 1, . . . , 2r, of the
characteristic polynomial

A(z−1) = det

[
I−

r∑

i=1

Aiz
−i

]

lie inside the unit circle in the complex plane:|zi| < 1, i =
1, . . . , 2r.

Unfortunately, when true signal parametersAi are replaced
with their EWLS estimateŝAi(t), the resulting VAR model
is not guaranteed to be stable. For this reason, whenever a
detection alarm is raised, the model is checked for stability.
If stability conditions are not met, model coefficients are
reestimated using the stability-preserving Whittle-Wiggins-
Robinson (WWR) algorithm (the multivariate extension of the
Levinson-Durbin algorithm) – for a detailed description ofthis
algorithm and discussion of its properties see Complement
C8.6 in [20]. The localized version of the WWR algorithm
solves forÂ1(t), . . . , Âr(t) and ρ̂(t) the set of Yule-Walker
type equations of the form

[I,−Â1(t), . . . ,−Âr(t)] R̂RR(t) = [ρ̂(t),O, . . . ,O] (34)

whereO denotes the2× 2 null matrix,

R̂RR(t) =




R̂0(t) R̂1(t) . . . R̂r(t)

R̂T
1 (t) R̂0(t)

...
... R̂1(t)

R̂T
r (t) . . . R̂0(t)




and R̂k(t), k = 0, . . . , r, denote local estimates of the auto-
covariance matricesRk = E[y(t)yT(t− k)]

R̂k(t) =
1

N

N−k−1∑

i=0

y(t− i)yT(t− i− k). (35)

To comply with memory settings of the EWLS algorithm
(7), the value ofN is set to the equivalent widthk(t) =
(1+λ)/(1−λ) of the exponential window [different from its
effective widthl(t)] [17].

The important property of the WWR algorithm is the
guaranteed stability of the resultant VAR model provided that
the matrixR̂RR(t) is positive definite (which is always the case
when the biased estimates (35) are used).

It should be stressed that the WWR algorithm is a “res-
cue” estimation procedure, usedonly when the EWLS-based
model is not stable at the moment of triggering detection
alarm (which does not happen frequently). If the WWR
algorithm is used permanently, i.e., instead of the EWLS
algorithm, the detection/reconstruction results deteriorate due
to evidently worse predictive capabilities of the corresponding
VAR models. This seems to be the price paid for the guaran-
teed model stability. On the other hand, if stability monitor-
ing/enforcement is skipped, signal reconstruction errorsmay
occasionally become very large.

F. Numerical Safeguards

When d̂1(t) = 0 and/or d̂2(t) = 0, the applied covariance
scheduling (30) puts Kalman filter in a difficult numerical
situation. For example, when̂d1(t) = d̂2(t) = 0 (Case 1),
the measurement update step should set the upper2× 2 block
of the Kalman gain matrixLr+t−t0(t) to the identity matrix.
This in turn should result in setting the first two elements ofthe
vectorx̂r+t−t0(t|t) to y1(t) andy2(t), respectively, and zero-
ing the2×2 upper-left corner block of thea posteriorimatrix
Pr+t−t0(t|t). Since the “theoretical”a posteriori covariance
matrix (i.e., the one evaluated with infinite precision) is in this
case singular, its computed version – due to numerical errors
– may easily lose nonnegative definiteness, causing erratic
behavior of Kalman filter afterwards. Similar problems arise
whend̂1(t) = 0∧ d̂2(t) = 1 (Case 2) or̂d1(t) = 1∧ d̂2(t) = 0
(Case 3). The ill-conditioning problem pointed out above can
be solved using square-root filtering [18] but, in the specific
application considered in this paper, a much simpler round-
off technique proved to guarantee numerical robustness –
after each cycle of computations (performed in MATLAB) the
results were rounded to the 12-th decimal place. The direct
consequence of rounding-off is that all “almost zero” and
“almost one” elements of the computed matrices/vectors are
replaced with zeros and ones, respectively. This allows oneto
avoid numerical problems while preserving the variable-order
structure of the Kalman filtering algorithm.

V. EXPERIMENTAL RESULTS

To evaluate the proposed approach, we used 20 clean audio
recordings, 10 containing classical music and 10 containing
jazz music (5 vocal pieces and 5 purely instrumental ones),
sampled at the rate of 48 kHz with 16-bit resolution, and con-
taminated with real click waveforms extracted from silent parts
of old gramophone recordings. Our repository of clicks was
made up of 1003 pairs of click waveforms (found in the left
and right channel, respectively). Clean recordings contained
from 25 to 33 seconds of audio material. Prior to adding
noise pulses, all audio signals were scaled so as to make their
energy in the corrupted part identical. The 20 second long
click template, which was added to clean audio (the same for
all recordings), consisted of 3200 pairs of equally spaced noise
pulses picked at random from the click database: 807 pulses
corrupting the left channel only, 800 pulses corrupting theright
channel only, and 1593 pulses corrupting both channels. The
total number of corrupted samples was equal to 44013, which
constitutes 2,3% of all samples in the analyzed fragment.

Performance evaluation was made for 4 unidirec-
tional/bidirectional approaches: the scalar double-threshold
based approach (A/A∗), the scalar open-loop prediction based
approach (B/B∗), the scalar decision-feedback prediction
based approach (C/C∗), and the vector decision-feedback
prediction based approach proposed in this paper (D/D∗).

All compared detection/reconstruction algorithms incorpo-
rated AR/VAR models of orderr = 10. For the residual error
based double-threshold approach A/A∗, the default values
of internal parameters recommended in [12] were adopted.
For the prediction error based approaches B/B∗, C/C∗ and
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D/D∗, signal identification was carried out using the EWLS
algorithm equipped with forgetting factors:λ = 0.999 – in
the case of vector processing, and [in agreement with (18)],
λ1 = λ2 = 0.998 – in the case of scalar processing. The
detection multiplier was set toµ = 4.5. The bandwidth
coefficient of the high-pass filter was set toc = 0.995,
and the forgetting constant used for covariance updating – to
λ0 = 0.993. The alarm extension parameter was set to∆t = 2.

Our evaluation of audio reconstruction results was per-
formed using the Perceptual Evaluation of Audio Quality
(PEAQ) tool [21], [22]. PEAQ scores take negative values that
range from -4 (very annoying distortions) to 0 (imperceptible
distortions). The PEAQ standard uses a number of psycho-
acoustical evaluation techniques which are combined to give
a measure of the quality difference between the original
audio signal and its processed version. Even though it was
introduced as an objective method to measure the quality of
perceptual coders, without any reference to audio restoration,
we have found it useful for our purposes as it gives scores
that are well correlated with the results of time consuming
listening tests. We have found out experimentally that, in
the case of elimination of impulsive disturbances, the PEAQ
threshold above which signal distortions can be regarded as
imperceptible is roughly equal to -0.1. Similarly, according to
our experience, the differences between two approaches that
reach or exceed the level of 0.1 in terms of the associated
PEAQ scores, i.e.,|PEAQ1 − PEAQ2| ≥ 0.1, are usually
audible.

Tab. I summarizes performance statistics for the compared
approaches. Qualitative comparison of the results given inTab.
I is presented in Tab. II, which shows the number of cases
where a given approach obtained a better PEAQ score than its
competitor. The number of “strong wins”, i.e., the number of
cases where the compared PEAQ scores differ by at least 0.1,
are shown in curly brackets.

There are several conclusions that can be drawn after
examining results presented in Tabs. I and II:

1) In almost all cases the vector decision-feedback predic-
tion based approach yields better results than approaches
based on double thresholding and open-loop prediction
– see A vs. D, B vs. D,A∗ vs. D∗ andB∗ vs. D∗ in
Tab. II. The performance gains are usually large.

2) In almost all cases the vector decision-feedback predic-
tion based approach yields better results than its scalar
counterpart – see C vs. D andC∗ vs.D∗ in Tab. II. The
performance improvement is noticeable in about 30% of
cases (usually those where local correlation between the
left and right audio tracks is strong – see Fig. 2).

3) All approaches benefit from bidirectional processing –
see A vs.A∗, B vs.B∗, C vs.C∗ and D vs.D∗ in Tab. II.
The performance improvements are usually significant.

Random listening tests, performed on real archive audio
recordings, support these findings.

VI. CONCLUSION

The problem of elimination of impulsive disturbances from
stereo audio recordings was solved using the vector autoregres-
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Fig. 4: Comparison of AR and VAR signal reconstructions.
Two top plots show a fragment of a stereo archive audio signal
with corrupted left track. Two middle plots show decisions of
the outlier detector. Two bottom plots show results of signal
reconstruction based on the scalar model (upper plot) and
vector model (lower plot).

sive modeling technique. The proposed approach combines
an exponentially weighted least squares model identification
algorithm with variable-order Kalman filter, used to detectand
interpolate irrevocably distorted signal samples. It was shown
that restoration results improve when both stereo channelsare
analyzed and processed jointly.
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TABLE I: Comparison of the PEAQ scores obtained for 4 unidirectional/bidirectional approaches: the scalar double-threshold
based approach (A/A∗), the scalar open-loop prediction based approach (B/B∗), the scalar decision-feedback prediction based
approach (C/C∗), and the vector decision-feedback prediction based approach proposed in this paper (D/D∗). All results were
obtained for 20 artificially corrupted audio files: 10 with classical music and 10 with jazz music. REF denotes the score ofthe
input (corrupted) recording. Interpretation of PEAQ scores: 0 = imperceptible (signal distortions),−1 = perceptible but not
annoying,−2 = slightly annoying,−3 = annoying,−4 = very annoying.

classical music

input file unidirectional processing bidirectional processing
No. REF A B C D A∗ B∗ C∗ D∗

1 -3.73 -3.01 -3.88 -0.45 -0.42 -0.78 -2.24 -0.23 -0.24
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4 -3.72 -2.31 -3.88 -0.59 -0.40 -1.33 -2.48 -0.25 -0.20
5 -3.75 -1.40 -3.78 -0.43 -0.37 -0.68 -1.23 -0.23 -0.18
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9 -3.90 -3.56 -3.90 -0.88 -0.85 -1.87 -3.59 -0.70 -0.67
10 -3.83 -3.33 -3.89 -0.35 -0.50 -1.07 -2.61 -0.19 -0.27

jazz music

input file unidirectional processing bidirectional processing
No. REF A B C D A∗ B∗ C∗ D∗
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2 -3.89 -1.03 -3.67 -1.01 -1.00 -1.18 -0.87 -0.74 -0.55
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TABLE II: Direct comparison of different unidirectional/bidirectional approaches: the scalar double-threshold based approach
(A/A∗), the scalar open-loop prediction based approach (B/B∗), the scalar decision-feedback prediction based approach(C/C∗),
and the vector decision-feedback prediction based approach (D/D∗). The competing approaches are listed in the first column.
The remaining columns present the number of instances wherea given approach earned a better PEAQ score than its competitor.
The number of “strong wins” is shown in curly brackets.
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Gdańsk, Poland and the M.A. degree from the
Academy of Musical Arts, Gdańsk, Poland, in 1983,
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