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Abstract. We discuss ellipticity property within the linear couple-stress elasticity. In this theory, there exists a deformation 
energy density introduced as a function of strains and gradient of macrorotations, where the latter are expressed through 
displacements. So the couple-stress theory could be treated as a particular class of strain gradient elasticity. Within the 
micropolar elasticity, the model is called Cosserat pseudocontinuum or medium with constrained rotations. Applying the 
classic definitions of ordinary ellipticity and strong ellipticity to static equations of the couple-stress theory, we conclude 
that these equations are neither elliptic nor strongly elliptic. As a result, one should be aware of extending properties of full 
strain gradient models such as Toupin–Mindlin strain gradient elasticity to models with incomplete set of second derivatives.
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1. Introduction

Elliptic systems of partial differential equations (PDEs) constitute a wide class of the models of mathe-
matical physics. In the literature, one can find various definitions of ellipticity which extend the property 
of the Poisson equation. Among the latter, it is worth mentioning strong ellipticity, ellipticity known also 
as ordinary or Petrovskiy’s ellipticty, Douglis–Nirenberg ellipticity and some others, see, for example,
[1,22,46]. Ellipticity brings us such properties as a regularity (smoothness) of solutions and well-posedness 
of the corresponding boundary value problems. On the other hand, violation of ellipticity may lead to 
proper description of such physical phenomena as strain localization, material instabilities, shear bands 
formation, softening, wave propagation, see, for example, [7,9,10,12,27,30,31,37,42,43].

The aim of this note is to discuss ellipticity within the linear couple-stress theory [28,36,44]. The 
latter could be treated as a Cosserat continuum with constrained rotations, so-called pseudocontinuum 
Cosserat [19,21,38] or a particular class of strain gradient models [5,6,11,34,35,45]. Within nonlinear 
Cosserat continuum strong ellipticity was studied in [2,13], see also [30], whereas relation of ellipticity 
loss on material stability within nonlinear strain gradient elasticity was analysed in [14]. Let us note that 
nowadays the couple-stress theory is widely used for modelling of composite materials and structures at 
small scales, see, for example, [3,23,26,29,39,41] and the reference therein.

The paper is organized as follows. First, in Sect. 2 we recall the definitions of ellipticity and strong 
ellipticity for linear systems of PDEs. In Sect. 3, we introduce the equilibrium equations of the couple-
stress theory including the modified one [48]. Section 4 is devoted to the analysis of ellipticity of these 
equations. Finally, we compare the results with ellipticity properties of linear micropolar and Toupin–
Mindlin strain gradient elasticity.
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2. Mathematical preliminaries

Following [1,22,46], let us consider a system of linear differential equations of order m

∑

|α|≤m

A
(α)
ij Dαuj = fi, i, j = 1, 2 . . . n, (2.1)

where A
(α) ≡ {A(α)

ij } are n × n matrices, α = (α1, . . . , αl) is a multiindex, αk are natural numbers,
|α| = α1 + · · · + αl, u = (u1, . . . , un) is a vector of unknown functions, uk = uk(x1, . . . , xl), xi are
Cartesian coordinates, k = 1, . . . , n, and f = (f1, . . . , fn) is a vector of given functions, for example, of
external loads. Differential operator Dα is defined by the formulae

Dα = ∂α1
1 . . . ∂αl

l , ∂p =
∂

∂xp
, p = 1, . . . l.

In addition, hereinafter Einstein’s summation rule over repeated indices is applied.
System (2.1) defines the differential operator A given by

A =
∑

|α|≤m

A
(α)Dα. (2.2)

Motivated by strain gradient elasticity applications in the following, we consider n = 3, l = 3 and
m = 4. For simplicity, we also assume that A

(α), |α| = m, does not depend on xi.
Following [1,22,46], we call system (2.1) or operator A elliptic or Petrovskiy’s elliptic or ordinary

elliptic if

detA0(k) �= 0, ∀k �= 0, k = (k1, . . . , kl), (2.3)

where A0(k) is the principal symbol given by the formula

A0(k) =
∑

|α|=m

A
(α)kα, kα = kα1

1 . . . kαl

l . (2.4)

Note that operator A could be represented symbolically through the polynomial A(k) =
∑

|α|≤m

A
(α)kα

called symbol of A. Symbolically A(k) could be obtained by formal replacement ∂p → kp. So A0(k) is a
homogeneous polynomial of degree m in k.

We call (2.1) or A strongly elliptic if there is an inequality

(A0(k)a,a) ≡
∑

|α|=m

Aij
(α)kαaiaj ≥ C‖k‖m‖a‖2 (2.5)

for any vector k and any vector a = (a1, . . . , an), where C is a positive constant independent on k and a
and

|k‖2 = k2
1 + · · · + k2

l , ‖a‖2 = a2
1 + · · · + a2

n.

Obviously, strong ellipticity is more restrictive than ordinary ellipticity. Indeed, Eq. (2.5) means that
matrix A0(k) is positive definite, whereas (2.3) requires that A0(k) does not have zero eigenvalues for any
k. So, strong ellipticity implies ellipticity. Let us note that the positive definiteness could be replaced by
negative definiteness requirement since in this case one can get the positive definiteness by multiplication
of (2.1) by −1, see [1,46] for more details.
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3. Couple-stress theory

In what follows, we restrict ourselves to small deformations. So let u = u(x) be a vector of displacements
and x be a position vector. We introduce the linear strain tensor ε and rotation vector φ as follows [36]

ε =
1
2

(∇u + ∇uT
)
, φ =

1
2
∇ × u, (3.1)

where ∇ is the 3D nabla-operator, the superscript T means transpose and × denotes the cross product.
For a hyper-elastic solid there exists a deformation energy density W introduced as a function of

strains and gradient of rotations [36]

W = W (ε,κ), κ = ∇φ. (3.2)

So we have two stress measures, i.e. the classic symmetric stress tensor σ and the non-symmetric couple-
stress tensor μ both defined as follows

σ =
∂W

∂ε
, μ =

∂W

∂κ
.

Note that as φ is introduced through Eq. (3.1)2, there is no difference between ε and the strain tensor
e = ∇u + φ × I usually used in the linear micropolar elasticity [16,19,21]. Hereinafter I is the 3D unit
tensor.

For an isotropic material, W takes the form [36]

W =
1
2
λtr 2ε + με : ε + 2ηκ : κ + 2ζκ : κT , (3.3)

where λ, μ, η and ζ are elastic moduli, and : stands for the double dot product [16,19,21]. As a result,
σ and μ become

σ = λItr ε + 2με, μ = 4ηκ + 4ζκT . (3.4)

Positive definiteness of W leads to inequalities [36]

μ > 0, 3λ + 2μ > 0, η > 0, −η < ζ < η. (3.5)

Equilibrium equations have the following form [36]

μΔu + (λ + μ)∇∇ · u + ηΔ∇ × (∇ × u) + f = 0. (3.6)

where Δ = ∇·∇ is the Laplace operator and f is a vector of external loads. Note that ζ is not included into
(3.6), it appears in static boundary conditions. Equation (3.6) is a particular form of general equations
given also in [34,35,44].

Yang et al. [48] proposed to consider another symmetric strain measure χ given by

χ =
1
2

(
∇φ + ∇φT

)

with the constitutive relation in the form

Wm =
1
2
λtr 2ε + με : ε + 2ηχ : χ (3.7)

and symmetric couple-stress tensor m = 4ηχ. Equation (3.7) also results in (3.6).
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4. Ellipticity

Calculation of the principal symbol of Eq. (3.6) is straightforward. It is determined by the highest order
term of (3.6), that is, ηΔ∇ × (∇ × u). Using formal substitution ∇ → k, we come to the formula

A0(k) = η(k · k)k × (k × I). (4.1)

The determinant of A0(k) is equal to zero: detA0(k) = 0. Indeed, we have

detA0(k) = det [η(k · k)k × (k × I)] = η3(k · k)3 det [k × (k × I)] = η3(k · k)3 det [k × I × k] .

Using the identity

i × I × i = i ⊗ i − I,

valid for any unit vector i, see, for example, [16, p. 104], we came to

detA0(k) = η3(k · k)6 det [i ⊗ i − I] = 0, i = k/‖k‖,

as i ⊗ i − I is a singular tensor. Hereinafter ⊗ is the dyadic product.
Thus, despite positive definiteness of W equilibrium equations does not constitute an elliptic system.

Since ordinary ellipticity is a necessary condition of the strong ellipticity, the latter is also violated. This
statement could be also proved using (2.5). Indeed, we have that

a · A0(k) · a = η(k · k)
[
(a · k)2 − (k · k)(a · a)

]
,

which is zero if a is collinear to k.

5. Comparison with strain gradient and micropolar elasticity

5.1. Toupin–Mindlin strain gradient elasticity

Within the Toupin–Mindlin strain gradient elasticity, the deformation energy WTM depends on strains ε
and on its gradient (or on ε and ∇∇u) [34,35]. For an isotropic solid, WTM takes the form

WTM =
1
2
ε : C : ε + +

1
2
∇ε

...D
... ∇ε, (5.1)

where “:” and “
...” are the double and triple dot products, respectively, and fourth- and sixth-order tensors

of elastic moduli C and D have components

Cijkl = λδijδkl + μ(δikδjl + δilδjk), (5.2)

Dijmkln =
a1

2
(δijδkmδln + δijδknδlmn + δklδimδjn + δklδinδjm) + 2a2δijδklδmn

+
a3

2
(δjkδimδln + δikδjmδln + δilδjmδkn + δjlδimδkn)

+ a4 (δilδjkδmn + δilδjkδmn)

+
a5

2
(δjkδinδlm + δikδjnδlm + δjlδkmδin + δilδkmδjn) , (5.3)

where δij is Kronecker’s symbol, and a1, a2, a3, a4 and a5 are five elastic moduli of higher order [34].
In this case, the equilibrium equations take the form

(λ + 2μ)∇∇ · u − μ∇ × (∇ × u) − γ1Δ∇∇ · u + γ2Δ∇ × (∇ × u) + f = 0, (5.4)

where γ1 = (λ + 2μ)	21, γ2 = μ	22, and 	1, 	2 are characteristic lengths given by

	1 =
√

a1 + a2 + a3 + a4 + a5

λ + 2μ
, 	2 =

√
a3 + 2a4 + a5

2μ
, (5.5)
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see [32,34,35] for more details.
Here the principal symbol takes the value

ATM(k) = −γ1(k · k)k ⊗ k + γ2(k · k)k × (k × I). (5.6)

It could be transformed into the more simple form

ATM(k) = −(k · k)2 [γ1i ⊗ i + γ2(i2 ⊗ i2 + i3 ⊗ i3)] , (5.7)

where i2 and i3 are two unit vectors orthogonal to i ≡ k/‖k‖.
Since

detATM(k) = −(k · k)6γ1γ2,

the ordinary ellipticity is fulfilled if and only if γ1γ2 �= 0 or the two following inequalities are fulfilled

a1 + a2 + a3 + a4 + a5 �= 0, a3 + 2a4 + a5 �= 0. (5.8)

In other words, ordinary ellipticity requires that both characteristic lengths are nonzero.
Similarly, we get that

−a · ATM(k) · a = (k · k)
[
γ1(a · k)2 + γ2

(
(k · k)(a · a) − (a · k)2

)]

So strong ellipticity condition (2.5) is satisfied if and only if γ1 > 0 and γ2 > 0 that is equivalent to
[18]

a1 + a2 + a3 + a4 + a5 > 0, a3 + 2a4 + a5 > 0. (5.9)

Comparing equations (3.6) and (5.4), one can easily observe that (5.4) transforms into (3.6) if one
assume that γ2 = η while γ1 = 0. So the lack of ellipticity of (3.6) follows from the violation of the
positivity of one characteristic length, that is, 	1 = 0, for the couple-stress theory.

Similar situation with ellipticity can be observed in another incomplete strain gradient model called
dilatational strain gradient elasticity [15,33]. Here a deformation energy is given by

Wdsg =
λ

2
tr 2ε + με : ε +

α

2
k · k, (5.10)

where λ and μ are Lamé moduli and α is an additional dilatational elastic modulus. Corresponding
equilibrium equation is given by

μΔu + (μ + λ)∇∇ · u − α∇Δ(∇ · u) + f = 0. (5.11)

Its principal symbol is given by the formula

Adsg(k) = −α(k · k)kk.

Obviously, Adsg(k) is singular, and so, (5.11) is not elliptic. Comparing (5.11) with (5.4), one can see that
here 	2 = 0.

5.2. Cosserat continuum

Within the linear micropolar elasticity translations u and rotations ϕ are kinematically independent and
ϕ �= φ, in general. A deformation energy Wme is a function of two strain measures defined as follows
[19,21]

e = ∇u + I × ϕ, κ = ∇ϕ. (5.12)

For an isotropic material, Wme is given by

Wme =
1
2
λtr 2e + (μ + κ)e : e + μe : eT +

1
2
η1tr 2κ +

1
2
η2κ : κ +

1
2
η3κ : κT , (5.13)
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where λ, μ, κ, η1, η2 and η3 are elastic moduli. Equilibrium equations take the form

(λ + μ)∇∇ · u + (μ + κ)Δu + κ∇ × ϕ + f = 0, (5.14)

(η1 + η2)∇∇ · ϕ + η2Δϕ + κ(∇ × u − 2ϕ) + c = 0, (5.15)

where f and c are vectors of volumetric forces and couples, respectively.
The principal symbol of system (5.14) and (5.15) has the form

Ame(k) =

(
A

(1)
me(k) 0
0 A

(2)
me(k)

)
,

A
(1)
me(k) = (λ + μ)k ⊗ k + (μ + κ)(k · k)I, A

(2)
me(k) = (η1 + η3)k ⊗ k + η2(k · k)I. (5.16)

So ellipticity condition reduces to the inequality

detA(1)
me(k) detA(2)

me(k) �= 0

that results in the following inequalities for the elastic moduli

λ + 2μ + κ �= 0, μ + κ �= 0, η1 + η2 + η3 �= 0, η3 �= 0.

The strong ellipticity conditions have the form [2,13,19]

λ + 2μ + κ > 0, μ + κ > 0, η1 + η2 + η3 > 0, η2 > 0. (5.17)

Comparing Wme and W , one can see that they are coincide to each other if κ = 0, η1 = 0, η2 = η,
η3 = ζ. Even in this case, (5.14) and (5.15) are strongly elliptic if and only if

λ + 2μ > 0, μ > 0, η2 > 0,

whereas (3.6) is not elliptic. So despite the obvious similarity between micropolar elasticity and couple-
stress theory, the corresponding ellipticity conditions are different.

6. Conclusions and discussion

Within the linear couple-stress theory, we discussed the ellipticity and strong ellipticity conditions. It was
shown that both conditions are violated. So equilibrium equation does not constitute nor strongly elliptic
neither elliptic system of PDEs. This relates to a certain degeneration of a deformation energy within the
Toupin–Mindlin strain gradient elasticity. Nevertheless, in order to get advantages of ellipticity one can
consider more general conditions of ellipticity or transform somehow the problem under consideration.
For example, let us consider the following transformation of (3.6). Let us represent displacement using
the Helmholtz decomposition

u = ∇ψ − ∇ × Ψ, ∇ · Ψ = 0, (6.1)

where ψ and Ψ are potential of dilatation and rotation, respectively. Similarly we represent f as a sum

f = ∇g − ∇ × F, ∇ · F = 0. (6.2)

Upon substituting (6.1) and (6.2) into (3.6), we obtain

μΔ∇ψ + (λ + μ)∇∇ · ∇ψ + ∇g − μΔ∇ × Ψ − ηΔ∇ × (∇ × (∇ × Ψ)) − ∇ × F

= ∇ [(λ + 2μ)Δψ + g] + ∇ × [−μΔΨ + ηΔ2Ψ − F
]

= 0.

Thus, the problem under consideration can be reduced to the two equations

(λ + 2μ)Δψ + g = 0, ηΔ2Ψ − μΔΨ − F = 0;

both of them are elliptic if and only if λ+2μ �= 0 and η �= 0, and strongly elliptic if λ+2μ > 0 and η > 0.
Let us note that these inequalities constitute a part of ellipticity conditions for a basic simple material
(without gradients of strain) and a general strain gradient elastic material.
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So one should be aware to transmit ellipticity properties from a general model to a reduced one. For 
example, similarities between micropolar elasticity and couple-stress theory are obvious. Nevertheless, the 
ellipticity conditions are different since for micropolar elasticity equilibrium equations constitute a system 
of six scalar differential equations of second order, whereas within the couple-stress theory we have three 
differential equations of fourth order. Couple-stress theory could be also derived as a Cosserat continuum 
with constraint φ = ϕ [19,38] that brings another mathematical form of equilibrium conditions, see also 
[4] for Lagrange multiplier technique to strain gradient and media with microstructure. On the other 
hand, even reduced model may become elliptic after certain transformations as was shown above.

In the literature, one can also find another gradient incomplete models [11], which are also result in 
non-elliptic but hypoelliptic differential operators [17]. Let us also note that for nonlinear models relations 
between ellipticity properties of different models could be less straightforward. For example, similar to 
micropolar elasticity and couple-stress theory, for a micromorphic medium and strain gradient material 
the ellipticity conditions are different, in general, but these models can demonstrate some similarities in 
behaviour, see [20]. The provided comparison could be also extended to more complex models of continua 
such as discussed in [8,24,25].
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