
S C I E N T I F I C J O U R N A L O F P O L I S H N A V A L A C A D E M Y

2019 (LX) 3 (218)

95

 DOI: 10.2478/sjpna-2019-0021

E M U L A T O R A N D S I M U L A T O R
O F T E R M A S C A N T E R

A N D A R P A R A D A R D A T A S E R V E R

Maciej Sac 1 , Sylwester Kaczmarek 2 , Marcin Narloch 3

Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics,
Narutowicza 11/12 Str., 80-233 Gdańsk, Poland; e-mail: msac@eti.pg.edu.pl, kasyl@eti.pg.edu.pl,
narloch@eti.pg.edu.pl; ORCID: 10000-0002-6734-3046, 20000-0003-2932-5610, 30000-0002-7640-2941

ABSTRACT

The software solutions presented in this paper generate real-time data compatible with ARPA

radar standard as well as Terma SCANTER 2001 radar cooperating with Video Distribution and

Tracking (VDT) server. Two different approaches to this problem are considered: emulation

based on the data captured from real devices and simulation of objects on the sea. For both of them

architecture, implementation details and functional test results are presented. The developed

software will be used to test new functionalities of the multimedia surveillance system imple-

mented for the Maritime Division of the Polish Border Guard within the STRADAR project.

Keywords:

radar data server, emulation, simulation, Video Distribution and Tracking, Terma SCANTER 2001,

ARPA.

Research article

© 2019 Maciej Sac, Sylwester Kaczmarek, Marcin Narloch
This is an open access article licensed under the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

mailto:msac@eti.pg.edu.pl
mailto:kasyl@eti.pg.edu.pl
mailto:narloch@eti.pg.edu.pl
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0002-6734-3046
https://orcid.org/0000-0003-2932-5610
https://orcid.org/0000-0002-7640-2941

Maciej Sac, Sylwester Kaczmarek, Marcin Narloch

96 Scientific Journal of PNA

INTRODUCTION

The aim of the STRADAR system [1], developed for the Maritime Division of

the Polish Border Guard (PBG), is to generate tasks for visualization of different

types of data and present them in the Event Visualization Post (EVP), which includes

a multi-display high-resolution screen. Each visualization task can contain ongoing

or archival video from cameras, audio (telephone calls), SMS, files/photos or map data.

Currently, new software modules for the STRADAR system are developed,

dedicated to visualization of radar data coming from ARPA radars [2] as well as

Terma SCANTER 2001 radars cooperating with Video Distribution and Tracking

(VDT) servers [15]. Sources of the above-mentioned radar data are necessary for

implementation and testing of these new functionalities. Due to lack of access to

physical devices and sources of real radar data streams, there are two software

solutions available: emulation and simulation. In the first case, specially developed

software radar servers provide (after proper transformations performed in real

time) data gathered from real devices and imitate their behavior from functional

point of view. The second approach regards a simulator of objects on the sea with

radar data generation ability, formed accordingly to particular network protocols

of radar data server.

The developed emulation and simulation software (its architecture and im-

plementation details) is described in the next two sections. Functional tests of

the implemented software are presented and discussed in section ‘Software tests’.

The paper is summarized in the last section (‘Conclusions’).

EMULATOR OF RADAR DATA SERVER

During the performed research three variants of radar emulation software

were developed:

 emulator of a Terma SCANTER 2001 radar with a VDT implemented in C/C++

programming language;

 emulator of an ARPA radar implemented in Linux Bash scripting language;

 emulator of a Terma SCANTER 2001 radar with a VDT implemented in Linux

Bash scripting language.

In the next part of this section all these three solutions are described.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Emulator and simulator of Terma SCANTER and ARPA radar data server

3 (218) 2019 97

The role of a Terma VDT server is to process raw radar data (e.g. from

the SCANTER 2001 radar) and provide text position information (plots, tracks)

as well as binary data (processed radar video) over a TCP/IP network. The VDT

can be also used to change configuration parameters of the connected radar.

The idea of radar data server emulators for Terma devices (C/C++ and

Bash variants) is to use the information gathered from a VDT and provide it at any

time to radar visualization software client (such as SCANTER Radar Service Tool [8])

without any limitations. The following VDT protocols are available in the emulators

(all protocols have a text format and use TCP for transport):

 Own Unit Management Protocol, OUMP [11] (provides the information about

the unit with the SCANTER 2001 radar, among others position, speed, course;

uses TCP port 18000);

 Plot Data Protocol, PDP [12] (provides plot data defined as [15] the group of

connected radar cells in which the measured video signal exceeds a defined

threshold value and/or fulfils some other discrimination criteria; these data

correspond to real objects on the sea but also to waves and radar echoes; uses

TCP port 17404);

 Track Control Interface Protocol, TCIP [13] (configures the process of extracting

track data from plot data; allows defining positions of Aids to Navigation —

AtoNs; uses TCP port 17394);

 Track Data Interface Protocol, TDIP [13] (provides track data [15] with the in-

formation about the objects on the sea (among others position, speed, course)

identified by analysis of the plot data; uses TCP port 17396);

 Video Control Connection Protocol, VCCP [10] (configures and controls provi-

sioning of processed radar video; uses TCP port 1500).

Moreover, the Video Distribution Protocol (VDP) [10] is supported, which

is a binary protocol providing processed radar video.

The C++ variant of radar data server emulator for Terma devices was imple-

mented under Debian Linux 8 operating system and g++ 4.9.2 compiler. For handling

network communication the Boost.Asio 1.55 library [3] was used. The source code is

contained in the radar_server.cpp file, which structure is illustrated in fig. 1.

During software development it was assumed that one instance of the emu-

lator handles one VDT protocol (for a set of VDT protocols multiple instances should

to be run). The protocol type is determined by the TCP port number given as the input

parameter during start of the emulator (1500 for VCCP, 17394 for TCIP, 17396 for TDIP,

17404 for PDP, 18000 for OUMP). The chosen port number is passed to the main()

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Maciej Sac, Sylwester Kaczmarek, Marcin Narloch

98 Scientific Journal of PNA

function of the emulator (as arguments of software process invocation), which creates

a boost::asio::io_service io_service object (providing basic input/output

functions) and calls the server() function. This function creates a tcp::socket

sock(io_service) object, accepts TCP connections at the given port (unsigned

short port) and handles them, for which the session() function is invoked.

Fig. 1. Structure of C/C++ source code of the radar data server emulator for Terma devices

The session() function is the heart of the emulator, which implements

particular VDT protocols. At the beginning of its operation it reads the data file for

the chosen protocol. It is assumed that this file is located in the same directory as

the emulator application (radar_server) and named [port].txt (e.g. 18000.txt for

OUMP). The data file contains the information captured from a real VDT. Its each

line concerns payload of one packet and includes relative generation time, tab key

and packet data in hexadecimal notation. In our research traffic generated between

the VDT and the client software (SCANTER Radar Service Tool) was captured using

the Wireshark [16] protocol analyzer and saved as *.pcap files. Subsequently,

the TShark [16] tool was used to extract data from *.pcap files to achieve properly

formatted *.txt files for particular VDT protocols.

After reading the data file, the session() function performs operations de-

pendent on the type of handled VDT protocol:

 for TCIP it generates TCP packets with the content and intervals defined in the data

file, it also keeps the connection alive [13] (for each ping control message re-

ceived from the client software it replies with a pong control message);

 for TDIP, PDP and OUMP similar actions are taken, additionally dates and times

in the generated track, extplot, gps, gyro, log messages [11][12]– [13] are updated

(replaced with current UTC dates and times);

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Emulator and simulator of Terma SCANTER and ARPA radar data server

3 (218) 2019 99

 for VCCP the session() function informs the client software about the protocol

version and SCANTER 2001 radar parameters (e.g. range) [10]; it also handles

the request for processed radar video (it starts generating VDP packets from the

data file to the destination UDP port indicated in the request) and keeps the

VCCP connection alive (PING/PONG message exchange).

The emulator of an ARPA radar implemented in Linux Bash (Bourne-Again

Shell) scripting language was designed with the aim of providing functionality of ARPA

data source, achieved with simple tools, preferably existing within the operating

system and its core applications installed by default. The idea behind development

of a simple emulator of an ARPA radar was the ability to replay ARPA messages

stored in a plain text file (one message per line) to any device available in Linux

operating system, particularly (but not limited) to serial port (RS-232) or USB port

with USB-serial converter, text console or even another file. The key feature of that

solution is to provide archival ARPA messages with updated, current time and

restore original time intervals between messages at the output. That possibility

allows to emulate ARPA radar device with the aid of a PC computer equipped with

a serial port and Linux operating system. In the proposed solution a simple Bash

script executes an AWK script responsible for main processing of ARPA messages

and provides it with the appropriate file name and current time in UTC±00:00 zone

for time manipulation of NMEA (National Marine Electronics Association) 0183 [9]

messages. AWK is a standard UNIX tool for advanced manipulation of text data

organized in lines, which utilizes scripting language similar to C and should be con-

sidered as a simple extension to Bash. Despite its simplicity and existence of modern

and more sophisticated scripting languages like Perl or Python, AWK is available on all

UNIX/Linux platforms and seemed the first choice for fast development of a simple

ARPA emulator. During the processing of particular ARPA NMEA messages stored

in the source file, the AWK script calculates time interval between current and pre-

vious message in the file considering the first message as a reference (beginning of

sequence), to print or emit the stream of messages with original timings. In that

task a time field in the message is inspected, which unfortunately has different po-

sition from beginning for different ARPA message types. Moreover during that op-

eration time field of the message is updated according to current time. That

operation forces recalculation and update of the checksum field in the message.

From implementation point of view NMEA checksum calculation procedure was the

most demanding, due to limitation of the AWK scripting language regarding lack of

support for binary operators, particularly binary XOR. However the problem was

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Maciej Sac, Sylwester Kaczmarek, Marcin Narloch

100 Scientific Journal of PNA

solved with association tables available in AWK language. The last operation per-

formed by the developed AWK script is emission (printing to the output) of updat-

ed message maintaining original timing between messages. Originally the output of

the ARPA emulator was directed to a PC serial port used as a testing equipment in

the STRADAR project. Other performed tests regarded possibility to transport

ARPA messages over a TCP/IP network. In that case simple network tools were

used to create TCP/IP clients and servers for text oriented protocol. That tools

called ‘netcat’ and ‘socat’ are available for most UNIX/Linux platform and allow

sending text data over IP network directly from Linux text consoles, files and devic-

es without necessity to develop advanced programs, which is very useful in case

when time and simplicity constrains are crucial.

The results achieved in the above-mentioned field were the inspiration for

the development of a simple but functional emulator of a Terma SCANTER 2001

radar with a VDT in Linux Bash scripting language. The idea behind implementa-

tion of a Bash-based emulator of a Terma SCANTER VDT was similar to the ARPA

radar emulator. A simple, script based TCP/IP tool was developed. The solution

consists of a Bash script which coordinates execution of multiple TCP servers for

different VDT protocols. Each TCP server is an instance of the ‘netcat’ process

providing the connected client with the radar data from text files (which were ex-

tracted from *.pcap files with the aid of the TShark tool). The most difficult part of

the implementation of Bash-based servers was programming the interaction be-

tween client and server, regarding handling of ‘keep-alive’ (PING/PONG control)

messages, and development of VDT video protocol server as the most complicated

among all used. As a result, a simple but functional emulator of a Terma VDT radar

server was developed, which could be used as a testing tool (radar data generator)

for the STRADAR project or when development of a VDT server network client as

element of the STRADAR system is considered.

SIMULATOR OF RADAR DATA SERVER

As already mentioned, simulation of objects on the sea is another approach

to generate real-time data compatible with ARPA radar as well as Terma SCANTER

2001 radar with a VDT server. In our previous research [4], an AIS/ARPA/GPS data

generator was implemented, which aim is to simulate movement of tracking PBG ships

and tracked ships on a definable part of the Baltic Sea as well as produce position

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Emulator and simulator of Terma SCANTER and ARPA radar data server

3 (218) 2019 101

data streams according to AIS (Automatic Identification System), GPS (Global Posi-

tioning System) and ARPA (Automatic Radar Plotting Aid) radar specifications [2],

[9], [14] in real-time. These position data streams are formatted as standardized

NMEA 0183 text strings and sent to serial ports. The concept of the generator takes

into account some details about the equipment of PBG, however, it is universal and

its application is not limited to systems designed for PBG. The above-mentioned

AIS/ARPA/GPS [4] data generator has been extended to provide position infor-

mation compliant with Terma devices (SCANTER 2001 radar with a VDT server) in

terms of OUMP and TDIP protocols. The resultant software, called the AIS/ARPA/GPS/

Terma data generator, is described in this section.

The first important task for the AIS/ARPA/GPS/Terma data generator is to

simulate movement of PBG ships and tracked ships on a definable part of the Baltic Sea.

It is assumed that tracked objects are represented by large ships with class A AIS

equipment [14]. Two categories of these objects with different sets of parameters

are considered. Information about position of tracked ships is gathered by the fol-

lowing tracking units:

 PBG ships with AIS receivers and ARPA radars (radars are optional; maximum

one radar per one PBG ship is assumed);

 PBG Observation Points (OPs) located at fixed position on the coast of the Baltic

Sea (each one is equipped with a Terma SCANTER 2001 radar and VDT server);

 AIS receiver network of Maritime Authority in Gdynia located at the coast of the

Baltic Sea (position data provided by the Web Service; these data concern the

whole simulated part of the Baltic Sea and are distributed as AIS packets).

The simulated sea area is represented by a rectangle definable in configura-

tion file and is by default given by the following coordinates: 54,5°N–55,22°N;

13,8°E–20,8°E. It assumed that both PBG ships and tracked ships sail straight lines

and may periodically change speed according to defined random variables. Tracked

ships generate AIS position data during movement (according to AIS standard

[14]), which are gathered by PBG ships receivers with a limited range (defined in

simulation parameters) and definable packet loss probability. PBG ships may also

have ARPA radars installed to collect additional position information about tracked

ships (for radars we also can define range and information loss probability). Con-

trary to AIS position data (which for the same tracked ship are identical in all PBG

ships), information gathered for one particular tracked object by different ARPA

radars may differ from each other. This is caused by azimuth and distance meas-

urement errors (definable parameters), which are generally different for different

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Maciej Sac, Sylwester Kaczmarek, Marcin Narloch

102 Scientific Journal of PNA

radars. Additionally, particular ARPA radars independently assign identifiers (tar-

get numbers) for tracked ships and in most cases the same tracked ship will have

different identifiers assigned by different radars.

The radar operation principles of PBG OPs (with Terma devices) are similar

to that of PBG ships (with ARPA radars). Observation Points are, however, fixed at

the coast of the Baltic Sea (their number and location is definable). Moreover, they

provide position data with a slightly different set of parameters and format (ac-

cording to the specification of VDT OUMP and TDIP protocols [11], [13]).

The output of the generator are the following position data streams:

 data generated by PBG ships (one stream per one PBG ship) containing:

 AIS data received by PBG ships with definable range and loss probability,

 data from ARPA radars installed on PBG ships (definable range and errors of

radar are taken into account),

 GPS data with position of PBG ships;

 data generated by PBG OPs (two streams per one OP) containing:

 position information about the OP (VDT OUMP protocol stream),

 position information about the objects detected by the SCANTER 2001 radar

installed in the OP (VDT TDIP protocol stream; definable range and errors of

radar are taken into account),

 AIS data from Maritime Authority in Gdynia (Web Service) — one stream from

the whole simulated part of Baltic Sea.

The AIS/ARPA/GPS/Terma data generator is implemented in the OMNEST [6]

simulation framework (commercial version of OMNeT++). It allows running applica-

tions in graphical mode (Tkenv) and command-line text mode (Cmdenv). Graphical mode

provides visualization of the simulated objects and allows detailed analysis of generated

position data. In text mode the amount of available information is very limited, how-

ever, it consumes less processor resources and allows simulating more objects. In

the OMNEST framework simulated objects (called modules), their parameters and

connections between them are defined using NED (NEtwork Description) language [7].

Basic operations in the developed application are performed by simple modules, which

functionality is described using C++ programming language. Simple modules may be

grouped to form compound modules, which perform more complicated functions.

Structure of the AIS/ARPA/GPS/Terma generator software is depicted in

fig. 2. The elements related to AIS, ARPA and GPS data generation functionality [4]

are marked using black color. Objects tracked by PBG (large ships) are represented

by the tracked_ship simple module. PBG ships are implemented in the bg_ship

simple module. In the generator very important is also the global module, which is

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Emulator and simulator of Terma SCANTER and ARPA radar data server

3 (218) 2019 103

responsible for providing other modules with values of global variables (through

its global functions). This functionality is used by other modules of the generator

both before starting to simulate movement of objects and during this simulation. In

the first case global functions of the global module are used for example to set

initial geographic positions of objects. In the second situation they are invoked

among others to get new values of object speed.

The global module also receives AIS/ARPA/GPS data from PBG ships and

AIS data from the ma_webs simple module representing the WebService of Maritime

Authority in Gdynia. Position data gathered by the global module are converted

from internal format used in the generator (messages – C++ objects) to standard-

ized NMEA0183 text strings and sent over IP network to ServerUDP_RS applica-

tions. Each instance of the ServerUDP_RS application operates on a separate UDP

socket (a pair of IP address and UDP port), receives one position data stream and

sends it to a defined RS-232 port [5].

The set of internal generator messages related to AIS, ARPA and GPS data

generation functionality includes (black solid lines with arrows in fig. 2):

 ARPA_REQ: requests sent to all tracked ships to receive their position, speed and

course (equivalent of transmitting radio waves by the ARPA radar);

 ARPA_RESP: responses to ARPA_REQ messages (containing position information

of particular tracked ships);

 ARPA_DATA: messages with information necessary to form ARPA and GPS

NMEA0183 text strings in the global module; they are created in the bg_ship

module based on the received ARPA_RESP messages;

 AIS_M1, AIS_M5: prototypes of AIS type 1 message (scheduled position report)

and AIS type 5 message (scheduled static and voyage related vessel data report)

[14]; they are sent from the tracked_ship module to the bg_ship and ma_webs

modules, which forward them to the global module.

Blue color in fig. 2 represents new modules added for support of Terma

VDT protocols (OUMP, TDIP). PBG OPs are implemented as the observ_point simple

module, which interacts with the global module (it gets values of global variables)

and the tracked_ship module (it receives position information from tracked ships

— using TERMA_REQ and TERMA_RESP messages, analogically to the ARPA radar). For

these interactions appropriate modifications of the source code of the global and

tracked_ship modules had to be performed.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Maciej Sac, Sylwester Kaczmarek, Marcin Narloch

104 Scientific Journal of PNA

Fig. 2. Structure of the real-time generator of AIS/ARPA/GPS/Terma data; solid lines with arrows
represent messages exchanged directly between modules, dashed lines with arrows —

parameters passed using global functions of the global module; blue color is used

to mark the modules added for support of Terma VDT protocols (OUMP, TDIP); ServerUDP_RS

and radar_server_udp applications cooperate with the generator and are not its integral part

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Emulator and simulator of Terma SCANTER and ARPA radar data server

3 (218) 2019 105

Having the position information about the tracked objects and itself, each

instance of the observ_point module forms prototypes of TDIP and OUMP protocol

messages (in internal generator format; TERMA_TDIP and TERMA_OUMP messages in fig. 2)

and sends them to a dedicated instance of the vdt simple module. This module is

responsible for creating TDIP track and OUMP gps, gyro, log messages in the format

specified by the Terma company [11], [13] and sending them over IP network to

radar_server_udp applications. Each instance of the vdt simple module cooperates

with two instances of the radar_server_udp application, from which one receives

TDIP and another one OUMP protocol messages over a unique UDP socket.

The radar_server_udp is a universal application that performs the role of

VDT OUMP or TDIP protocol server based on the messages received (over UDP

protocol) from the vdt simple module of the AIS/ARPA/GPS/Terma data generator.

Its source code (radar_server_udp.cpp file – C/C++ programming language with

Boost.Asio 1.55 library) is implemented based on the code of the radar_server

(C/C++ radar data server emulator for Terma devices described in the previous

section) and ServerUDP_RS applications. Due to the fact that messages received

from the AIS/ARPA/GPS/Terma data generator already have proper format, dates,

times and intervals, the tasks of the radar_server_udp application are limited to

keeping the OUMP/TDIP connection alive and generating position data to the client

software. Therefore its code is much simpler than for the radar_server emulator.

The source code of the AIS/ARPA/GPS/Terma data generator complies

with the rules of the OMNEST framework [7]. Each simple module of the generator

has implemented a handleMessage() callback function, which is responsible for

handling all messages incoming to this module (sent by the simple module itself or

by the other modules). The initialize() and finish() functions are also used, which

allow performing some operations at the beginning (e.g. setting initial object parame-

ters) or end of simulation (e.g. deleting dynamically created objects). Many other

functions are additionally defined according to the needs, examples are public func-

tions of the global module providing global simulation parameters to other modules.

Due to space limitations further details about the implementation, configura-

tion and running the AIS/ARPA/GPS/Terma data generator as well as the cooperating

applications cannot be provided. More information on these aspects can be found

in paper [4], which regards the previous version of the generator (without support

of Terma VDT protocols). The implementation of the new radar functionality

is, however, strongly based on the previous one (for ARPA radars) and the idea is

preserved.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Maciej Sac, Sylwester Kaczmarek, Marcin Narloch

106 Scientific Journal of PNA

SOFTWARE TESTS

Operation of radar emulation software (all variants) was consecutively veri-

fied during source code development. Additionally, when all functionalities were

implemented, thorough final tests were performed, for which position data from

PBG radar devices located in different places and of various time durations were

applied. During tests the following tools were used:

 Linux terminal (for displaying debugging information, such as values of variables;

this functionality was disabled in final software versions in order to increase

performance);

 Wireshark protocol analyzer (for analysis of communication scenarios and content

of messages exchanged between radar data server emulators for Terma devices

and client software);

 SCANTER Radar Service Tool (client software allowing visualization of position

data from Terma VDT servers).

Performed tests indicated that all variants of radar data server emulation

software were properly implemented. For emulators of Terma devices this involved

checking conformity of communication procedures with the manufacturer specifi-

cations and visualization of the generated position data using the client software

(SCANTER Radar Service Tool). Examples of results for both these aspects are pre-

sented in the next part of the section. The described final test was performed for

emulator of a Terma SCANTER 2001 radar with a VDT implemented in C/C++ pro-

gramming language. Fragment of the obtained TDIP protocol message exchange is

as follows (the Wireshark tool was used to capture messages; one line represents

one message; all presented messages were sent by the emulator to SCANTER Radar

Service Tool):

currval,Protocol revision,1.1

track,2500,2019,5,11,21,56,58,676,FA,TARGET,,24,60,19398,4.96230,54.8

5939,18.06117,0.00000,0.00000,30,9,1,168,0.01593,264.00

track,2439,2019,5,11,21,56,58,676,FA,TARGET,,24,56,14527,5.04850,54.8

5950,18.14029,0.00000,0.00000,30,9,0,82,0.01208,102.00

track,2673,2019,5,11,21,56,58,676,FA,TARGET,,60,196,26010,5.11190,54.

90696,17.98028,5.20000,1.59210,30,9,0,236,0.01504,174.00

track,2750,2019,5,11,21,56,58,676,FA,TARGET,,52,492,32839,4.98470,54.

89499,17.86088,4.40000,1.49740,30,9,0,351,0.01949,218.00

The first presented TDIP message (currval,Protocol revision,1.1), sent

upon connection to the emulator, indicates the protocol version. The following track

messages contain position information about the objects detected by the radar [13].

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Emulator and simulator of Terma SCANTER and ARPA radar data server

3 (218) 2019 107

Fragment of the obtained OUMP protocol message exchange is presented

below (the Wireshark tool was used to capture messages; one line represents one

message; all presented messages were sent by the emulator to SCANTER Radar

Service Tool):

currval,Protocol revision,1.1

gps,2019,5,11,21,56,58,888,54.81665,18.35385,0.00000,0.00000

gyro,2019,5,11,21,56,58,888,0.00000

log,2019,5,11,21,56,58,888,0.00000,0.00000

As in the previous case, the first OUMP message announces the protocol

version. The remaining (gps, gyro, log) messages carry position information about

the unit (PBG OP) with the SCANTER 2001 radar [11].

Fragment of the obtained communication scenario for VCCP protocol is as

follows (the Wireshark tool was used to capture messages; one line represents one

message; blue color is used to mark messages sent by the emulator; red color —

messages sent by SCANTER Radar Service Tool):

VERSION 2.2 4096 4096 32

REQUEST_VIDEO_UDP 13 62527

OK

RANGE 61378

PING

PONG

PING

PONG

Upon connection the emulator sends the first VCCP message (VERSION 2.2

4096 4096 32) with the information about the protocol version (2.2) as well as radar

video parameters (number of sweeps in a full scan, number of range cells in a com-

plete sweep, sector size) [10]. Subsequently, the client software generates a request

for unicast UDP based video (REQUEST_VIDEO_UDP 13 62527). The first parameter

of this request (13) is the video type to subscribe [10] and the second one (62527)

represents the UDP port number where the client is listening for incoming video

data. The emulator confirms the received request (OK), gives information about the ra-

dar range in meters (RANGE 61378) and starts sending video packets (VDP protocol)

to the specified UDP port. The VCCP protocol connection is periodically checked

and refreshed using the PING and PONG keep-alive messages.

Visualization of the position data from the described test using SCANTER Ra-

dar Service Tool is illustrated in fig. 3. It contains processed radar video (the coastline;

VCCP and VDP protocols), SCANTER 2001 radar position (large light blue point;

OUMP protocol) as well as tracked objects positions (track data; white circles; TDIP

protocol).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Maciej Sac, Sylwester Kaczmarek, Marcin Narloch

108 Scientific Journal of PNA

Fig. 3. Position data visualization from the C/C++ radar data server emulator for Terma devices
using SCANTER Radar Service Tool (a fragment of window is presented)

Similarly to radar data server emulators, new functionality of the AIS/ARPA/

GPS/Terma generator (support for Terma VDT protocols — OUMP, TDIP) was tested

during source code development. Thorough final tests with various sets of input

parameters were performed as well and confirmed proper software implementation.

During the tests values of variables and contents of messages exchanged between

the generator modules (fig. 2) were examined using both the text log available in

graphical simulation mode (containing diagnostic information; bottom left hand

corner of fig. 4) and the OMNEST Sequence Chart tool [7] (allowing detailed analysis

of all events occurring during simulation).

The radar_server_udp application (performing the role of VDT OUMP or TDIP

protocol server based on the messages received from the generator; fig. 2) was

successfully tested analogically to C/C++ radar data server emulator for Terma devices.

Linux terminal was used for debugging at the stage of source code development.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Emulator and simulator of Terma SCANTER and ARPA radar data server

3 (218) 2019 109

During all tests the Wireshark tool was used to check conformity of OUMP and TDIP

communication procedures between the radar_server_udp application and the client

software. Visualization of the generated position data was performed with the SCANTER

Radar Service Tool and compared to the visualization built in the graphical mode of

the AIS/ARPA/GPS/Terma generator (fig. 4).

Fig. 4. The AIS/ARPA/GPS/Terma generator run in the graphical mode (left; the square represents
a PBG OP with a SCANTER 2001 radar and VDT; circles are used to mark tracked ships)

and visualization of the generated position data using SCANTER Radar Service Tool (right);
fragments of windows are presented

CONCLUSIONS

The paper describes two approaches to generate real-time position data

compatible with ARPA radar as well as Terma SCANTER 2001 radar cooperating with

a VDT server: emulation and simulation. Presented emulators of radar data servers

are based on the data captured from real devices. These data are properly trans-

formed in real time (e.g. dates and times are updated) and made available to the client

radar software. Three variants of radar data server emulators were developed: of

Terma devices — C/C++ programming language, of Terma devices — Linux Bash

scripting language, of ARPA radar – Linux Bash scripting language.

The aim of the radar data server simulator (called the AIS/ARPA/GPS/

Terma data generator) is to simulate movement of tracking ships and tracked ships

on a definable part of the Baltic Sea as well as produce position data streams

according to AIS, GPS, ARPA radar as well as Terma VDT protocol specifications in

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Maciej Sac, Sylwester Kaczmarek, Marcin Narloch

110 Scientific Journal of PNA

real-time. This paper is focused on the new functionality of the generator related

to Terma VDT OUMP and TDIP protocols. Generation of AIS, ARPA and GPS posi-

tion data is only briefly described as it was implemented in the previous version of

the simulator [4].

For the developed software a description of architecture and implementation

details are provided. Examples of test results, which confirmed its proper operation,

are also included. The performed tests involved both analysis of correctness of the gen-

erated radar messages and visualization of position data using external tools.

The implemented emulators and simulator are very flexible tools, which

can be used for testing different types of map software. Although the concept of

the AIS/ARPA/GPS/Terma generator takes into account some details about the equip-

ment of PBG, it is universal and its application is not limited to systems designed for

PBG. It supports a very large set of input parameters (related to simulated objects,

ARPA and Terma radars, AIS and GPS receivers, etc.) and two running modes (graph-

ical mode convenient for debugging and text mode ideal simulating many objects). As

a result, it is useful for both functional and performance tests of the cooperating sys-

tems. The concept of the described ARPA radar data server emulator is not limited

to ARPA or even NMEA 0183 standard formatted messages, but allows providing

the client software with any other text data.

The performed research indicated that implementation of more complicated

protocols with Bash-based scripts is quite difficult and should be reserved for rather

simple cases, where basic functions are important. Moreover, script-based pro-

cessing of network protocols should be applied when performance is not crucial.

The presented software will be used to test new functionalities of the mul-

timedia surveillance system implemented for PBG within the STRADAR project [1].

Acknowledgments

This work has been co-financed by NCBiR (The National Centre for Research and Development),

project DOB-BIO6/10/62/2014.

The SCANTER Radar Service Tool software has been used with the approval of the Terma A/S

company.

REFERENCES

[1] Blok M., Czaplewski B., Kaczmarek S., Litka J., Narloch M., Sac M., STRADAR — multimedia
dispatcher and teleinformation system for the Border Guard, ‘Scientific Journal of Polish Naval
Academy’, 2019, Vol. 216, No. 1, pp. 69–88, DOI: 10.2478/sjpna-2019-0006.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Emulator and simulator of Terma SCANTER and ARPA radar data server

3 (218) 2019 111

[2] Bole A., Dineley B., Wall A., Radar and ARPA manual, 2nd edition, Elsevier, Oxford 2005.

[3] Boost.Asio-1.55.0, [online], https://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio.html
[access 11.05.2019].

[4] Kaczmarek S., Sac M., Real-time generator of AIS/ARPA/GPS data, ‘Scientific Journal of Polish
Naval Academy’, 2016, Vol. 204, No. 1, pp. 55–67, DOI: 10.5604/0860889X.1202435.

[5] Maritime navigation and radiocommunication equipment and systems — Digital interfaces, Part 3,
Multiple Talker and multiple listeners. High speed network bus., IEC document 61162-3, 2014.

[6] OMNEST – High-Performance Simulation for All Kinds of Networks, [online], http://www.omnest.com
[access 11.05.2019].

[7] OMNEST User Manual, [online], http://www.omnest.com/documentation/Manual.pdf [access
11.05.2019].

[8] Radar Service Tool, Document No. 357641-NF, rev. M, Terma A/S, Denmark, 2007.

[9] Raymond E. S., NMEA Revealed, [online], http://www.catb.org/gpsd/NMEA.html [access
11.05.2019].

[10] SCANTER Network Video Protocol. Software Interface Specification, Document No. 304124-SI,
rev. H1, Terma A/S, Denmark, 2016.

[11] SCANTER Own Unit Management Protocol, Document No. 304203-SI, rev. D, Terma A/S, Den-
mark, 2017.

[12] SCANTER Plot Management Protocol, Document No. 304284-SI, rev. H, Terma A/S, Denmark, 2011.

[13] SCANTER Track Management Protocol, Document No. 303949-SI, rev. F, Terma A/S, Denmark,
2011.

[14] Technical characteristics for an automatic identification system using time-division multiple
access in the VHF maritime mobile band, ITU-R Recommendation M.1371-5, 02/2014.

[15] Video Distribution and Tracking Unit, SCANTER 2001. Product Specification, Document
No. 306872-DP, rev. 3, Terma A/S, Denmark, 2007.

[16] Wireshark · Go Deep, [online], https://www.wireshark.org/ [access 11.05.2019].

E M U L A T O R I S Y M U L A T O R
S E R W E R A D A N Y C H R A D A R O W Y C H

T E R M A S C A N T E R I A R P A

STRESZCZENIE

W artykule opisano oprogramowanie umożliwiające generowanie w czasie rzeczywistym danych

pochodzących z radaru ARPA oraz radaru Terma SCANTER 2001 współpracującego z serwerem

Video Distribution and Tracking (VDT). Rozważane są dwa różne podejścia do rozwiązania tego

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Maciej Sac, Sylwester Kaczmarek, Marcin Narloch

112 Scientific Journal of PNA

problemu: emulacja bazująca na danych z rzeczywistych urządzeń oraz symulacja obiektów na

morzu. Dla obu podejść zamieszczono opisy struktury oprogramowania, szczegółów jego imple-

mentacji oraz wykonanych testów funkcjonalnych. Opracowane oprogramowanie zostanie wyko

rzystane do testowania nowych funkcjonalności multimedialnego systemu nadzoru rozwijanego

dla Morskiego Oddziału Straży Granicznej w ramach projektu STRADAR.

Słowa kluczowe:

serwer danych radarowych, emulacja, symulacja, Video Distribution and Tracking, Terma SCANTER

2001, ARPA.

Article history

 Received: 05.06.2019

 Reviewed: 13.07.2019

 Revised: 23.07.2019

 Accepted: 24.07.2019

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

