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Abstract: Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The initial stage
of CVDs is characterized by endothelial dysfunction, defined as the limited bioavailability of nitric
oxide (NO). Thus, any factors that interfere with the synthesis or metabolism of NO in endothelial
cells are involved in CVD pathogenesis. It is well established that hypoxia is both the triggering
factor as well as the accompanying factor in cardiovascular disease, and diminished tissue oxygen
levels have been reported to influence endothelial NO bioavailability. In endothelial cells, NO is
produced by endothelial nitric oxide synthase (eNOS) from L-Arg, with tetrahydrobiopterin (BH4) as
an essential cofactor. Here, we discuss the mechanisms by which hypoxia affects NO bioavailability,
including regulation of eNOS expression and activity. What is particularly important is the fact that
hypoxia contributes to the depletion of cofactor BH4 and deficiency of substrate L-Arg, and thus
elicits eNOS uncoupling—a state in which the enzyme produces superoxide instead of NO. eNOS
uncoupling and the resulting oxidative stress is the major driver of endothelial dysfunction and
atherogenesis. Moreover, hypoxia induces impairment in mitochondrial respiration and endothelial
cell activation; thus, oxidative stress and inflammation, along with the hypoxic response, contribute
to the development of endothelial dysfunction.

Keywords: nitric oxide; eNOS; eNOS uncoupling; tetrahydrobiopterin; ADMA; hypoxia; cardiovas-
cular diseases

1. Introduction

The endothelium plays a pivotal role in maintaining cardiovascular homeostasis. En-
dothelial cells produce and release a subset of substances that regulate vascular tone and blood
flow, hemostasis, vascular permeability, angiogenesis, and immunity. Endothelium-dependent
regulation of vascular tone is dependent on several vasoactive factors. The most important
vasodilators include nitric oxide (NO), prostacyclin (PGI2), and endothelium-derived hyper-
polarizing factor (EDHF), whereas vasoconstrictive factors are mainly endothelin-1 (ET-1),
thromboxane (TXA2), and angiotensin II [1,2]. Among these substances, NO is probably the
key molecule, as its antiatherogenic properties ensure proper vascular physiology [3]. NO
dilates blood vessels, inhibits vascular smooth muscle cell proliferation, platelet aggrega-
tion, and leukocyte adhesion; thus, adequate NO bioavailability determines vascular health.
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The impairment of the homeostatic endothelial cell functions leads to endothelial dysfunc-
tion, defined mainly as decreased NO bioavailability. Consequently, reduced vasodilation
and accompanying pathologies contribute to the pathomechanism of atherosclerosis, which
in turn leads to severe cardiovascular complications [4,5].

The cardiovascular system delivers oxygen and nutrients to all tissues of the body.
Changes in tissue oxygen availability affect normal physiology and are often involved in the
development of pathological conditions; thus, the optimal oxygen concentration is critical
to maintaining homeostasis. Low blood oxygen (hypoxemia) may result from reduced
inspired oxygen tension (e.g., high altitude sickness), respiratory system pathologies, e.g.,
asthma, chronic obstructive pulmonary disease (COPD), pneumonia, acute respiratory
distress syndrome (ARDS)—also in the course of COVID-19, or other pathologies (e.g.,
anemia, sleep apnea, heart failure) [6–9]. Hypoxemia is detected by carotid bodies and
results in rapid systemic response: increased breathing rate and heart rate, dilation of
peripheral blood vessels, and constriction of lung vessels—all aimed at restoration of proper
blood oxygenation [10]. Hypoxemia most often leads to hypoxia, a condition in which the
oxygen level is insufficient to cover the needs of a particular organ or tissue. Furthermore,
local hypoxia caused by impaired oxygen distribution from blood to tissues accompanies
many pathological states, such as stroke, myocardial infarction, atherosclerosis, and cancer,
and contributes to the exacerbation of adverse lesions [11,12].

Generally, hypoxia can be divided according to its duration into acute or chronic, or
according to its nature into persistent or intermittent. For example, chronic lung diseases
result in persistent hypoxia, while obstructive sleep apnea (OSA) is associated with in-
termittent hypoxia, consisting of cycles of hypoxia and reoxygenation [13]. The hypoxic
response differs slightly depending on the nature of the hypoxia [14]. In the cellular
models of intermittent hypoxia, the augmented proangiogenic and proinflammatory phe-
notype was observed [14]. Moreover, severe hypoxia followed by reoxygenation may cause
ischemia-reperfusion injury, the phenomenon of cellular injury observed after myocardial
ischemia, stroke, or organ transplantation resulting from increased reactive oxygen species
(ROS) generation [15]. Intermittent hypoxia associated with OSA can also lead to ischemia-
reperfusion injury, which is recognized as a major contributor to the pathogenesis of OSA
comorbidities via increased ROS production [16,17].

At the cellular level, the hypoxic response triggers molecular mechanisms of transcrip-
tional reprogramming, dependent mainly on hypoxia inducible factors (HIFs). HIFs are
heterodimers composed of two subunits—constitutive β subunit, and one of three oxygen-
dependent α subunits HIF-1α, HIF-2α or HIF-3α [18]. In normoxia, HIF-α is hydroxylated
by specific prolyl hydroxylases (PHDs), using O2 as a substrate. Hydroxylation of HIF-α
enables its interaction with pVHL (von Hippel–Lindau protein) and subsequent recruit-
ment of ubiquitin ligase, leading to proteasomal degradation of HIF-α. Under hypoxic
conditions, PHDs activity is inhibited, HIF-α consequently accumulates, translocates to the
nucleus, and together with HIF-β subunit forms an active transcription factor (HIF-1, HIF2
or HIF-3) [19]. Therefore, the hypoxic response at the molecular level relies on the induction
of transcription of a specific set of genes characterized by the presence of HIF responsive
elements (HREs) within their regulatory regions. The HIF-driven transcriptional response
allows adaptation to low oxygen levels or counteracts the effects of hypoxia, i.a. by in-
ducing the expression of genes promoting erythropoiesis, angiogenesis, and glycolysis;
however, it also contributes to the initiation of pathological processes [20,21]. HIF-1α and
HIF-2α share 48% amino-acid sequence identity and structural similarity; nonetheless,
they are differentially regulated [18]. HIF-1α is expressed in nearly all cell types, whereas
HIF-2α expression is limited to certain tissues, including endothelium, lungs, kidneys,
brain, liver, and heart. Moreover, HIF-1α and HIF-2α are often overexpressed in cancer
tissue [22]. HIF-3α differs from HIF-1α and HIF-2α in protein structure, and much less is
known about its role and target genes [23].

All three HIF isoforms are expressed in the endothelium, but the time of induction
and the role of individual HIFs are different. HIF-1α accumulates in the initial phase of
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hypoxia, while the accumulation of HIF-2α follows prolonged, chronic hypoxia when
HIF-1α decreases [18,24]. Further persistent oxygen depletion also leads to HIF-3α accu-
mulation [25]. Individual HIF isoforms stimulate the expression of distinct sets of target
genes, which partially overlap. HIF-1 is responsible for the induction of genes associated
with the glycolytic pathway (phosphofructokinase (PFK), lactate dehydrogenase (LDHA),
pH regulation (monocarboxylate transporter 4 (MCT4) and carbonic anhydrase 9 (CA-IX)),
and apoptosis induction (BCL2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) and
BCL2/adenovirus E1B 19 kDa-interacting protein 3-like (BNIP3L/NIX)) [26]. HIF-2 drives
the induction of angiogenesis by stimulating the expression of erythropoietin (EPO) and
matrix metalloproteinases (MMP) [26–28]. HIF-1 and HIF-2 share common target genes
(e.g., vascular endothelial growth factor A (VEGF), glucose transporter 1 (GLUT1)). More-
over, HIFs functions can replace each other under specific conditions, e.g., in the absence of
HIF-1, HIF-2 can induce genes normally dependent on HIF-1 and vice versa [18].

The endothelium is the first layer of cells to contact with blood and is the first to be
exposed to any changes in oxygen levels. Hypoxia and HIF signaling have a significant
impact on endothelial function and biology, especially by induction of genes related
to angiogenesis (VEGF) and glycolysis (glycolytic enzymes, glucose transporters) [29].
Importantly, hypoxia also affects NO generation by endothelial cells through modulating
the expression and activity of endothelial nitric oxide synthase (eNOS). This review focuses
on the hypoxic dysregulation of the eNOS pathway and highlights the mechanisms by
which hypoxia contributes to the development of endothelial dysfunction.

2. eNOS and Its Regulation

NO is produced from L-arginine (L-Arg) and oxygen (O2) in a reaction catalyzed
by nitric oxide synthase (NOS). Three isoforms of NOS have been described in humans:
neuronal (nNOS) localized mainly in the nervous system cells, inducible NOS (iNOS) which
expression is induced in various cell types by proinflammatory cytokines, and endothelial
NOS (eNOS), expressed almost exclusively in endothelial cells [30]. This tissue-specific
expression of eNOS was shown to be controlled through epigenetic mechanisms including
specific DNA methylation patterns and post-translational histone modifications [31,32].
Different NOS isoforms generate NO at different rates, and NO concentration is a key
determinant of its function. iNOS is the most potent NO donor, and high NO concentrations
(e.g., produced by activated macrophages) have a cytostatic and cytotoxic effect. eNOS, in
turn, generates the lowest NO levels capable of activating soluble guanylate cyclase (sGC)
to generate the second messenger cGMP resulting in i.a. vasorelaxation and inhibition
of platelet aggregation, thus preventing atherogenesis [33,34]. Therefore, endothelium-
derived NO plays a pivotal role in maintaining vascular homeostasis, and the proper eNOS
activity is critical for vascular health [35].

Functional eNOS is a homodimer consisting of two identical monomers of 134 kDa.
The C-terminal reductase domain of one monomer is linked to the N-terminal oxygenase
domain of the other monomer. The reductase domain possesses binding sites for NADPH
(nicotinamide adenine dinucleotide phosphate), FMN (flavin mononucleotide), and FAD
(flavin adenine dinucleotide), whereas the oxygenase domain binds the heme group, zinc,
the cofactor tetrahydrobiopterin (BH4), and the substrate L-Arg. eNOS catalyzes the
flavin-mediated electron transfer from C-terminal-bound NADPH of one monomer to
the N-terminal oxygenase domain of the second monomer to convert L-arginine to NO
and L-citrulline [36]. Moreover, the BH4 cofactor is essential for optimal eNOS activity,
facilitating the transfer of electrons for the oxidation of L-Arg between the C- and N-
terminal domains [37].

Although eNOS is considered as constitutively expressed in ECs, its expression level
is adjusted by various transcriptional and posttranscriptional mechanisms in response to
physiological or pathological stimuli, such as cell growth, shear stress, oxidative stress and
inflammation [38]. Additionally, the enzyme activity is subjected to complex regulation
through its posttranslational modifications such as phosphorylation, acetylation, fatty-acid
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acylation, S-nitrosylation, and protein-protein interactions [39,40]. Palmitoylation and
myristoylation of eNOS enable its localization to the plasmalemmal caveolae, where the
enzyme is sequestered in its inactive state due to the interaction with caveolin-1 [41]. eNOS
activity is strictly related to intracellular calcium concentration. When intracellular calcium
levels increase, calcium-activated calmodulin binds eNOS, disrupts its interaction with
caveolin, and stimulates NO synthesis [39]. Moreover, eNOS activity is also regulated by
its phosphorylation status, dependent on the activity of protein kinases (mainly PKA, Akt,
and AMPK) and phosphatases. Phosphorylation at Ser1177, Ser633 and Ser615 stimulate
eNOS, whereas phosphorylation at Thr495 and Ser114 inhibits it [42]. Activation of eNOS
may occur in response to diverse stimuli, including shear stress, acetylcholine, bradykinin,
or hormones, acting through changes in eNOS interactions or its phosphorylation sta-
tus [39]. Blood flow-induced laminar shear stress is thought to be crucial for physiological
eNOS expression and activity, and conversely, disturbed or oscillatory flows near arte-
rial bifurcations are associated with atherosclerotic changes [43]. Laminar shear stress
stimulates influx of calcium, calmodulin-eNOS binding, as well as calcium-independent
eNOS phosphorylation at Ser1177, all resulting in the proper NO generation [44]. On the
other hand, eNOS activity can be stimulated by receptor-dependent agonists (acetylcholine,
bradykinin) acting through specific receptors that activate G-protein-dependent signaling
pathways, leading to the release of intracellular calcium, and eNOS activation [36].

Endothelial NO production is also influenced by hormones that rapidly affect eNOS
activity by altering its phosphorylation or modulate the amount of eNOS protein [45].
Insulin, thyroid hormones, and estrogen have been shown to increase eNOS expression
as well as Akt-dependent phosphorylation of the enzyme at Ser1177 [46–51]. Accordingly,
insulin resistance and hypothyroidism are associated with reduced eNOS activity and
increased risk of CVD [52,53]. Importantly, the impact of hormones on eNOS explains
in part the differences in CVD incidence between men and women. Estrogen is thought
to significantly inhibit the development of atherosclerosis through stimulation of eNOS
expression and its activity [50,54,55]. High estrogen levels in women reduce the risk of
cardiovascular disease, but the risk dramatically increases after menopause [56]. The role of
estrogen in the modulation of eNOS has been reviewed in detail elsewhere [57].The activity
of eNOS is also stimulated by its interaction with the Hsp90 chaperone. HSP90 promotes
the dissociation of eNOS from caveolin-1; furthermore, it protects eNOS against proteolysis
and increases the rate of Akt-dependent eNOS phosphorylation, collectively contributing
to increased NO production [39,58]. Although eNOS also interacts with several other
proteins, these are beyond the scope of the review and are not mentioned here.

eNOS Uncoupling

Physiologically, eNOS catalyzes the interdomain electron transfer from NADPH to
L-Arg to produce NO, so electron transfer is “coupled” to NO synthesis. However, under
various pathological conditions, eNOS becomes “uncoupled”—electrons leak from the
transport chain in the reductase domain and are transferred to molecular oxygen to yield
superoxide (O2

−) instead of NO. Thus, so-called eNOS uncoupling changes eNOS from
beneficial, NO producing enzyme to harmful O2

− source. Moreover, O2
− reacts with

NO, yielding peroxynitrite (ONOO−), a highly reactive oxidant, which rapidly oxidizes
BH4. As a result, overall NO bioavailability is reduced, and eNOS contributes to oxidative
stress, being a generator of O2

− and ONOO− [59]. Several mechanisms are implicated in
eNOS uncoupling, including deficiency of cofactor BH4, depletion of substrate L-Arg, and
accumulation of asymmetric dimethylarginine (ADMA) which is a competitive inhibitor
of eNOS [60]. Importantly, eNOS uncoupling is implicated in the pathophysiology of
cardiovascular diseases, and the accompanying oxidative stress is considered the major
culprit [61–63].
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3. Hypoxia and Cardiovascular Diseases

While the hypoxic response allows cells and tissues to maintain homeostasis, it also
has pathological effects that play a pivotal role in the pathogenesis of cancer, metabolic
disease, and, notably, cardiovascular disease, which is the subject of this review. Hypoxia
appears to be a common feature of many CVDs, and lack of oxygen can both trigger the
development of CVD as well as accompany this disease, thus exacerbating adverse changes
and contributing to the disease progression [64].

Respiratory disorders such as chronic obstructive pulmonary disease (COPD) or ob-
structive sleep apnea (OSA), as well as long-term exposure to high altitudes results in
hypoxemia. Insufficient blood oxygenation, in turn, evokes hypoxic pulmonary vaso-
constriction, which, if it persists, eventually leads to the development of pulmonary
hypertension (PH) [65,66]. It was demonstrated that the HIF pathway is involved in the
pathogenesis of PH. Mice partially deficient for HIF-1α or HIF-2α have been shown to be
protected from hypoxia-induced PH [67,68]. Interestingly, the pathophysiology of PH has
been linked to the disruption of the NO pathway [69]. Intrapulmonary NO levels were
reported to be decreased in PH patients [70], implicating that endothelial dysfunction is
involved in the pathogenesis of PH. Similarly, the main mechanism implicated in OSA
pathophysiology is reduced NO production and endothelial dysfunction [71]. OSA is
characterized by chronic intermittent hypoxia and is considered an independent risk factor
for CVD. Serum nitrites and nitrates as derivatives of circulating nitric oxide were reported
to be reduced in OSA patients [72,73]. Consequently, endothelium-dependent vasodilation
is impaired in these subjects, which favors the development of CVD [74]. Hence, hypoxia
may contribute to the development of endothelial dysfunction.

On the other hand, cardiovascular diseases are often accompanied by inadequate oxy-
gen supply. Hypoxic areas are a typical element of atherosclerotic lesions, as the thickness
of the plaque limits oxygen diffusion and, additionally, a large portion of available oxygen
is consumed by accumulated foam cells [75]. The presence of hypoxic regions was demon-
strated in the arterial walls of rabbits with experimentally induced atherosclerosis [76].
Hypoxia was also detected in human atherosclerotic carotid arteries, where it has been
demonstrated to activate HIFs, and through the action of VEGF, stimulate intraplaque
angiogenesis [77]. Neovascularization has been associated with plaque growth, instability,
and rupture and, therefore, hypoxia is implicated in the progression of atherosclerosis [78].

Diminished NO production and bioavailability are often involved in the pathogenesis
of hypoxia-related diseases and cardiovascular complications. Here, we focus on the
cellular aspects of hypoxia and its influence on the elements of nitric oxide-producing
machinery. Decreased NO bioavailability may result from (i) decreased expression or
activity of eNOS (ii) uncoupling of eNOS (iii) oxidative scavenging of NO by superoxide,
leading to the formation of peroxynitrite (ONOO−).

The influence of hypoxia on eNOS uncoupling seems to be particularly important
since uncoupled eNOS is a source of harmful radicals: superoxide and peroxynitrite, and
the resulting oxidative stress underlies the pathophysiology of atherosclerosis. Below, we
will discuss molecular mechanisms by which hypoxia contributes to the reduction in the
synthesis and bioavailability of NO in the pathophysiology of cardiovascular diseases.

4. Influence of Hypoxia on eNOS Expression

eNOS expression and activity are regulated at the transcriptional, posttranscriptional
and posttranslational levels [38]. Any disturbance of this complex regulation is reflected
by changes in NO bioavailability and affects cardiovascular health. Various stimuli, such
as oxidative stress, inflammation, and also hypoxia, affect eNOS expression and activity
and thus contribute to the pathogenesis of cardiovascular diseases. Inadequate oxygen
supply is a well-confirmed modulator of eNOS; however, research findings in this field are
somewhat inconsistent. Hypoxic regulation of eNOS expression is complex and ambiguous,
dependent on the species (human vs. rodents and others), endothelial heterogeneity across
distinct vascular beds, experimental model (in vitro cell culture or animal studies), or the
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stage of development. eNOS was shown to be downregulated by hypoxia in vitro, in
cultured human umbilical vein endothelial cells (HUVECs) [79–83], human coronary artery
endothelial cells (HCAECs) [84], bovine pulmonary artery endothelial cells (PAECs) [85],
human saphenous vein endothelial cells [86], as well as in vivo in the lungs of patients
with pulmonary hypertension [87] or in aortas and mesenteric arteries of mice exposed
to chronic intermittent hypoxia [88]. Interestingly, the effect of hypoxia on eNOS may
vary depending on whether it is an arterial or a venous endothelium. In contrast to
HUVECs, in human umbilical artery endothelial cells (HUAECs), hypoxia upregulated
eNOS expression in vitro [89]. Similar regularity was observed in vivo, as eNOS was
downregulated in HUVECs and upregulated in HUAECs collected from pregnancies
affected by hypoxia (fetal growth restriction, FGR) [89–91]. eNOS upregulation was also
observed in pulmonary endothelium of mice or rats exposed to hypoxia [92,93], and
in vitro, in hypoxic porcine aortic endothelial cells [94]. Chronic hypoxia was also shown
to upregulate eNOS expression in the endothelium from the uterine of pregnant sheep,
but not in their femoral or renal arteries, nor in the uterine of non-pregnant sheep [95].
Some studies, in turn, show that hypoxia does not change the expression of eNOS but
affects its enzymatic activity [96,97]. Despite these discrepancies, most studies seem to
indicate a decreased expression of eNOS in hypoxia; however, one should keep in mind
the overrepresentation of some research models (e.g., popular HUVEC cells). Since this
review concerns the role of hypoxia in endothelial dysfunction, we will focus here on
the mechanisms leading to decreased expression or activity of eNOS. Still, it should be
remembered that it is not always the case.

Several different mechanisms involved in eNOS downregulation have been described.
It has been shown that hypoxia significantly reduces both the transcription of eNOS and
stability of eNOS mRNA in human umbilical vein endothelial cells and bovine pulmonary
artery endothelial cells (HUVECs and bovine PAECs), which results in reduced nitric oxide
production [81,85]. Hypoxia may affect the DNA methylation status [98]. The CpG site
located at position -171 in the promoter region of eNOS was reported to be hyperme-
thylated in OSA pediatric patients, leading to reduced expression of eNOS [99]. Altered
methylation pattern was also responsible for changed eNOS expression in HUVECs and
HUAECs collected from FGR fetuses [90]. Fish et al. [79], in the study on hypoxic HUVEC,
showed that the repression of eNOS transcription might be mediated through epigenetic
regulation by histone modification and eviction. In turn, reduced stability of eNOS mRNA
was attributed to its interaction with natural antisense sONE transcript. sONE, the long
noncoding RNA (lncRNA), is complementary to eNOS mRNA in a region spanning the
fragment of its coding sequence and 3′-UTR. Being expressed in endothelial cells at very
low levels under normoxia, sONE is strongly upregulated by hypoxia, leading to eNOS
message destabilization and reduction in eNOS protein level. In parallel, upregulation of
sONE was also demonstrated in vivo in aortas of hypoxic rats [80]. Moreover, decreased
eNOS mRNA stability may also result from its interaction with microRNAs [100]. As we
previously demonstrated, hypoxia-induced miR-200b contributed to the reduction in eNOS
expression and diminished NO release in hypoxic HUVECs [82]. Additionally, in normoxia,
eNOS mRNA was reported to be actively stabilized by its interaction with heterogeneous
nuclear ribonucleoprotein E1 (hnRNP E1) [83]. Hypoxia disrupts this interaction, making
eNOS mRNA susceptible to destabilization with antisense RNA or miRNAs (Figure 1) [83].
Thus, microRNAs, which normally do not have access to the 3’-UTR, may interact with
the 3’-UTR during hypoxia and negatively regulate eNOS expression. Even though the
expression of these miRNAs is not upregulated by hypoxia, their functionality could be
increased under hypoxic conditions due to the extended accessibility of eNOS mRNA.
Several miRNAs that are not directly related to hypoxia have been implicated in eNOS
regulation, including miR-155, miR-222/221, miR-24, and miR-765 [83,101–103]. Moreover,
decreased eNOS mRNA stability in human endothelial cells has been attributed to yet
another mechanism, dependent on the reorganization of the actin cytoskeleton via hypoxia-
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induced Rho kinase [86]. Of note, Rho kinase can also suppress eNOS activity through
direct phosphorylation of eNOS at Thr495 [104].
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Figure 1. Regulation of eNOS expression in normoxia (A) and hypoxia (B). Hypoxic downregulation
of eNOS is due to decreased transcription and reduced mRNA stability. In hypoxic ECs, eNOS
mRNA is not stabilized by hnRNP E1, and its 3′-UTR interacts with hypoxia-induced antisense sONE
transcript, as well as with miRNAs, resulting in increased eNOS mRNA degradation.

Downregulation of eNOS by insufficient oxygen supply was observed in vivo as well.
Analysis of aortas from rats exposed to hypoxia revealed a dramatic reduction in eNOS
protein and mRNA and impairment of endothelium-dependent vascular relaxation, as
compared to normoxic control [105]. Reduced expression of eNOS was observed in hypoxia-
related diseases, i.e., in the lungs of patients with pulmonary hypertension [87] and in
endothelial cells of OSA patients [106]. Diminished NO production is well documented and
serves as a partial explanation of the pathogenesis of cardiovascular diseases, but on the
other hand, several studies indicate that both expression and/or activity of eNOS may be
upregulated by hypoxia. Induction of eNOS transcription was reported to be responsible for
eNOS upregulation in hypoxic bovine aortic endothelial cells (BAECs); however, elevated
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eNOS level was not accompanied by its increased activity [107]. Similar results were
obtained from in vivo animal studies—eNOS has been found to be upregulated by chronic
hypoxia in rat lung tissue [105,108,109]. As mentioned above, these discrepancies in
hypoxic regulation of eNOS expression may result from the use of different research
models and different experimental approaches.

5. eNOS Activity in Hypoxia

In addition to regulating the amount of eNOS protein, hypoxia can also affect the
enzymatic activity of eNOS by modulating its post-translational modifications. Hypoxia
has been shown to alter eNOS phosphorylation status: eNOS Ser1177 phosphorylation and
Akt kinase expression and phosphorylation were reduced in hypoxic HUVECs, whereas
Thr495 phosphorylation was increased [110]. Increased eNOS Thr495 phosphorylation has
also been observed in the lungs of patients with pulmonary hypertension [111]. Hypoxic
inhibition of eNOS activity may be due to changes in protein–protein interactions. Oxygen
deprivation has been reported to decrease HSP90 expression in porcine PAECs, thereby
reducing the amount of HSP90 interacting with eNOS, leading to decreased eNOS activ-
ity [96]. In another study, decreased eNOS activity in the pulmonary arteries of hypoxic
rats was attributed to attenuation of Ser1177 phosphorylation and alterations in eNOS
interactions with caveolin and calmodulin [112].

6. eNOS Uncoupling Elicited by Hypoxia

eNOS uncoupling is considered the major cause of endothelial dysfunction observed
in CVD. When eNOS itself becomes a source of superoxide and peroxynitrite anions,
and NO is quenched, oxidative stress augments, leading to endothelial dysfunction and
atherogenesis. Hypoxia can induce eNOS uncoupling by altering the availability of cofactor
BH4 and substrate L-Arg, and the mechanisms contributing to these disturbances are
discussed below.

6.1. BH4/BH2 Ratio

Tetrahydrobiopterin (BH4) is an essential cofactor for eNOS. Its cellular availability
is an outcome of the de novo biosynthesis pathway, loss of BH4 by oxidation to dihydro-
biopterin (BH2), and regeneration of the reduced form through the salvage pathway [113].
BH4 is synthesized de novo from GTP, with GTP cyclohydrolase I (GTPCH1) as the first
and rate-limiting enzyme in this pathway [114]. Under oxidative stress conditions, BH4 is
easily oxidized to BH2 by O2

− and uncoupled eNOS-derived ONOO−. The resulting BH4
deficiency is probably the main cause of eNOS uncoupling. BH4 can be regenerated from
its oxidized form BH2 via the salvage pathway by dihydrofolate reductase (DHFR) [37].
Cardiovascular diseases are associated with oxidative stress, oxidation of BH4 to BH2,
and eNOS uncoupling, implicating that the salvage pathway seems to have particular
importance in their pathogenesis [115]. Indeed, DHFR has been suggested to play a criti-
cal role in regulating the BH4/BH2 ratio and eNOS coupling and activity in endothelial
cells [116,117].

Hypoxia was reported to affect DHFR expression. As reported by Chalupsky et al. [118],
the BH4/BH2 ratio and NO level were diminished in hypoxic human pulmonary artery
endothelial cells (HPAECs) and in pulmonary arteries from mice exposed to hypoxia, due
to reduced DHFR expression. Interestingly, hypoxia had no effect on the total amount of
BH4 and BH2 but only changed their ratio, indicating that the de novo pathway is not
affected by hypoxia, in contrast to the salvage pathway. Inhibition of DHFR expression by
hypoxia hindered BH4 regeneration, resulting in eNOS uncoupling. Thus, downregulation
of DHFR by hypoxia has been proposed to contribute to the pathogenesis of pulmonary
hypertension. In the hypoxia-induced pulmonary hypertension rat model, BH4 levels
were decreased, and exogenous BH4 supplementation augmented lung eNOS activity and
reduced superoxide production [119,120].
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6.2. L-Arg/ADMA Ratio

Hypoxia can affect the availability of L-Arg, the substrate for NO generation by
eNOS. Intracellular L-Arg concentration depends on its dietary intake, whole-body protein
turnover, endogenous synthesis, cellular uptake, and metabolism, with the major fraction
of plasma L-Arg coming from protein breakdown [121,122].

Under physiological conditions, the intracellular L-Arg levels far exceed the Km of
NO synthase, and eNOS is theoretically saturated with the substrate [123]. However,
NO formation is dependent on extracellular L-Arg concentrations, a phenomenon known
as the ‘L-arginine paradox’ [124]. In this context, the actual uptake of L-Arg by ECs
regulates eNOS activity and emphasizes the role and efficiency of the L-Arg transporter.
In endothelial cells, L-Arg is taken up mainly via the cationic amino acid transporter
CAT-1, belonging to the system y+ carrier [125,126]. Interestingly, CAT-1 was reported
to co-localize and interact with eNOS in plasma membrane caveolae [127]. This mutual
proximity would facilitate the direct delivery of L-Arg to eNOS, further emphasizing the
role of CAT-1 in the regulation of eNOS efficiency. Thus, factors that alter the efficiency
or expression of the CAT-1 transporter would affect the synthesis of nitric oxide. There
are only a few reports on hypoxic regulation of CAT-1 activity; nevertheless, they are
consistent: hypoxia negatively regulates L-Arg uptake by ECs. Inadequate oxygen supply
was demonstrated to inhibit L-Arg uptake as well as its intracellular content in porcine
PAECs [128,129]. Consistently, overexpression of CAT-1 in hypoxic human pulmonary
microvascular endothelial cells (PMVECs) increased NO production [130].

Once taken up by an endothelial cell, L-Arg can be metabolized by eNOS to generate
NO, but on the other hand, L-Arg can also be hydrolyzed by arginases to ornithine and
urea; thus arginase competes with eNOS for the common substrate [121]. Arginase exists
in two isoforms, Arg-I and Arg-II, encoded by two separate genes [131]. Arg- I is located
mainly in the liver and participates in the last step of the urea cycle, converting L-Arg to
L-ornithine and urea. Arg-II is scattered across different body tissues, most abundant in
the kidney but also found in the endothelium, and functions independently of the urea
cycle [132]. Both isoforms have been reported to be expressed in endothelial cells; however,
their expression seems to be species and vascular bed–specific [133]. For example, Arg-I
is barely detectable in HUVECs, but both arginase isoforms are present in human aortic
endothelial cells (HAECs) [134]. As arginase and nitric oxide synthase compete for the
same substrate, upregulation or activation of arginase can impair nitric oxide generation
by eNOS. Excessive arginase expression or activity can result in eNOS uncoupling [135].

Hypoxia has been shown to be one of the factors that stimulate arginase. It was re-
ported that hypoxia upregulates the expression and activity of Arg-II in human pulmonary
microvascular endothelial cells (HPMECs), HUVECs, and BAECs, with concomitant re-
duction in eNOS activity and decrease in NO release [134,136,137]. Hypoxic upregulation
of Arg-II has been shown to be mediated through HIF2-α in HPMEC [136], whereas in
HUVECs, hypoxia as well as hypoxia mimetic DMOG, upregulated Arg-II in HIF-1α-
dependent manner [138]. In HPMECs, hypoxia was reported to upregulate Arg-II through
increased degradation of KLF15, which under normoxic conditions inhibit arginase tran-
scription [139]. Furthermore, the cellular distribution of Arg-II was shown to be affected
by hypoxia: Arg-II and eNOS proximity is increased in hypoxia, which allows arginase to
successfully compete for the substrate [134]. HIF-2 has also been shown to be involved in
the pathogenesis of hypoxic pulmonary hypertension by inducing the expression of Arg-I
as well as Arg-II in the pulmonary endothelium, thus disrupting NO homeostasis [140].
Increased expression of Arg-II was reported to be responsible for impaired NO synthesis in
endothelial cells of patients with PH [141].

The major fraction of plasmatic and cellular arginine in adult humans comes from
physiological whole-body protein turnover [121]. Due to common post-translational modi-
fication, L-Arg residues within proteins can be methylated by a family of enzymes named
protein arginine methyltransferases (PRMTs) [142]. The subsequent breakdown of such
proteins results in the release of free methylated arginine derivatives: NGmonomethyl-L-
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arginine (L-NMMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylargi-
nine (SDMA) [143]. Methylarginies released into the cytosol pass into the plasma and can
be taken up by other cells via y+ carriers. Both ADMA and L-NMMA, but not SDMA, are
potent competitive inhibitors of nitric oxide synthases, with blood ADMA concentrations
approximately 10-fold higher than L-NMMA. If taken up by endothelial cells, ADMA is
the major endogenous inhibitor of eNOS, and disturbed L-Arg/ADMA ratio can lead to
eNOS uncoupling [144]. Furthermore, ADMA and SDMA interfere with the cellular uptake
of L-Arg by y+ carrier and thereby potentially reduce L-Arg uptake [145,146]. Increased
ADMA levels in plasma have been correlated with endothelial dysfunction and are an
independent risk factor for the development of systemic cardiovascular diseases [147].

About 20% of circulating ADMA is eliminated by kidneys, and the remaining 80% is
metabolized by dimethylarginine dimethylaminohydrolases (DDAHs) that degrade ADMA
to L-citrulline and dimethylamine (DMA). DDAHs are expressed in two isoforms. DDAH-1
is mainly detected in kidneys, liver, brain, and lungs but is also found in the endothelium,
and it is believed to be responsible for the systemic elimination of circulating ADMA.
DDAH-2 is expressed primarily in blood vessels (including endothelium), heart, placenta,
and immune tissues, and its role in ADMA metabolism seems to be more local [148].
Diminished DDAH expression and activity have been linked to ADMA accumulation and
endothelial dysfunction [149].

Hypoxia can affect ADMA generation and metabolism [150]. First, hypoxic conditions
may increase protein L-Arg methylation. It was reported that the expression of one of
the isoforms of protein arginine methyltransferases, PRMT2, is upregulated in the lungs
of mice exposed to chronic hypoxia, resulting in increased protein methylation and ele-
vated ADMA levels [151]. Thus, hypoxia may affect ADMA levels by increasing protein
L-Arg methylation. Second, hypoxia can affect DDAH activity and ADMA metabolism.
ADMA has been shown to accumulate in animal hypoxia models, as well as in human
studies [152]. Higher ADMA but lower L-Arg serum levels were observed in patients with
obstructive sleep apnea syndrome, in relation to healthy controls [153] and in patients with
pulmonary hypertension [154]. In the chronic hypoxia-induced pulmonary hypertension
model, increased ADMA levels were observed along with reduced DDAH-1 expression
and activity [155]. In vitro studies have shown that 48h of hypoxic treatment led to di-
minished DDAH-1 expression and elevated ADMA levels in human pulmonary artery
endothelial cells (HPAECs) [156]. On the other hand, exogenously added ADMA increased
the stabilization of HIF-1α protein in HPAECs, further decreasing DDAH-1 expression
and activating HIF-1α dependent pathways, resulting in the development of pulmonary
hypertension phenotype. These results suggest that ADMA accumulation induced by
hypoxia can be involved in the pathogenesis of pulmonary hypertension [156]. Iannone
et al. demonstrated [157] that endothelium-specific upregulation of miR-21 by hypoxia
is responsible for decreased DDAH-1 expression and ADMA accumulation, leading to
the development of hypoxia-induced pulmonary hypertension. Increased miR-21 and
diminished DDAH-1 expression were observed in hypoxic HPAECs, as well as in lung
tissues from patients with idiopathic pulmonary arterial hypertension [157]. Some studies
show that hypoxia can also negatively regulate DDAH-2. Arrigoni et al. [158] reported an
approximately 90% reduction in DDAH2 protein, paralleled by ca. 70% decrease in DDAH
activity in the lungs of neonatal piglets exposed to hypoxia, a porcine model of pulmonary
hypertension. Reduced DDAH2 protein and mRNA, paralleled by elevated ADMA, were
observed in patients with idiopathic pulmonary arterial hypertension and in pulmonary
hypertensive rats [159].

As discussed above, hypoxia via disturbing the BH4/BH2 ratio or L-Arg/ADMA ratio
can induce eNOS uncoupling, which in turn evokes oxidative stress, further intensifying
eNOS uncoupling and leading to endothelial dysfunction (Figure 2).
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Figure 2. (A) In normoxic endothelial cells, eNOS in its “coupled” state produces appropriate
amounts of NO, which protects against atherogenesis. (B) Under hypoxic conditions, DHFR ex-
pression and activity are diminished. ADMA accumulates as a result of increased PRMT activity
and inhibition of DDAH expression and activity, while intercellular L-Arg levels are reduced due
to inefficient transport and increased arginase activity. Decreased L-Arg/ADMA and BH4/BH2

ratios contribute to eNOS uncoupling and O2
− generation. O2

− reacts with NO (still produced
in smaller quantities), leading to formation of ONOO−, which further oxidizes BH4, initiating the
vicious cycle that results in oxidative stress. Reduced NO release (i.e., endothelial dysfunction) leads
to atherogenesis.
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7. Hypoxia, Oxidative Stress and Endothelial Inflammation

When discussing the influence of hypoxia on NO production in the endothelium, one
should not ignore the accompanying oxidative stress and inflammation, as they are the
basic mechanisms of atherosclerosis pathobiology, and hypoxia may trigger or intensify
both these pathways.

It is well established that one of the mechanisms by which hypoxia induces tissue
damage is the increased formation of reactive oxygen species (ROS). Endothelial cells re-
spond to acute hypoxia by rapid and transient superoxide generation by the mitochondrial
electron transport chain [160,161]. In addition, the activity or expression of NADPH oxi-
dase can be increased in hypoxic conditions, augmenting overall ROS production [162,163].
The excess superoxide scavenges NO generated by eNOS in endothelial cells, thus lim-
iting NO bioavailability. The resulting peroxynitrite oxidizes the BH4 cofactor, leading
to eNOS uncoupling [164]. Furthermore, oxidative stress disturbs the balance between
L-Arg and ADMA [165]. It was shown that ROS impair endothelial NO-mediated coronary
microvessel dilation by upregulating arginase activity and reducing L-Arg availability [166].
Arginase expression and activity were also shown to be elevated in ROS exposed BAECs
through the RhoA/ROCK pathway [167]. Thus, hypoxia through arginase upregulation
and eNOS uncoupling can partly contribute to oxidative stress. It was shown that arginase
inhibition reduced hypoxia-induced ROS formation [137]. In fact, oxidative stress is con-
sidered as the major contributor to eNOS uncoupling and endothelial dysfunction [59,168].
Hence, hypoxia not only reduces the bioavailability of nitric oxide directly (as discussed in
previous sections) but also acts indirectly by inducing oxidative stress. Moreover, hypoxic
response and oxidative stress are interrelated: mitochondria-derived ROS have been shown
to mediate the hypoxic response by acting as signaling molecules that contribute to HIF-α
stabilization, and hypoxic response is lost in cells depleted of mitochondrial DNA (ρ0

cells) [169,170].
In addition to oxidative stress, hypoxia can induce endothelial cell activation, a proin-

flammatory and procoagulant state of ECs, characterized by the expression of cell–surface
adhesion molecules. ECs activation is driven by the NF-κB transcription factor, which is
rapidly induced in response to a stimulus such as cytokines, bacterial or viral antigens,
and stress signals, including hypoxia [171,172]. Upon activation, NF-κB induces the ex-
pression of proinflammatory genes, mainly cytokines (TNF-α, IL-1, IL-2, IL-6, IL-8, IL-18)
and adhesion molecules (VCAM-1, ICAM-1, E-selectin) that mediate leukocyte rolling,
adhesion, and transendothelial migration, and initiate inflammatory cascade and athero-
genesis [173,174]. Hypoxia has been shown to induce NF-κB via mechanisms reviewed
elsewhere [175], and the effects of NF-κB signaling were observed in vivo and in vitro.
Both OSA patients and people with mountain sickness have been reported to present ele-
vated levels of circulating proinflammatory cytokines linked to NF-κB activation [176–178].
Expression of ECs activation markers has also been demonstrated in cerebral microvessels
of rats exposed to hypoxia [55]. Low oxygen tension, as well as hypoxia mimetic DMOG,
upregulated ICAM-1 expression in HUVECs [138]. Similarly, overexpression of HIF-1α
and HIF-2α in endothelial cells elevated their surface expression of VCAM-1 and ICAM-1,
and consequently increased their adhesion and migration capacity [179].

Atherosclerosis is a chronic inflammatory state, initiated with endothelial cell acti-
vation. Endothelial activation, in turn, is associated with endothelial dysfunction since
reduced NO bioavailability stimulates endothelial activation. De Caterina et al. [180]
showed that inhibition of eNOS with L-NAME resulted in induction of VCAM-1 expres-
sion, a marker of ECs activation and inflammation. On the other hand, NO donors reduced
the expression of adhesion molecules and proinflammatory cytokines through inhibition
of NF-κB [180]. Conversely, ECs activation was shown to contribute to endothelial dys-
function by inhibiting eNOS expression via decreasing eNOS promoter activity, as well as
its mRNA half-life due to miR-155 induction [101,181,182]. In addition, hypoxia and the
HIF-1α pathway are associated with the accumulation of advanced glycation end products
(AGEs) and increased RAGE (AGEs receptor) signaling, which in turn also contributes
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to oxidative stress and endothelial dysfunction [183,184]. The role of RAGE activation in
diseases with ischemic background, such as atherosclerosis, peripheral artery disease, or
cancer, was well established in both human cell studies and animal models [185–187].

Hypoxia elicits ECs activation and inflammation but, on the other hand, inflammatory
diseases are frequently characterized by tissue hypoxia. It has been demonstrated that
atherosclerotic lesions contain regions of severe hypoxia [76,77]. On the other hand, HIF-
α accumulation can also be observed in normoxia. Interestingly, NF-κB upregulates
HIF-1α in response to elevated ROS, resulting in the induction of HIF-dependent target
genes [188]. Thus, the hypoxic response, oxidative stress, and inflammation are interrelated
and overlapping mechanisms involved in the pathological reduction in NO synthesis and
availability, leading to endothelial dysfunction (Figure 3).
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8. Concluding Remarks

In conclusion, hypoxia affects the nitric oxide synthesis pathway through several con-
vergent and interdependent mechanisms. Hypoxic signaling diminishes eNOS expression
and activity and, most importantly, evokes eNOS uncoupling via disturbing the activity or
expression of BH4 and L-Arg/ADMA-related enzymes. Uncoupled eNOS is an important
source of free radicals that disrupts redox balance and evokes oxidative stress. Simultane-
ously, hypoxia contributes to the impairment of the NO pathway by increasing free radicals
derived from the mitochondrial respiratory chain and NADPH oxidase and by stimulating
endothelial activation. Together, these disturbances contribute toward the reduction in
nitric oxide bioavailability and the development of endothelial dysfunction, which under-
lies the pathophysiology of cardiovascular diseases. Understanding the interdependence
between these seemingly different mechanisms can help to develop therapeutic strategies
for the prevention of atherosclerosis.
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187. Woźniak, M.; Konopka, C.J.; Płoska, A.; Hedhli, J.; Siekierzycka, A.; Banach, M.; Bartoszewski, R.; Dobrucki, L.W.; Kalinowski, L.;
Dobrucki, I.T. Molecularly targeted nanoparticles: An emerging tool for evaluation of expression of the receptor for advanced
glycation end products in a murine model of peripheral artery disease. Cell. Mol. Biol. Lett. 2021, 26, 10. [CrossRef]

188. Bonello, S.; Zähringer, C.; BelAiba, R.S.; Djordjevic, T.; Hess, J.; Michiels, C.; Kietzmann, T.; Görlach, A. Reactive Oxygen Species
Activate the HIF-1α Promoter Via a Functional NFκB Site. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 755–761. [CrossRef]

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://doi.org/10.1016/j.neuint.2011.12.008
http://doi.org/10.1186/s11658-021-00253-0
http://doi.org/10.1161/01.ATV.0000258979.92828.bc
http://mostwiedzy.pl

	Introduction 
	eNOS and Its Regulation 
	Hypoxia and Cardiovascular Diseases 
	Influence of Hypoxia on eNOS Expression 
	eNOS Activity in Hypoxia 
	eNOS Uncoupling Elicited by Hypoxia 
	BH4/BH2 Ratio 
	L-Arg/ADMA Ratio 

	Hypoxia, Oxidative Stress and Endothelial Inflammation 
	Concluding Remarks 
	References

