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Abstract 

Nitric oxide (NO) is one of the most important molecules released by endothelial cells, 
and its antiatherogenic properties support cardiovascular homeostasis. Diminished NO 
bioavailability is a common hallmark of endothelial dysfunction underlying the patho‑
genesis of the cardiovascular disease. Vascular NO is synthesized by endothelial nitric 
oxide synthase (eNOS) from the substrate L‑arginine (L‑Arg), with tetrahydrobiopterin 
 (BH4) as an essential cofactor. Cardiovascular risk factors such as diabetes, dyslipidemia, 
hypertension, aging, or smoking increase vascular oxidative stress that strongly affects 
eNOS activity and leads to eNOS uncoupling. Uncoupled eNOS produces superoxide 
anion  (O2

−) instead of NO, thus becoming a source of harmful free radicals exacerbat‑
ing the oxidative stress further. eNOS uncoupling is thought to be one of the major 
underlying causes of endothelial dysfunction observed in the pathogenesis of vascular 
diseases. Here, we discuss the main mechanisms of eNOS uncoupling, including oxida‑
tive depletion of the critical eNOS cofactor  BH4, deficiency of eNOS substrate L‑Arg, or 
accumulation of its analog asymmetrical dimethylarginine (ADMA), and eNOS S‑glu‑
tathionylation. Moreover, potential therapeutic approaches that prevent eNOS uncou‑
pling by improving cofactor availability, restoration of L‑Arg/ADMA ratio, or modulation 
of eNOS S‑glutathionylation are briefly outlined.
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Oxidative/nitroxidative stress, Peroxynitrite, Nitric oxide, ADMA, Tetrahydrobiopterin, 
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Introduction
Cardiovascular disease (CVD) is the leading cause of death worldwide, highlighting the 
need to investigate its molecular mechanisms for effective treatment options. A com-
mon and early hallmark of CVD is endothelial dysfunction, i.e., a disturbance in the nor-
mal physiology of the endothelium that lines all blood vessels [1]. The endothelium is 
critical to cardiovascular homeostasis and plays a vital role in the pathophysiology of 
cardiovascular diseases associated with atherosclerosis, including hypertension, stroke, 
coronary artery disease, peripheral vascular disease, or heart failure [2, 3]. Endothelial 
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cells produce and release a subset of diverse signaling molecules that orchestrate cardio-
vascular physiology by regulating hemostasis, vascular tone and permeability, inflamma-
tion, and angiogenesis [4]. Among these substances, nitric oxide (NO) is a key molecule 
that significantly influences the physiology of the endothelium and the cardiovascular 
system, and endothelial dysfunction is often simply defined as diminished NO bioavail-
ability [5].

Nitric oxide was discovered as an endothelium-derived relaxing factor (EDRF), and 
research into its essential role in vascular tone regulation has been recognized by the 
Nobel Prize awarded to Furchgott, Ignarro, and Murad in 1998 [6]. NO, as a lipophilic 
molecule, easily diffuses from endothelium into adjacent vascular smooth muscle cells 
(VSMCs) and binds to the prosthetic haem group of soluble guanylate cyclase (sGC), 
thus activating the enzyme [7]. sGC catalyzes the dephosphorylation of guanosine 
triphosphate (GTP) to cyclic guanosine 3’,5’-monophosphate (cGMP), which acts as a 
second messenger and activates protein kinase G (PKG) [8]. As a result of PKG activity, 
cytoplasmic calcium  (Ca2+) levels decrease, and the downstream signaling cascade leads 
to vascular smooth muscle relaxation and consequent vasodilation [9]. But regulating 
vascular tone is not the only role of NO as it also regulates vascular wall permeability, 
reduces proliferation and migration of VSMCs as well as platelet activation and aggre-
gation [10]. Moreover, NO modulates the expression of endothelial adhesion molecules 
and thus prevents leukocyte recruitment and adhesion [11]. Therefore, besides being 
a potent vasodilator, NO generally has anti-atherosclerotic properties. Its pleiotropic 
effects are critical for vascular homeostasis, and dysregulation of NO signaling pathways 
is associated with the pathogenesis of CVD [12]. Endothelial dysfunction is character-
ized by impaired endothelium-dependent vasorelaxation due to diminished nitric oxide 
bioavailability resulting from an imbalance between its generation and degradation.

In endothelial cells, NO is produced by endothelial nitric oxide synthase (eNOS), one 
of three nitric oxide synthases (NOS) present in human tissues besides neuronal NOS 
(nNOS) expressed primarily in neurons and inducible NOS (iNOS) expressed in vari-
ous cell types (especially in immune system cells) during infection or inflammation 
[13]. Thus, in addition to its essential role in the regulation of vascular physiology, NO 
also functions as a neurotransmitter in the nervous system and as a cytotoxic agent in 
the immune response [14, 15]. Given the very short NO half-life, its molecular effects 
are restricted to the site of its synthesis, hence eNOS expressed almost exclusively in 
endothelial cells is the major donor of vascular NO. Thus, diminished eNOS expression 
and activity are the major causes of reduced NO synthesis. On the other hand, NO scav-
enging by superoxide anion  (O2

−) is the main reason for decreased NO half-life in the 
vasculature [16]. Therefore it is not surprising that increased oxidative stress is involved 
in the pathogenesis of CVD [17].

A unique phenomenon called eNOS uncoupling combines oxidative NO scavenging 
with altered eNOS activity. Uncoupled eNOS generates highly reactive superoxide  (O2

−) 
instead of NO. eNOS uncoupling is often triggered by oxidative stress associated with 
cardiovascular risk factors, including diabetes, hypertension, dyslipidemia, smoking, and 
aging, via the mechanisms described below [18]. The presence of both functional and 
uncoupled eNOS in the cell results in the concomitant production of NO and  O2

− in the 
close vicinity.  O2

− reacts with NO, thus scavenging it and yielding harmful peroxynitrite 
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radical  (ONOO−), so a vicious cycle arises that potentiates oxidative stress and drives 
pathological changes [19]. Moreover, eNOS uncoupling occurs to some extent physi-
ologically, as we have shown by using high-precision electrochemical microsensors 
able for concomitant real-time detection of NO,  O2

− and  ONOO− generated in a single 
cell [20–22]. eNOS uncoupling is thought to be one of the major underlying causes of 
endothelial dysfunction observed in the pathogenesis of vascular diseases. The presence 
of uncoupled eNOS has been proven in patients with diabetes [23–25], hypertension 
[26], coronary artery disease [27], and congestive heart failure [28]. eNOS uncoupling 
was also demonstrated in animal experimental models of hypertension [29], diabetes 
[30], ischemia–reperfusion injury [31, 32], and ageing [33], and confirmed in  vitro in 
human and animal endothelial cell cultures [34, 35].

This review discusses the molecular mechanisms leading to eNOS uncoupling and the 
proposed therapeutic approaches to prevent or reverse eNOS uncoupling and restore 
endothelial function as a possible strategy for CVD treatment.

eNOS regulation
NO is produced by eNOS from L-Arg with molecular oxygen  (O2) and nicotinamide 
adenine dinucleotide phosphate (NADPH) as co-substrates. The reaction requires sev-
eral cofactors: heme, flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), 
and tetrahydrobiopterin  (BH4), the latter being a critical determinant of eNOS cou-
pling [13]. eNOS activity is also dependent on  Ca2+/calmodulin (CaM) binding [36]. 
The enzyme exists as a homodimer, each monomer consisting of an N-terminal oxyge-
nase domain with substrate L-Arg, heme, zinc, and  BH4 cofactor binding sites, a central 
CaM-binding region, and a C-terminal reductase domain with NADPH, FAD, and FMN 
binding sites (Fig. 1) [37]. Functional eNOS dimer catalyzes the electron transfer from 
the C-terminal-bound NADPH through FAD and FMN of one monomer to the heme 
iron in the N-terminal oxygenase domain of the second monomer, and this interdomain 
electron transfer is facilitated by CaM. Heme iron is reduced, thus enabling the binding 
and reduction of  O2.  BH4 serves in this process as a one-electron donor for the heme-
bound oxygen, which activates  O2, enabling the following oxidation of L-Arg to L-cit-
rulline (L-Cit) and NO (Fig. 1) [38–40]. The  BH4 cofactor is thus essential for optimal 
eNOS activity [41].

eNOS is expressed constitutively in endothelial cells and basal NO synthesis maintains 
resting vascular tone, however a number of factors dynamically influence the enzyme 
expression and activity [13, 42, 43]. eNOS is regulated by various stimuli through post-
translational modifications: phosphorylation, acetylation, S-nitrosylation, S-glutathio-
nylation, and protein–protein interactions [44, 45]. Palmitoylation and myristoylation 
of eNOS enable its localization to the plasmalemmal caveolae, where the enzyme is 
sequestered in its inactive state due to the interaction with caveolin-1 [46]. eNOS 
activity is dependent on intracellular  Ca2+ concentration. In response to acetylcholine 
or bradykinin  Ca2+ level increases, and  Ca2+-activated CaM binds eNOS, disrupts its 
inhibitory interaction with caveolin, and stimulates NO synthesis [47]. Growth factors, 
hormones and shear stress affects the activity of kinases (PKA, Akt, and AMPK) and 
phosphatases, and modulate eNOS activity by altering the phosphorylation status of the 
enzyme [48]. Phosphorylation at Ser1177, Ser633 and Ser615 stimulates eNOS, whereas 
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phosphorylation at Thr495 and Ser114 inhibits it [49]. Among the various post-transla-
tional modifications of eNOS, S-glutathionylation is of particular interest to this review 
as it may directly affect eNOS uncoupling [50], thus we will discuss this issue in more 
detail below.

Oxidative/nitroxidative stress in cardiovascular diseases
Reactive oxygen species (ROS) are produced as by-products of cellular metabolism and 
play an important role in physiological cell signaling [51, 52]. ROS can also contribute to 
the pathogenesis of various diseases, especially if their amount exceeds the capacity of 
the antioxidant defense system, causing oxidative stress and subsequent oxidative dam-
age to lipids, proteins, and DNA [53]. Oxidative stress is a hallmark of CVD [54]. It is 
well documented that cardiovascular risk factors such as dyslipidemia, diabetes, hyper-
tension, obesity, or smoking lead to increased production of ROS in the vascular wall, 
and the resulting oxidative stress promotes the development of endothelial dysfunction 
[55]. Oxidative stress is also a major cause of ischemia–reperfusion injury, observed 
after the restoration of blood flow to the ischemic tissue following myocardial infarction 
or stroke [56, 57].

Enzymes that produce free radicals in the vascular wall include NADPH oxidase, xan-
thine oxidase, the mitochondrial electron transport chain, and, importantly, uncoupled 
eNOS [58]. Superoxide generated by these enzymes can be reduced by superoxide dis-
mutase (SOD) to  H2O2 which is then eliminated by catalase and glutathione peroxidase 

Fig. 1 Schematic eNOS homodimer structure with two monomers orientated "head‑to‑tail". Each monomer 
consists of a C‑terminal reductase domain that binds NADPH, FAD, and FMN, a central calmodulin‑binding 
region, and an N‑terminal oxygenase domain that binds substrate L‑Arg, oxygen, heme, and  BH4. The 
formation of a homodimer enables the transfer of electrons from the reductase domain of one monomer 
to the oxygenase domain of the second monomer. The dimeric structure is stabilized by heme binding 
and by zinc ion in the zinc‑thiolate cluster at the dimer interface. During catalysis, electrons from NADPH 
flow through the flavins FAD and FMN to the heme of the opposite monomer and CaM increases the rate 
of interdomain electron transfer. Heme reduction enables  O2 binding, and  BH4 can donate an electron to 
reduce and activate  O2. When cellular redox balance is maintained, and the substrate L‑Arg and the essential 
cofactor  BH4 availabilities are optimal,  O2 reduction is coupled to L‑Arg oxidation and NO synthesis. L‑Cit is 
formed as a byproduct
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(GPx). However, superoxide can also interact with NO and inactivate it, yielding toxic 
 ONOO−, and the rate of this reaction is three times faster than the dismutation of  O2

− 
by SOD (6.7 ×  109  mol/L−1   s−1) [59]. Thus the balance between antioxidant defense 
enzymes and the amount of ROS generated is key to proper NO bioavailability since 
excessive  O2

− scavenges NO. This balance is altered in various pathological conditions 
resulting in oxidative stress that plays an essential role in the development of CVD 
[60–62].

NADPH oxidases are considered as the major producers of  O2
− in the vasculature, and 

moreover, they are regarded the main source of “kindling radicals” that trigger the acti-
vation of additional ROS sources, e.g., via eNOS uncoupling [63]. The expression and 
activity of NADPH oxidases have been documented to increase in experimental models 
of diabetes [64, 65], hypertension [66, 67], smoking [68], obesity [69, 70], and with age-
ing [71]. Increased expression or activity of NADPH oxidase was reported in coronary 
and peripheral arteries of patients with coronary artery disease [72–74]. It is now well 
established that activation of NADPH oxidases contributes to cardiovascular pathogen-
esis [75].

NADPH oxidase- generated  O2
−, besides NO scavenging, triggers eNOS uncoupling 

(the mechanisms are discussed in the next section), and uncoupled eNOS becomes itself 
a source of superoxide [19]. The reaction of superoxide with NO yields peroxynitrite, 
 ONOO−, a very potent oxidant that intensifies eNOS uncoupling by oxidizing its cofac-
tor  BH4 [76]. Moreover,  ONOO− cause protein oxidation and nitration, leading to cel-
lular injury [77]. Thus, uncoupled eNOS contributes significantly to vascular oxidative 
stress, and acting as a vicious cycle, it is considered to be one of the most important 
mechanisms leading to endothelial dysfunction. eNOS uncoupling has been reported in 
the vessels of patients with diabetes, hypertension, coronary artery disease [23–27] as 
well as in animal studies [29–31, 33].

Another source of free radicals that contributes to endothelial dysfunction is the elec-
tron transport chain and oxidative phosphorylation. Elevated levels of plasma glucose 
and free fatty acids increase mitochondrial superoxide production [78]. Excessive ROS 
production at the mitochondrial compartment is associated with cardiovascular diseases 
and has been observed in diabetes, aging, hypertension, and heart failure [79–82].

Also, xanthine oxidase-derived ROS contributes to endothelial dysfunction. The 
enzyme activation has been implicated in increased vascular  O2

− generation in patients 
with chronic heart failure [83], coronary artery disease [72, 84] and in the animal model 
of hypercholesterolemia [85]. It was reported that the expression and activity of xanthine 
oxidase in endothelial cells is upregulated by angiotensin II (Ang II) treatment [86]. Xan-
thine oxidase is also involved in endothelial dysfunction induced by smoking, since its 
inhibition restored endothelial function in heavy smokers [87].

According to the “kindling radical” hypothesis, individual sources of free radicals are 
interrelated and can stimulate each other, which is confirmed by the observations that 
inhibiting only one of them can restore the redox balance [88]. NADPH oxidase, xan-
thine oxidase and mitochondria-derived ROS, in addition to damaging cellular proteins, 
lipids, and DNA, can scavenge NO, and moreover, they can induce eNOS uncoupling 
[18]. Uncoupled eNOS not only does not produce NO but instead generates  O2

− exac-
erbating oxidative stress. In addition to NO scavenging and eNOS uncoupling, vascular 
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oxidative stress induces oxidative damage of cellular macromolecules and the expression 
of proinflammatory genes, thus promoting atherogenesis [58, 89]. Oxidative stress is a 
major contributor to eNOS uncoupling and its mechanisms are described below.

Mechanisms of eNOS uncoupling
Under physiological conditions, i.e. in normal eNOS activity, the interdomain electron 
transfer and NADPH oxidation are coupled to NO synthesis. eNOS uncoupling refers to 
a situation in which eNOS produces superoxide instead of NO, thus becoming a source 
of harmful free radicals rather than antiatherosclerotic NO [18, 19].. Conditions impli-
cated in eNOS uncoupling include oxidative depletion of the critical eNOS cofactor 
 BH4, deficiency of eNOS substrate L-Arg, or accumulation of its analog asymmetrical 
dimethylarginine, and eNOS S-glutathionylation. These individual mechanisms are dis-
cussed below, but it is worth noting here that they are not mutually exclusive and may 
occur simultaneously.

Deficiency of  BH4 cofactor

BH4 is an essential eNOS cofactor required for efficient electron transfer in the eNOS 
catalytic cycle that largely determines its activity [90]. Cellular production of  BH4 is 
dependent on two alternative pathways: de novo synthesis or regeneration from its oxi-
dized form dihydrobiopterin  (BH2) through the salvage pathway [91].  BH4 is synthesized 
de novo from GTP by guanosine triphosphate cyclohydrolase I (GTPCH), 6-pyru-
voyltetrahydropterin synthase (PTPS) and sepiapterin reductase (SR) and GTPCH is the 
rate-limiting enzyme in  BH4 biosynthesis [91]. Importantly, under oxidative stress con-
ditions,  BH4 is rapidly oxidized to  BH2 by superoxide anion or, especially strongly, by 
peroxynitrite derived from NO scavenging by  O2

− [76].  BH2 can be reduced back to  BH4 
via the salvage pathway by dihydrofolate reductase (DHFR) [92]. Thus, the cellular avail-
ability of  BH4 is dependent on cellular redox status and the level of expression and activ-
ity of GTPCH and DHFR, the latter enzyme being particularly essential under oxidative 
stress conditions.

Cardiovascular risk factors are associated with oxidative stress, and excessive  O2
− 

oxidizes  BH4 to  BH2 [93].  BH2 can competitively replace  BH4, but being catalytically 
incompetent as a cofactor, it promotes eNOS uncoupling, where electron transport is 
uncoupled from NO synthesis, and instead,  O2

− is generated (Fig. 2) [90, 94]. Moreover, 
the peroxynitrite formed from the reaction of  O2

− with NO very strongly oxidizes  BH4 
[76]. As a result, the cellular  BH4/BH2 ratio drops, further increasing eNOS uncoupling 
and driving a vicious cycle of oxidative stress.

The suboptimal concentration of  BH4 and more importantly the resulting decrease 
in the  BH4/BH2 ratio probably represent a major cause of eNOS uncoupling impli-
cated in the pathophysiology of endothelial dysfunction [95, 96]. Oxidative deple-
tion of  BH4 as a cause of eNOS uncoupling and endothelial dysfunction has been 
described in  vivo, in the aortas of mice with deoxycorticosterone acetate-salt 
(DOCA-salt) hypertension [29], spontaneously hypertensive mice and rats [97, 98], 
apolipoprotein E (poE)-deficient mice [99], or aged mice and rats [33, 100]. Human 
studies have also confirmed the relationship between  BH4 depletion and endothelial 
dysfunction. Decreased vascular  BH4 level, increased production of eNOS-dependent 
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 O2
− proving eNOS uncoupling, and impaired vasorelaxations in response to acetyl-

choline were reported in patients with coronary artery disease [101]. Depletion of 
 BH4 and reduced NO bioavailability were also shown in patients with peripheral arte-
rial disease [102], diabetes [103], hypertension [26], and hypercholesterolemia [104]. 
Decreased  BH4/BH2 ratio is also associated with endothelial dysfunction in heart fail-
ure with preserved ejection fraction (HFpEF) patients [105].

Importantly, the reduction of the  BH4/BH2 ratio is not only a consequence of oxi-
dative depletion of  BH4, but may also a result from the reduced synthesis and regen-
eration of the cofactor due to decreased expression or activity of GTPCH and DHFR 
under oxidative stress conditions. Reduced GTPCH expression with a concomitant 
decrease in NO levels was observed in the aortas of aged mice, whereas GTPCH 
overexpression restored proper endothelial function [106]. Diabetes significantly 
affects the  BH4/BH2 ratio in mouse aortas without changing the total biopterin level 
or GTPCH expression, which indicates that  BH4 oxidation is the main cause of its 
deficiency [107]. Slightly different conclusions can be drawn from the studies on the 
diabetic rat model, where  BH4 deficiency was shown to be due to decreased expres-
sion and activity of GTPCH [108]. Nevertheless, in both cases, the overproduction of 
GTPCH improved the  BH4/BH2 ratio and restored endothelial function [107, 109]. 
Diabetes is also associated with impaired cofactor regeneration. Decreased DHFR 
expression and  BH4 content along with increased eNOS-derived  O2

− were observed 
in aortas of streptozotocin (STZ)-induced diabetic mice model [110]. Accordingly, 
decreased DHFR expression, accumulation of  BH2, decreased  BH4/BH2 ratio, and 
eNOS uncoupling were observed in vitro, in hyperglycemic endothelial cells [96, 111]. 
Oxidative stress evoked by exposure of endothelial cells to Ang II in vitro resulted in 
downregulation of DHFR expression, decrease in  BH4 levels, and eNOS uncoupling 
[112]. Decreased DHFR expression is also involved in eNOS uncoupling and vascu-
lar disorders in hypertensive rats [97] and in hypercholesterolemic mice [113]. The 

Fig. 2 eNOS uncoupling due to  BH4 deficiency. Under conditions of oxidative stress,  O2
− can combine with 

NO yielding  ONOO−, which strongly oxidizes  BH4 to  BH2. Decreased DHFR expression or activity prevents 
effective regeneration of the cofactor.  BH2 competes with  BH4 at the heme oxygenase domain but is not 
catalitically active, thus disturbing the normal electron flow and promoting superoxide formation
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decreased  BH4/BH2 ratio observed in various cardiovascular pathologies is therefore 
due to not only oxidative depletion of  BH4, but also impaired synthesis and regenera-
tion of this cofactor.

Deficiency of substrate L‑Arg and accumulation of ADMA

L-Arg is the substrate for eNOS and the main precursor of NO, therefore, the availability 
of L-Arg is important for the activity of this enzyme, and the substrate insufficiency may 
lead to eNOS uncoupling (Fig. 3). The cellular content of this amino acid is dependent 
on dietary intake, whole-body protein turnover, endogenous synthesis, cellular uptake, 
and metabolism [114, 115]. Under physiological conditions, the intracellular concentra-
tion of L-Arg is saturating, as it significantly exceeds the  Km of eNOS [116]. Neverthe-
less, exogenous L-Arg can still stimulate NO synthesis, which is a phenomenon known 
as the "L-arginine paradox" [117]. Therefore, the effective concentration of L-Arg, par-
ticularly the ratio of L-Arg to its methylated derivative, the asymmetric dimethylargi-
nine (ADMA), an inhibitor of eNOS, is essential, and decreased L-Arg/ADMA ratio is 
associated with eNOS uncoupling [118]. The efficiency of cellular L-Arg uptake and the 
rate of its intracellular metabolism may also play a role and affect the final availability 
of L-Arg for eNOS. L-Arg is transported across the endothelial cell membrane mainly 
by cationic amino acid transporter (CAT) proteins belonging to the  Na+-independent 
y + transport system (the letter y is for lysine, the first substrate described for this sys-
tem, and the + denotes the positive charge of CAT substrates) [119]. The major endothe-
lial L-Arg transporter, cationic amino acid transporter 1 (CAT-1), colocalizes with eNOS 
in plasma-membrane caveolae and could directly deliver L-Arg to eNOS or increase its 
local concentration in eNOS proximity [120, 121]. Moreover, the intracellular concen-
tration of L-Arg is modulated by arginase- an enzyme that hydrolyzes L-Arg to orni-
thine and urea and competes with eNOS for a common substrate [122]. There are two 

Fig. 3 eNOS uncoupling due to diminished L‑Arg/ADMA ratio. Under reduced L‑Arg availability (resulting 
from excessive arginase activity) and/or accumulation of ADMA (due to decreased DDAH activity), the 
substrate concentration may not be sufficient to saturate eNOS and/or L‑Arg is outcompeted by ADMA. As a 
result, molecular oxygen is a final electron acceptor, leading to superoxide formation
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isoforms of arginases in humans, with Arg-I being particularly important in the hepatic 
urea cycle and Arg-II being distributed throughout various tissues, especially kidneys 
[123]. Both isoforms have been reported to be expressed in endothelium, although their 
expression seems to be species and vascular bed–specific, e.g., both Arg-I and Arg-II 
are present in human aortic endothelial cells (HAECs), whereas in human umbilical vein 
endothelial cells (HUVECs), Arg-I is barely detectable [124, 125].

Cardiovascular risk factors are associated with diminished L-Arg availability [126]. The 
significance of L-Arg availability is emphasized by the beneficial effects of L-Arg supple-
mentation on endothelial function and cardiovascular health, which will be discussed 
in more detail in the next section. Both L-Arg uptake and metabolism can be altered in 
CVD pathophysiology. It was shown that homocysteine-induced oxidative stress signifi-
cantly decreased CAT-1 expression in endothelial cells, resulting in inhibition of L-Arg 
uptake, reduced NO production, and increased  ONOO− formation, indicating eNOS 
uncoupling, which was abolished by L-Arg supplementation [127]. Still, the regulation of 
L-Arg transport by cardiovascular risk factors is not well understood. In turn, the role of 
arginases and its impact on L-Arg availability and CVD pathophysiology associated with 
oxidative stress is much better known and seems to be of great importance.

Arginases are involved in the pathogenesis of age-related diseases, including CVD, 
as aging affects their expression and activity [128]. In old rats and mice compared to 
young, arginase activity was significantly increased and accompanied by decreased NO 
production and increased  O2

− generation indicating eNOS uncoupling [129, 130]. Argi-
nase inhibition or silencing significantly reduced eNOS-derived  O2

− level and restored 
eNOS coupling and endothelial function [129, 130]. In humans, the expression of Arg-I 
and Arg-II in the vascular wall was demonstrated to enhance with age and obesity, con-
comitantly with increased vascular superoxide and diminished NO levels [131]. Argin-
ase is also involved in diabetes-induced vascular dysfunction. Diabetic patients showed 
increased expression of Arg-I and decreased NO production in coronary arterioles, 
resulting in reduced vasodilation that could be restored by arginase inhibition or L-Arg 
application [132]. Increased Arg-I expression and activity, and increased superoxide 
generation were also reported in aortas and liver of STZ-diabetic rats, which showed 
decreased NO-mediated vasodilation in coronary vessels, that could be restored by argi-
nase inhibition [133]. Similarly, exposure of bovine coronary endothelial cells to high 
glucose concentrations resulted in increased Arg-I expression and activity and dimin-
ished NO levels, whereas silencing of Arg-I restored NO production [133]. Arginase 
plays also a crucial role in the pathophysiology of cholesterol-mediated endothelial dys-
function. Endothelial arginase is activated in atherogenic-prone apoE-deficient mice 
as well as in wild-type mice fed a high-cholesterol diet [134]. Inhibition or deletion of 
Arg-II prevents a diet-dependent decrease in NO production and increase in ROS pro-
duction in the vessels, restores endothelial function, and prevents atherogenesis [134]. 
Similar results were obtained in vitro; oxidized low-density lipoprotein (LDL) activated 
Arg-II in HAECs, leading to impaired NO production [135, 136]. Arginase activation, 
decreased NO, increased ROS resulting in endothelial dysfunction and vascular stiffness 
were also observed in wild-type mice exposed to cigarette smoke, in contrast to Arg-
II knockout mice, suggesting that Arg-II contributes to smoking-induced vascular dys-
function [137].
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Most of the plasmatic and cellular L-Arg comes from physiological whole-body pro-
tein turnover [114]. However, L-Arg residues within proteins are commonly subjected to 
methylation carried-out post-translationally by a family of nine enzymes named protein 
arginine methyltransferases (PRMTs 1–9) [138]. Therefore, the subsequent breakdown 
of such proteins results in the release of methylated arginine derivatives: NG-mono-
methyl-L-arginine (L-NMMA), asymmetric dimethylarginine (ADMA), and symmetric 
dimethylarginine (SDMA) [139]. Methylarginines released from the protein breakdown 
into the cytosol pass into the bloodstream, and can be taken up by other cells via 
y + transporters, thus they can interfere with L-Arg uptake [140, 141]. Moreover, when 
taken up by endothelial cells, both ADMA and L-NMMA, but not SDMA, compete with 
L-Arg for eNOS binding but are not active as substrates, thus leading to eNOS uncou-
pling. ADMA is considered the most potent endogenous inhibitor of eNOS [142]. While 
under physiological conditions, ADMA plasma concentration fluctuates in the range 
of 1–2 µM, it increases significantly (up to tenfold) in the presence of oxidative stress 
associated with cardiovascular risk factors [143]. Increased ADMA levels in plasma have 
been correlated with endothelial dysfunction and are an independent risk factor for the 
development of systemic cardiovascular diseases [142].

The circulating ADMA is partially eliminated by the kidneys, but the most part is 
metabolized to L-Cit and dimethylamine by dimethylarginine dimethylaminohydrolases 
(DDAHs) that are expressed in two isoforms [144]. DDAH-1 is responsible for the sys-
temic elimination of circulating ADMA, and its expression is most pronounced in the 
liver, kidneys, brain, and lungs, however it is also found in the endothelium. DDAH-2 
role in ADMA metabolism seems to be more local, and DDAH-2 is expressed primar-
ily in blood vessels, heart, placenta, and immune tissues [144]. Impaired DDAH activ-
ity is associated with ADMA accumulation observed in diverse clinical conditions [143]. 
Hence, plasma and intracellular ADMA levels result from its generation and metabolism 
regulated by PRMTs and DDAHs, respectively.

Oxidative stress affects the expression and activity of these enzymes, giving rise to 
ADMA accumulation, and a resulting decrease in L-Arg/ADMA ratio, i.e., diminished 
effective substrate availability, leads to eNOS uncoupling (Fig.  3). Elevated plasma 
ADMA levels and impaired endothelium-dependent vasodilation were observed in 
patients with hypercholesterolemia, hyperhomocysteinemia, diabetes, and hypertension 
[118, 145–148]. It was proved that oxidized LDL cholesterol enhances the expression 
of PRMTs, decreases DDAH activity, and increases the release of ADMA from human 
endothelial cells in vitro [149, 150]. Oxidized LDL was also demonstrated to decrease 
DDAH activity in hypercholesterolemic rabbits [150]. The activity of aortic DDAH was 
reduced, and plasma ADMA levels were increased in STZ-diabetic rats [151]. Consist-
ently, in human endothelial cells exposed to high glucose, the activity of DDAH was 
significantly impaired with concomitant ADMA accumulation and reduction of cGMP 
level, indicating impaired eNOS activity that could be reversed by antioxidant treatment 
[151].

eNOS S‑glutathionylation

As mentioned earlier, eNOS can be S-glutathionylated. In this type of post-translational 
modification, the tripeptide glutathione composed of glycine, cysteine, and glutamate 
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is linked by a disulfide to specific cysteine residues of a protein [152]. Glutathione is 
produced ubiquitously in eukaryotes, and its intracellular concentration is in the mil-
limolar range [153]. The reduced form of glutathione (GSH) is considered the essential 
non-enzymatic antioxidant in the body and the first line of defense against oxidants 
since it scavenges free radicals, undergoing oxidation to disulfide GSSG [154]. The ratio 
of reduced to oxidized glutathione (GSH/GSSG) is a marker of cellular health. Under 
physiological conditions, this ratio exceeds 100; thus, GSH constitutes over 99% of the 
cellular glutathione pool. Under pathological states associated with redox imbalance 
and oxidative stress, this ratio drops, and altered glutathione redox status (GSH/GSSG) 
increases protein S-glutathionylation by direct disulfide exchange between thiol protein 
and GSSG. On the other hand, ROS oxidizes protein thiols to sulfenic acid, which can be 
reduced by S-glutathionylation with GSH [155].

It is believed that S-glutathionylation is a regulatory mechanism that protects proteins 
from irreversible oxidation of sulfhydryl groups by oxidative stress to sulfinic and sul-
fonic acids resulting in protein degradation [155]. The consequence of such protection 
may be a change in the activity of the proteins, their oligomerization status, or the abil-
ity to interact with their ligands or protein partners, which is not always advantageous. 
Reversible protein S-glutathionylation can be thus considered as a redox switch that 
regulates cellular function under oxidative stress by modulating the activity of metabolic 
and signaling enzymes [156].

Importantly, eNOS activity can undergo such redox regulation. Chen et  al. [50] 
reported that S-glutathionylation uncouples eNOS thus changing its activity and func-
tion. Oxidized glutathione was shown to dose-dependently induce S-glutathionylation 
of two conserved cysteine residues (Cys689 and Cys908) in the eNOS reductase domain, 
resulting in eNOS uncoupling characterized by a decreased NO production and an 
increased generation of  O2

− [50, 157, 158]. The proposed mechanism by which S-glu-
tathionylation uncouples eNOS assumes that the glutathione binding alters protein 
structure. Both modified cysteine residues are located at the interface of the FAD- and 
FMN- binding sites, thus S-glutathionylation would disrupt FAD-FMN alignment and 
electron transfer between these flavins, resulting in the transfer of an electron to molec-
ular oxygen and the production of a superoxide radical instead of NO (Fig. 4). S-glutath-
ionylation-induced eNOS uncoupling mechanism is unique since  O2

− is generated in the 
reductase domain and is not inhibited by N(ω)-nitro-L-arginine methyl ester (L-NAME). 
In contrast, uncoupling mechanisms dependent on substrate and cofactor availability 
occur primarily at the heme of the oxygenase domain and can be blocked by L-NAME 
[50, 159].

The influence of S-glutathionylation-dependent eNOS uncoupling on endothelium 
function was tested on isolated rat vessels. Aortic segments exposed to glutathione 
reductase inhibitor, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) showed markedly 
decreased endothelium-dependent vasodilation. Moreover, the involvement of this 
mechanism in the pathogenesis of cardiovascular diseases was confirmed in vivo. High 
levels of S-glutathionylated eNOS and impaired endothelium-dependent vasodilation 
were demonstrated in the vessels of spontaneously hypertensive rats; in contrast, control 
normotensive rats presented low eNOS S-glutathionylation levels and proper vasodila-
tion response [50].
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Ang II, the principal effector of the renin-angiotensin system linked to the pathogene-
sis of several CVD, was demonstrated to increase eNOS S-glutathionylation via NADPH 
oxidase activation in cultured endothelial cells, as well as in human arteries ex  vivo 
[160]. Moreover, attenuation of Ang II signaling reduced the level of eNOS glutathio-
nylation and improved endothelium-dependent vasorelaxation in vivo in rabbits [160]. 
S-glutathionylation-dependent eNOS uncoupling can also contribute to the pathophysi-
ology of preeclampsia (PE) in humans since a high level of eNOS S-glutathionylation 
was detected in PE placentas in contrast to control placentas of healthy patients [161]. 
The significance of that mechanism was also confirmed in the pathophysiology of diabe-
tes-related endothelial dysfunction by demonstrating the presence of S-glutathionylated 
eNOS in the aortas of STZ-induced diabetic rats [162]. Furthermore, eNOS uncoupling 
due to its S-glutathionylation was observed in endothelial cells in response to hypoxia-
reoxygenation [35], and eNOS S-glutathionylation was confirmed in vivo in the coronary 
arteries of murine myocardial ischemia–reperfusion injury model [163]. Moreover, it 
was demonstrated that if S-glutathionylated eNOS is not deglutathionylated and persists 
in the cytosol, it is degraded via chaperone-mediated autophagy, resulting in irreversible 
loss of uncoupled eNOS, which protects cells from continuous production of  O2

− [164].
Interestingly, two mechanisms of eNOS uncoupling, i.e., the one dependent on  BH4 

depletion and that induced by the enzyme’s S-glutathionylation, are interrelated. It was 
demonstrated that eNOS uncoupling induced by  BH4 deficiency stimulates eNOS S-glu-
tathionylation [165, 166].  O2

− generated from uncoupled eNOS oxidizes eNOS cysteine 
908 thiol residue, forming a protein thiyl radical susceptible to S-glutathionylation by 
GSH [166]. On the other hand, S-glutathionylation of eNOS induces  BH4 deficiency. It 
was shown that inhibition of glutathione reductase in endothelial cells induces a fivefold 
increase in eNOS S-glutathionylation, and the resulting eNOS uncoupling (shown by 

Fig. 4 eNOS uncoupling due to eNOS S‑glutathionylation. Oxidative stress decreases the cellular GSH/
GSSG ratio, leading to protein S‑glutathionylation. Glutathionylated cysteine residues (Cys689 and Cys908) 
of eNOS are located at the interface of the FAD and FMN binding sites, thus disrupting FAD‑FMN alignment 
and electron transfer between flavins, which causes the transfer of an electron to molecular oxygen and 
the production of a superoxide radical instead of NO. Prolonged retention of S‑glutathionylated eNOS 
(SG‑eNOS) in the cytoplasm can result in its degradation via chaperone‑mediated autophagy (CMA), leading 
to irreversible loss of eNOS
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superoxide generation) leads to  BH4 oxidation,  BH2 accumulation, and decreased  BH4/
BH2 ratio. The two mechanisms of eNOS uncoupling, S-glutathionylation-induced and 
 BH4-dependent, are functionally related, and moreover, their effects are additive [165].

Pharmacological prevention of eNOS uncoupling
Understanding the mechanisms and the importance of eNOS uncoupling as a one of 
major causes of endothelial dysfunction has made reversing or preventing eNOS 
uncoupling an attractive therapeutic approach to prevent or treat cardiovascular com-
plications. Since eNOS can be both an NO and an  O2

− producing enzyme, eNOS tar-
geting may have a dual effect on vascular function, depending on its functional state. 
Thus, precise determination of eNOS activity and coupling state and the rate of eNOS-
dependent NO and  O2

− generation are of particular importance when assessing the 
effects of drugs on endothelial function. For example, using electrochemical ultrami-
crosensors, we have demonstrated that antihypertensive drugs cicletanine, nifedipine, 
and third-generation β-blockers (nebivolol, carvedilol), Ang II  AT1 receptor antagonists, 
as well as statins, concurrently stimulate NO release and scavenge  O2

− thus reducing 
the formation of  ONOO− and preventing endothelial dysfunction [167–172]. Simi-
larly, we have also demonstrated the potential of endogenous nicotinamide metabolite 
 N1-methylnicotinamide  (MNA+) in the prevention of eNOS uncoupling [173]. Since 
excessive vascular ROS generation is the key driver of endothelial dysfunction and the 
main trigger of eNOS uncoupling, attempts have been made to mitigate oxidative stress. 
However, antioxidant strategies will not be discussed here since this broad topic has 
been excellently reviewed elsewhere [174–177]. Instead, we will focus on strategies aim-
ing to prevent eNOS uncoupling by targeting the exact mechanisms of this phenomenon 
such as restoration of  BH4/BH2 ratio, L-Arg/ADMA ratio, and physiological eNOS glu-
tathionylation level (Fig. 5). Below, they are briefly outlined.

Restoration of the  BH4/BH2 ratio

Given the critical role of  BH4 in eNOS activity and endothelial health, numerous inter-
ventions involving  BH4 supplementation have been attempted to improve vascular func-
tion. The efficacy of  BH4 treatment in preventing eNOS uncoupling was demonstrated 
in animal models [29, 98, 178] as well as in human studies. Acute, intravenous  BH4 
administration augmented endothelium-dependent vasodilation in hypertensive indi-
viduals [26], in patients with hypercholesterolemia [104, 179], coronary artery disease 
[180], heart failure [181], as well as in chronic smokers [182], or in healthy subjects [183, 
184]. However, chronic (several weeks), oral  BH4 administration gave slightly discrep-
ant results.  BH4 supplementation improved endothelial function in patients with hyper-
cholesterolemia [185], hypertension [186], and rheumatoid arthritis [187]. In contrast, 
 BH4 administration for several weeks in patients with coronary artery disease did not 
improve endothelial function, but instead increased  BH2 levels [188].  BH4 is very unsta-
ble and is easily oxidized pterin. Oxidative stress associated with cardiovascular disease 
oxidizes  BH4, so the administration of additional  BH4 under such conditions may further 
decrease the  BH4/BH2 ratio. Therefore it was proposed that coadministration of  BH4 
with antioxidants could be a better strategy to restore the proper  BH4/BH2 ratio [189, 
190].
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Alternatively, a  BH4 precursor sepiapterin can be administrated that is converted to 
 BH4 via the salvage pathway, and it was shown to restore tissue  BH4 levels even more 
efficiently that  BH4 supplementation in mice [191]. Sepiapterin was demonstrated to 
improve vascular reactivity in animal models of diabetes [192] and obesity [193]. Human 
studies revealed that sepiapterin administration is able to restore coronary flow medi-
ated dilation in diabetic patients [24]. However, studies on isolated vessels of hyper-
lipidemic rabbits have shown that although sepiapterin restored vascular  BH4 levels, 
it impaired NO-dependent vasodilation [194]. High concentrations of sepiapterin may 
compete with  BH4 for binding to eNOS and thus promote eNOS uncoupling [195]. In 
addition, the conversion of sepiapterin to  BH4 requires DHFR activity, therefore, in 
states in which the activity or expression of DHFR is reduced, sepiapterin supplementa-
tion may be ineffective [196].

Folic acid and its active circulating form 5-methyltetrahydrofolate (5-MTHF) have 
been also show to increase vascular  BH4/BH2 ratio, reverse eNOS uncoupling and 
restore endothelial function [27, 197]. First, folic acid improves metabolic homocysteine 
clearance, and hyperhomocysteinemia is a CVD risk factor [198]. However, the effects 
of folate supplementation on endothelial function are also homocysteine-independ-
ent [199]. Folates can directly interact with eNOS and improve the binding affinity of 
 BH4 to eNOS, chemically stabilize  BH4 and enhance the regeneration of  BH4 from  BH2 
[199]. Human experimental studies have proven the effectiveness of folates in improving 

Fig. 5 Major causes of eNOS uncoupling as targets of potential therapeutic interventions. Oxidative stress 
associated with cardiovascular risk factors leads to eNOS uncoupling by: A decreased  BH4/BH2 ratio due 
to oxidation of  BH4 and impairment of DHFR expression/activity; B decreased L‑Arg/ADMA ratio due to 
excessive arginase expression/activity and diminished DDAH expression/activity; C eNOS S‑glutathionylation 
at Cys689 and Cys908
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eNOS-dependent endothelial function. Low-dose oral folic acid treatment was sufficient 
to improve vascular function in patients with coronary artery disease [200]. Infusion of 
5-MTHF improved the impaired endothelium-dependent vasodilation in patients with 
familial hypercholesterolemia [201], diabetes [25], and coronary artery disease [27]. 
In contrast, in patients with chronic heart failure, 5-MTHF infusion did not improve 
endothelial function; however, it significantly reduced serum ADMA concentrations, 
suggesting a direct effect of 5-MTHF on ADMA metabolism [202]. Although the experi-
mental clinical data were promising, clinical trials on the use of folic acid in CVD treat-
ment have produced conflicting results that mostly failed to prove the beneficial effect 
of folic acid supplementation on cardiovascular health. Meta-analysis of several clinical 
trials data indicated that folic acid supplementation is not effective for cardiovascular 
events prevention in people with pre-existing vascular disease [203]. Other meta‐analy-
ses indicated a modest but significant benefit of folic acid supplementation for stroke 
prevention with more significant benefit observed among participants without preexist-
ing CVD or with lower plasma folate levels at baseline [204, 205].

Interestingly,  BH4 levels can be increased by statins. Treatment of human endothelial 
cells in vitro with fluvastatin and cerivastatin augmented GTPCH expression and  BH4 
levels [206, 207]. These effects seem to be at least partly mediated by microRNA. Lov-
astatin has been shown to inhibit aberrant miR-133a expression that targets GTPCH, 
thereby restoring  BH4/BH2 ratio, contributing to eNOS recoupling and preventing 
endothelial dysfunction [208]. Beneficial influence of statins on vascular  BH4 content 
was also observed in animal and human studies. In STZ-diabetic rats, atorvastatin 
administration increased GTPCH expression, thus preventing eNOS uncoupling [209]. 
Simvastatin increased GTPCH activity and  BH4 production in hypertensive rats [210]. 
In patients with coronary artery disease, atorvastatin upregulated GTPCH expression, 
increased  BH4 levels and improved vascular NO bioavailability [211]. Patients with mul-
tiple coronary risk factors treated with atorvastatin were reported to have increased 
plasma  BH4/BH2 ratio and showed improved flow-mediated dilation [212].

Restoration of L‑Arg/ADMA ratio

L-Arg availability and its ratio to inhibitory ADMA is an important determinant of 
eNOS activity. Therefore, attempts have been made to restore L-Arg/ADMA ratio 
by direct L-Arg administration, inactivation of arginases or stimulation of ADMA 
elimination.

As mentioned earlier, many studies have reported a positive effect of L-Arg supple-
mentation on eNOS activity (known as L-arginine paradox) in conditions associated 
with endothelial dysfunction such as dyslipidemia, diabetes, hypertension or coronary 
artery disease [213]. It is believed that L-Arg supply can prevent eNOS uncoupling 
through various mechanisms. Most of all, exogenous L-Arg supplementation can alter 
the L-Arg/ADMA ratio and thus overcome the inhibitory effects of ADMA on eNOS 
as well as on y + transporters [117]. Moreover, L-Arg itself acts as an antioxidant so 
that it can help to maintain a proper  BH4/BH2 ratio [214]. Thus, L-Arg supplementa-
tion seemed to be an attractive therapeutic strategy for cardiovascular diseases, pre-
venting eNOS uncoupling and increasing NO synthesis in the endothelium [215, 216]. 
However, the results of experimental clinical studies and clinical trials are contradictory. 
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Most studies report a vasodilation effect induced by L-Arg administration. High doses 
of L-Arg administrated intravenously induced NO-dependent vasodilation in healthy 
subjects as well as in patients with peripheral arterial disease or coronary artery dis-
ease [217–220]. Oral L-Arg supplementation was shown to enhance endothelial func-
tion in patients with metabolic syndrome or with hyperhomocysteinemia [221, 222]. 
Meta-analysis of 11 randomized, double-blind, placebo-controlled trials involving 387 
participants indicated that oral L-Arg administration significantly lowers blood pres-
sure [223]. Since ADMA is endogenous inhibitor of eNOS and L-Arg/ADMA ratio 
determines eNOS activity [118], L-Arg supplementation is proposed to be particularly 
beneficial in patients with elevated ADMA levels, as supported by results of studies in 
animal models of hypercholesterolemia and arteriosclerosis [117]. Despite these prom-
ising results, optimism is not allowed due to studies that undermine the effectiveness 
of L-Arg supplementation and even show its harmfulness. Long-term administration of 
L-Arg in patients with peripheral arterial disease did not increased NO synthesis nor 
improved vascular reactivity [224]. In myocardial infarction therapy, L-Arg administra-
tion was not effective as it did not improve vascular stiffness measurements or ejection 
fraction and may be associated with higher post-infarction mortality [225]. The ineffec-
tiveness of L-Arg supplementation, or even its harmfulness, may have several reasons. 
Cardiovascular diseases in which L-Arg supplementation therapy has been tested are 
associated with oxidative stress and oxidative depletion of the essential eNOS cofactor 
 BH4, causing eNOS uncoupling. Thus, substrate supply without the additional amount 
of available cofactor may not be sufficient to reverse eNOS uncoupling. Moreover, high 
doses of L-Arg can induce the expression of arginases, which metabolizes L-Arg, and 
increase arginase activity is associated with eNOS uncoupling and endothelial dysfunc-
tion [122, 226, 227]. High levels of L-Arg have been also demonstrated to competitively 
inhibit DDAH activity, thus contributing to increased levels of ADMA which is endog-
enous inhibitor of eNOS [228].

Since elevated arginase expression and/or activity is associated with eNOS uncou-
pling, inhibition of arginase activity may be a good therapeutic strategy for endothelial 
dysfunction. To experimentally modulate arginase activity, specific inhibitors have been 
developed: N-hydroxy-L-arginine (NOHA) or N-hydroxy-nor-l-arginine (nor-NOHA), 
and boronic acid derivatives, such as 2(S)-amino-6-boronohexanoic acid (ABH), and 
S-(2-boronoethyl)-l-cysteine (BEC) s[229]. These inhibitors as well as genetically mod-
ified arginase knockout animals were tested in experimental studies which allowed to 
determine the effect of arginase on endothelial function and eNOS activity. Inhibition 
of arginase activity with BEC or deletion of Arg2 gene prevented eNOS uncoupling 
and atherogenesis in the vessels of hypercholesterolemic mice [134]. In mice with diet-
induced obesity, deletion of Arg1 or Arg2 gene or inhibition of arginase activity with 
ABH prevented vascular dysfunction [230, 231]. Similarly, endothelial dysfunction in 
STZ-diabetic mice was reversed by ABH [232]. Also short-term clinical studies with 
local administration of arginase inhibitor have shown promising results. Intra-arterial 
infusion of the arginase inhibitor nor-NOHA for two hours significantly improved 
endothelium-dependent vasodilation in patients with familial hypercholesterolemia 
[233], coronary artery disease [234], diabetes [235, 236] and in elderly subjects [237]. 
However, the compounds used so far do not have specificity as to the enzyme isoform, 
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and further studies are needed to search for novel and more specific arginase inhibitors 
[238]. It is also worth mentioning that increased arginase activity in diabetes is influ-
enced by insulin administration, and insulin infusion has been shown to reduce arginase 
activity in patients with type 2 diabetes [239].

Moreover, excessive arginase activity can be mitigated with statins. Simvastatin and 
lovastatin blocked arginase activation by oxidized LDL in HAECs, and lovastatin pre-
vented arginase activation in apoE-deficient mice fed a high-cholesterol diet [136]. In 
diabetic rats simvastatin diminished diabetes-induced arginase activity and Arg-I 
expression, reduced oxidative stress and restored proper vasorelaxation in response to 
acetylcholine [133]. Human studies demonstrated that atorvastatin decreased arginase 
activity in hypercholesterolemic patients [240].

Modulating the expression/activity of DDAH may also be a promising therapeutic 
strategy to restore the favorable L-Arg/ADMA ratio and several experimental studies 
have shown that the increase in DDAH expression reduces ADMA levels and stimu-
lates NO synthesis. The use of purified recombinant DDAH-1 to lower ADMA levels 
was proved to be effective for the treatment of ischemia–reperfusion myocardial dam-
age in isolated mouse hearts [241]. Some long-known medications can diminish ADMA 
levels by increasing DDAH expression. For example, nebivolol and telmisartan stimu-
lated the expression of DDAH-2 in cultured endothelial cells, resulting in reduction of 
ADMA concentration. [242, 243]. Moreover, nebivolol treatment as well as telmisar-
tan administration reduced serum ADMA levels and improved endothelial function in 
essential hypertensive patients [244, 245]. Also statins have been reported to increase 
ADMA metabolism by upregulation of DDAH. In cultured endothelial cells, simvasta-
tin increased DDAH-1 expression and decreased ADMA content [246]. Rosuvastatin 
and atorvastatin increased DDAH expression and reduced serum ADMA levels in a rat 
model of pulmonary hypertension and in in high-fat diet-induced insulin-resistant rats 
with endothelial dysfunction, respectively [247, 248]. However, human studies have not 
produced conclusive results. Some clinical trials confirmed that statin treatment reduces 
circulating ADMA levels [249, 250], while others failed to prove such an effect [251, 
252].

Modulating eNOS S‑glutathionylation

S-glutathionylation is a reversible post-translational modification, and a mixed disulfide 
bond between a protein cysteine residue and glutathione can be reduced back in a 
process of deglutathionylation. The cellular antioxidant systems of glutaredoxin and 
thioredoxin are able to reduce thiol groups and restore protein function [253]. It was 
demonstrated that glutaredoxin (Grx1), a cytosolic oxidoreductase, can efficiently deglu-
tathionylate eNOS in the presence of GSH, i.e., when the cellular redox status is favorable 
[254]. However, under oxidative stress conditions, when GSSG level is increased, Grx1 
glutathionylate eNOS. Therefore, Grx1 activity is influenced by GSH/GSSG ratio [254]. 
Since lowered GSH/GSSG ratio promotes eNOS S-glutathionylation and uncoupling, 
supplementation of GSH may be beneficial for endothelial function. It was demonstrated 
that GSH administration reverses endothelial dysfunction and improves NO bioavail-
ability in atherosclerotic patients, possibly due to its general anti-oxidant properties 
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[255]. However, GSH could likely stimulate eNOS deglutathionylation by Grx1 and thus 
recouple the enzyme.

Another pathway that allows deglutathionylation is independent of GSH and involves 
thioredoxin (Trx), a small, ubiquitous redox protein. The primary function of Trx is 
the reduction of oxidized cysteine groups on proteins [253]. Trx possesses the disulfide 
reductase activity in its reduced state, which is maintained by the thioredoxin reductase 
in a NADPH-dependent reaction [256]. Interestingly, Trx can deglutathionylate eNOS 
even in the presence of high levels of GSSG under oxidative stress conditions [163]. Trx 
overexpression prevented eNOS glutathionylation and uncoupling in  vivo in coronary 
arteries of ischemia/reperfusion treated mice and protected against myocardial infarc-
tion. Accordingly, in human coronary artery endothelial cells (HCAECs) in  vitro, Trx 
overexpression protected against hypoxia/reoxygenation-induced eNOS glutathionyla-
tion and preserved eNOS activity, whereas Trx silencing resulted in increased eNOS 
S-glutathionylation and uncoupling [163].

Therapeutic potential of Trx has been also noted in studies on age-related hyperten-
sion in mice. It was demonstrated that overexpression of human Trx in mice protected 
against endothelial dysfunction and prevented the development of age-related hyperten-
sion [257]. Moreover, injection of recombinant human Trx via tail vein into aged wild-
type mice reversed the existing hypertension. Both overexpression of Trx in transgenic 
mice and injection of Trx into old wild-type mice improved endothelial-dependent 
relaxation [257]. In aged mice eNOS S-glutathionylation was increased and eNOS was 
uncoupled, producing reduced amounts of NO and being a major source of vascular 
 O2

−. In contrast, in aged transgenic mice overproducing Trx the level of eNOS S-glu-
tathionylation, NO and eNOS-derived  O2

− production were not significantly different 
from that of young mice [257]. These studies highlight the potential antihypertensive 
properties of Trx, which modulates the vascular redox state, prevents eNOS S-glutathio-
nylation and preserves eNOS activity in the vessels of aged animals. Translational stud-
ies are needed to assess the potential of GSH, glutaredoxin and thioredoxin to modulate 
eNOS uncoupling and improve endothelial function in humans. Moreover, the efficiency 
of the eNOS deglutathionylation mechanisms affects the half-life of the eNOS protein, 
as it was demonstared in ischemia–reperfusion injury [164]. Persisting S-glutathionyla-
tion leads to the degradation of eNOS, thus protecting cells against oxidative damage, 
but on the other hand, it leads to irreversible loss of eNOS [164].

eNOS glutathionylation state could be also modified indirectly. Since Ang II increases 
eNOS S-glutathionylation and uncoupling, angiotensin-converting enzyme inhibition 
could reverse glutathionylation-dependent eNOS uncoupling [160]. Indeed, attenuation 
of Ang II signaling by captopril was demonstrated to reduce eNOS S-glutathionylation 
and endothelial  O2

− generation, simultaneously increasing NO production and improv-
ing vasorelaxation in rabbits [160].

Conclusions
It is now well recognized that eNOS uncoupling is associated with endothelial dys-
function and the pathophysiology of cardiovascular disease, thus, the mechanisms 
leading to eNOS uncoupling are considered a promising therapeutic target. However, 
direct interventions aimed at restoring eNOS cofactor and substrate availability, such 
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as administration of  BH4 analogs or supplementation of L-Arg, did not produce a 
clearly beneficial outcome. The results of arginase inhibition trials encourage further 
research to better understand the specificity and pharmacokinetics of new inhibitors. 
Further studies are also required to assess the therapeutic potential of GSH, Grx, and 
Trx in the treatment of endothelial dysfunction associated with eNOS S-glutathio-
nylation. Moreover, already known drugs can modulate the eNOS coupling state. 
As mentioned above, statins were reported to restore favorable  BH4/BH2 ratio and 
L-Arg/ADMA ratio through augmenting GTPCH expression, abolishing excessive 
arginase activity, or increasing DDAH activity. Thus it is worth emphasizing that the 
pleiotropic action of statins, among the many beneficial effects for endothelial physi-
ology [258], also includes the prevention of eNOS uncoupling.
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