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ABSTRACT

This article presents the third and last part of the problem of diagnosing the fatigue of marine propulsion shafts in 
terms of energy with the use of the action function, undertaken by the authors. Even the most perfect physical models 
of real objects, observed under laboratory conditions and developed based on the results of their research, cannot 
be useful in diagnostics without properly transferring the obtained results to the scale of the real object. This paper 
presents the method of using dimensional analyses and the Buckingham theorem (the so-called π theorem) to determine 
the dimensionless numbers of the dynamic similarity of the physical model of the propulsion shaft and its real ship 
counterpart, which enable the transfer of the results of the research on the energy processes accompanying the ship 
propulsion shaft fatigue from the physical model to the real object. 
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INTRODUCTION

Within the previous parts of the article, the results of model 
and experimental studies of the fatigue process of the propulsion 
shaft were presented [6,7]. The active experiments were carried 
out on the especially designed and built physical model of the 
rotary propulsion system which  was mapping an operation 
of full-size real object. There has been proved that changes in 
the deflection of the rotary propulsion line are reflected in the 
amount of dissipated kinetic energy of masses in rotational 
motion and the accumulated internal energy of construction 
materials. After exceeding the critical values of these energies, 
a fatigue damage occurs, the course of which is characterized 
by energy residual processes: vibroacoustic and thermal. They 
cause, inter alia, observable diagnostic symptoms of changes 
in the fatigue state of the structural material from which the 
propulsion shaft is made. There has been proposed to adopt 
the high-cycle fatigue syndrome consisting of diagnostic 
symptoms determined from the function of the propulsion 
shaft action related to the transformation of mechanical energy 

into the way of work and heat, and the generation of mechanical 
vibrations and elastic waves of acoustic emission. In order to 
assess the diagnostic information contributed by the defined 
characteristics of the fatigue condition of the propulsion shaft, 
a program of experimental tests was developed and performed, 
in which two statistical hypotheses were verified: the significance 
of the influence of the quantities forcing the fatigue process [6] 
and the adequacy of the regression equation describing the 
fatigue life of the propulsion shaft in term of energy [7].

Experimental studies carried out on physical models that 
reflect the work of a real full-size object have one fundamental 
weakness; namely they may not consider certain phenomena 
and processes that have been unconsciously eliminated due 
to their transition to a small scale [1]. To be able to fully 
transfer the measurement results characterising the work 
of the physical model to real objects, it is not enough to 
simply multiply them by the dimensional scale of the model. 
Therefore, appropriate criteria (dimensionless numbers) for 
their geometric, kinematic, and dynamic similarities should 
be developed. An effective tool in the way of analytical solution 
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of this problem for the considered process of fatigue of marine 
propulsion shafts can be its dimensional analysis, which has 
been widely included in publications providing theoretical 
guidance [2,3] and successfully used, for example, in modelling 
the dynamics of vehicle movement [4,5]. It allows the form of 
the function describing the examined process to be determined 
in a situation where only its arguments are known. It is then 
assumed that there must be full compliance of the dimension 
of this function (physical quantity) with the dimension of 
the power product created from the considered arguments, 
significantly affecting the course of the fatigue process which 
has already been partially described by the authors [6-8]. 
Nevertheless, there is still a noticeable lack of bibliographic 
items describing the problems of fatigue durability of marine 
propulsion systems based on the results of experimental tests 
carried out on a small scale.

DIMENSIONAL ANALYSIS  
OF THE FATIGUE DURABILITY  

OF THE PROPULSION SHAFT
For a rotating propulsion shaft subjected to set bending-

torsional loads, one can write the relationship describing its 
fatigue durability τW as a function of the recorded physical 
parameters1, each of which has its own dimension, according 
to the International System of Units:

τW = f (m, I, M, F, y, ω)     (5.1)

Both the dimension of the function being searched for and 
the dimensions of its arguments (parameters) can be represented 
by the power products of three basic dimensions: length [L], 
mass [M], and time [T]2:

τW –  fatigue durability (operating time to the development 
of a  detectable crack on theshaft’s surface), 
s → [L0∙M0∙T1],

m –  propulsion shaft mass (without the mass of the 
propeller), kg → [L0∙M1∙T0],

I –  moment of inertia (polar around the shaft axis), 
kg∙m2 → [L2∙M1∙T0],

M –  transmitted torque (by the propulsion shaft),  
kg∙m2/s2 → [L2∙M1∙T-2],

F –  the bending force acting on the propulsion shaft 
(resulting from reactions in bearingnodes),  
kg∙m/s2 → [L1∙M1∙T-2],

y –  shaft deflection (assumed for the middle of the shaft 
length, as in Fig. 1), m → [L1∙M0∙T0],

ω –  angular speed of the propulsion shaft, 1/s → [L0∙M0∙T-1].

The relationship (5.1) connects m = 7 physical dimensional 
quantities characterising the tested fatigue process of the 
propulsion shaft in the dynamic aspect, the dimensions of which 

1  Assuming that the fatigue durability depends only on the specified physical 
parameters, and the function describing this durability is dimensionally 
invariant and homogeneous. 

2  This is the standard assumption of dimensional analyses in mechanics.

include n = 3 basic dimensions. Thus, according to the method 
developed by Edgar Buckingham [9, 10] in 1914 (the so-called 
π theorem)3, the fatigue life of the shaft can be described by 
k = m–n, i.e., four dimensionless similarity numbers π k, starting 
from the dimensional formula in the form of the product of 
the powers of the important basic physical quantities in the 
studied process [11]:

τW = C ∙ mA ∙ IB ∙ MD ∙ FE ∙ yF ∙ ωG    (5.2)

where: A…G – constant.

According to the Fourier dimensional consistency principle, 
to maintain the size equation, the dimensions of the physical 
quantities on the left and right side of the equation (5.2) must 
be the same. After replacing all the physical quantities with 
their basic dimensions in it, we get:

T = C ∙ MA∙ L2B∙ MB∙ L2D∙ MD∙ T-2D∙ LE∙ ME∙ T-2E∙ LF∙ T-G

 (5.3)

and after transformation:

T = C ∙ MA+B+D+E ∙ L2B+2D+E+F ∙ T -2D-2E-G  (5.4)

To obtain the dimensionless form of the equation for the 
fatigue life of the propulsion shaft, the sum of the exponents 
of each physical quantity must be zero:
  for T → 1 + 2D + 2E + G = 0
  for M → A + B + D + E = 0
  for L → 2B + 2D + E + F = 0

Since there are six unknowns (exponents) and only three 
independent equations, it is impossible to solve the given 
problem without eliminating some of the arguments4 or 
assuming at least three values of the sought exponents5 as 
the parametric solution to the system of linear equations. 
On the other hand, three basic units were used for the 
dimensional analysis. This means that three out of the six 
analysed arguments of the searched persistence function 
may be dimensionally independent6. The mass m, the shaft 
deflection y, and the angular velocity ω were selected for further 
analysis, for which the dimensional independence was checked. 
For this purpose, the value of the determinant of the matrix 
composed of exponents was calculated with the dimensions 
of these arguments. Since the value of the determinant is 
different from zero, it can be assumed that these arguments 
are dimensionally independent:

3  Buckingham’s Theorem, also known as the π Theorem, is a key law used 
in dimensional analyses. It states that “if one has an equation described by 
a certain number of independent physical parameters, then this equation 
can be expressed by dimensionless modules π, the number of which is 
equal to the number of these physical parameters minus the number of 
fundamental dimensions”.

4  This is not a rational procedure as it reduces the level of detail in the 
dimensional analysis.

5  For example, the exponent F = -1, which means that the fatigue durability 
of the shaft is inversely proportional to its deflection

6  None of their units can be expressed in combination with the others.
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 = 1 ≠ 0        (5.5)

In the next step of the calculations, successive dimensionless 
variables π1 ... π4 are determined using the remaining arguments 
and the selected arguments that are independent of the 
dimensions:

1. Dimensionless variable π1 due to fatigue durability τW:

π1 = τW ∙ mA ∙ yB ∙ ωC       (5.6)

Inputting basic units on both sides of equation (5.6) we get:

L0∙ M0∙ T 0 = L0∙M0∙ T1∙ (L0∙ M1∙ T 0)A ∙
(L1∙ M0∙ T 0)B ∙ (L0∙ M0∙ T-1)C     (5.7)

By comparing exponents with appropriate dimensions:
   for T → 0 = 1-C =>  C = 1
   for M → 0 = A =>  A = 0
   for L → 0 = B =>  B = 0

the following is obtained:

π1 = τW ∙ m0 ∙ y0 ∙ ω1       (5.8)
and finally:

π1 = τW ∙ ω          (5.9)

2. Dimensionless variable π2 due to the moment of inertia I:

π2 = I ∙ mA ∙ yB ∙ ωC       (5.10)

By inserting the base units on both sides of equation (5.10) 
we get:

L0∙ M0∙ T 0 = L0∙M1∙ T 0∙ (L0∙ M1∙ T 0)A ∙
(L1∙ M0∙ T 0)B ∙ (L0∙ M0∙ T-1)C     (5.11)

By comparing the exponents with appropriate dimensions:
   for T → 0 = -C =>  C = 0
   for M → 0 = 1 + A =>  A = -1
   for L → 0 = 2 + B =>  B = -2

the following is obtained:

π2 = I ∙ m-1 ∙ y-2       (5.12)
and finally:

π2 =          (5.13)

3. Dimensionless variable π3 due to the transmitted torque M:

π3 = M ∙ mA ∙ yB ∙ ωC       (5.14)

By inserting the base units on both sides of equation (5.14) 
we get:

L0∙ M0∙ T 0 = L2∙M1∙ T -2∙ (L0∙ M1∙ T 0)A ∙
(L1∙ M0∙ T 0)B ∙ (L0∙ M0∙ T-1)C     (5.15)

By comparing the exponents with appropriate dimensions:
   for T → 0 = -2-C =>  C = -2
   for M → 0 = 1 + A =>  A = -1
   for L → 0 = 2 + B =>  B = -2

the following is obtained:
π3 = M ∙ m-1 ∙ y-2 ∙ ω-2      (5.16)

and finally:
π3 =         (5.17)

4. Dimensionless variable π1 due to the bending force F:

π4 = F ∙ mA ∙ yB ∙ ωC       (5.18)

Putting the base units on both sides of equation (5.18) we get:

L0∙ M0∙ T 0 = L1∙M1∙ T -2∙ (L0∙ M1∙ T 0)A ∙
(L1∙ M0∙ T 0)B ∙ (L0∙ M0∙ T-1)C     (5.19)

By comparing the exponent of powers with appropriate 
dimensions:
   for T → 0 = -2-C =>  C = -2
   for M → 0 = 1 + A =>  A = -1
   for L → 0 = 1 + B =>  B = -1

the following is obtained:
π4 = F ∙ m-1 ∙ y-1 ∙ ω-2      (5.20)

and finally:
π4 =         (5.21)

Thus, a functional relationship that binds all dimensionless 
variables can be determined as:

π1 = f (π2, π3, π4)      (5.22)

which, when expanded, takes the following dimensionless form:

τW ∙ ω = f (  ,  ,  )  (5.23)

and dimensional form:

τW = f (  ,  ,  ) ∙   (5.24)

In the next step, by introducing the replacement dimensionless 
variable π2-3, which is determined from the ratio of the variables 
π3 and π2 i.e. π3/π2, one obtains:

τW = f (  ,  ) ∙      (5.25)

Analysing the expression (5.25) for the fatigue durability 
of the propulsion shaft, it can be seen that the dimensionless 
modulus π2-3 has the form of a Newton number for its rotational 
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motion Ne(ROT), while the dimensionless modulus π4 has the form 
of a Newton number for the transverse movement of the shaft 
Ne(TRANS)

7. The physical sense of the first one is determined by 
the ratio of the transmitted torque to the accumulated kinetic 
energy, and the second by the ratio of the forces acting on the 
shaft: bending to centrifugal forces. In such a situation, formula 
(5.25) takes the final form:

τW = f (Ne(ROT) , Ne(TRANS)) ∙      (5.26)

CRITERIA OF SIMILARITY

Considering the problem of the geometric, kinematic, and 
dynamic similarities of the fatigue process of the physical model 
(M) of the propulsion shaft and its real ship counterpart (R), 
which is made of the same material and which is subjected to 
analogous forces and moments, appropriate similarity scales 
can be defined, according to which the results obtained from 
the research of the physical model can be transferred to the 
real object:

SL/D:

 =  → LR = LM ∙  → LR = 8 ∙ DR   (5.27)

where: 
LR –  length of the real object propulsion shaft,
LM –  length of the propulsion shaft of the physical model 

(64 mm),

7  Newton’s Power Number, which, for mechanical systems is the ratio of 
the force (moment) of the resistance to motion to the force (moment) of 
inertia, can be determined from Newton’s Second Law of Dynamics for 
the translational (rotational) motion of a rigid body.

DR –  real object propulsion shaft diameter,
DM –  diameter of the propulsion shaft of the physical 

model (8 mm).

Sm/I:

 =  → mR = mM ∙  → mR = 0.115mm-2 ∙ IR
(5.28)

where: 
mR –  propulsion shaft mass of the real object,
mM –  mass of the propulsion shaft of the physical model 

(0.028 kg),
IR –  moment of inertia of the real object’s propulsion 

shaft,
IM –  moment of inertia of the propulsion shaft of the 

physical model (0.244 kg·mm2).

Sω/u:

 =  → ωR = ωM ∙  → ωR = 250m-1 ∙ uR
(5.29)

where:
ωR –  angular speed of the real object’s propulsion shaft,
ωM –  angular velocity of the propulsion shaft of the 

physical model (157 s-1),
uR –  peripheral speed of the propulsion shaft of the real 

object,
uM –  peripheral speed of the propulsion shaft of the 

physical model (0.628 m/s).

The comparison of the proposed scales of similarity is 
presented in Figure 1, with the example of a direct propulsion 
system, typical for cargo sea vessels.

Fig. 1. Graphical interpretation of the applied scales of similarity of the physical model of the rotary propulsion shaft to the full-size ship shaft: 
DR – propulsion shaft diameter, FR – bending force acting on the propulsion shaft, IR – moment of inertia of the propulsion shaft, LR – propulsion shaft length, 

mR – propulsion shaft mass, ME – main propulsion internal combustion engine, MR – torque transmitted by the propulsion shaft, ωR – angular speed 
of the propulsion shaft, yR – deflection of the propulsion shaft
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On the other hand, the basic invariant of the dynamic 
similarities of the physical model of the propulsion shaft and 
its real ship counterpart will be the Newton number considered 
in the scope of shaft rotation:

NeR(ROT)  =        (5.30)

where: 
MR –  torque transmitted by the propulsion shaft of the 

real object,
IR –  moment of inertia of the real object’s propulsion 

shaft,
ωR –  angular speed of the real object’s propulsion shaft.

NeM(ROT)  =        (5.31)

where: 
MM –  torque transmitted by the propulsion shaft of the 

physical model,
IM –  moment of inertia of the propulsion shaft of the 

physical model,
ωM –  angular velocity of the propulsion shaft of the 

physical model.

The following condition follows from the identity of these 
numbers: NeR(ROT) = NeM(ROT). Assuming that the values of the 
angular velocity (ωR, ωM) for the real object and its physical 
model, and the range of variability of the torque transmitted 
by the propulsion shaft of the physical model are invariant 
MM = 0.1 … 0.5 N·m, the scale of the SM/I torques reflects the 
following relationship:

MR = IR ∙  → MR = 0.41 … 2.05  ∙ IR
(5.32)

Another analysed invariant of dynamic similarities of the 
physical model of the prop shaft and its real counterpart is the 
Newton number considered for the transverse movement of 
the shaft:

NeR(TRANS) =      (5.33)

where: 
FR –  bending force acting on the propulsion shaft of the 

real object,
mR –  mass of the real object’s propulsion shaft,
yR –  deflection of the real object’s propulsion shaft.

NeM(TRANS) =      (5.34)

where: 

FM –  bending force acting on the propulsion shaft of the 
physical model,

mM –  mass of the propulsion shaft of the physical model,
yM –  deflection of the propulsion shaft of the physical 

model.

The identification of these numbers requires the following 
condition: NeR(TRANS)  =  NeM(TRANS). By making analogous 
transformations and assuming that the deflection (yM, yR) and 
the angular velocity (ωR, ωM) of the real object shaft and its 
physical model are invariant, as well as assuming that the range 
of variability of the bending force acting on the propulsion shaft 
of the physical model FM = 294.3 … 441.45 N, the relationship 
representing the scale of bending forces SF/m is obtained in the 
following form:

FR = mR ∙  → FR = 10510 … 15766  ∙ mR
(5.35)

FINAL REMARKS AND CONCLUSIONS

The method of mathematical description of the fatigue 
life of the rotary propulsion shaft presented in this article by 
means of designated Newton dynamic similarity numbers 
enables the transfer of the diagnostic test results of its 
physical model to full-size ship shafts, while considering 
appropriate geometric and kinematic similarity criteria. 
However, it should be noted that the dimensional method 
used for identification purposes has significant limitations, 
as it does not penetrate into the essence of mechanical fatigue 
as a physical phenomenon, but only determines arbitrarily 
(often intuitively) the physical quantities that affect its 
course [12]. Hence, the dimensional analysis of the physical 
quantities of marginal or key significance can be accidentally 
included or excluded, respectively. Only their dimensions are 
considered, which makes it impossible to collect numerical 
data on the determined invariants of physical similarities. 
The results obtained in this way should always be confirmed 
experimentally or theoretically (from the analysis of 
mathematical equations resulting from the laws of physics).

REFERENCES

1. Z. Korczewski, “The conception of energetic investigations 
of the multisymptom fatigue of the simple mechanical 
systems constructional materials”, Journal of Polish CIMAC, 
1/2012, p. 99–108, 2012.

2. G.A. Vignaux, “Dimensional Analysis in Data Modelling”, in: 
Smith C.R., Erickson G.J., Neudorfer P.O. (eds) Maximum 
Entropy and Bayesian Methods. Fundamental Theories of 
Physics (An International Book Series on The Fundamental 
Theories of Physics: Their Clarification, Development and 
Application), vol 50. Springer, Dordrecht, 1992.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


POLISH MARITIME RESEARCH, No 2/2021 77

3. E.S. Taylor, Dimensional Analysis for Engineers. Oxford 
University Press, 1974.

4. K. Parczewski and H. Wnęk, “The use of the theory of 
similarity to analyze the vehicle motion stability based on 
the research of the mobile model” (in Polish). Logistyka, 
3/2012.

5. K. Romaniszyn, “A mobile model for car dynamics research” 
(in Polish). The Archives of Automotive Engineering, 
1(59)/2013.

6. Z. Korczewski and K. Marszałkowski, “Energy analysis of 
propulsion shaft fatigue process in rotating mechanical 
system. Part I. Testing significance of influence of shaft 
material fatigue excitation parameters”, Polish Maritime 
Research, Vol.25, Special issue S1(97), pp. 211–217, DOI: 
10.2478/pomr-2018-0044, 2018.

7. Z. Korczewski and K. Marszałkowski “Energy analysis of 
propulsion shaft fatigue process in rotating mechanical 
system. Part II. Identification studies – developing the 
fatigue durability model of a propulsion shaft”, Polish 
Maritime Research, Vol. 27, 2(106), pp. 120–124, DOI: 
10.2478/pomr-2020-0033, 2020.

8. K. Marszałkowski, “Energy processes modelling in a rotating 
mechanical system for the purpose of diagnosing the fatigue 
of ship propulsion shafts” (in Polish), Ph.D. dissertation, 
Gdansk University of Technology, 2019.

9. E. Buckingham, “On Physically Similar Systems: illustrations 
of the use of dimensional equations”, Physical Review, 4, 
pp. 345–376, 1914.

10. E. Buckingham, “Physically similar systems”, Academy of 
Sciences, 93, pp. 347–353, 1914.

11. S. Drobot, About dimensional analysis (in Polish). 1954.

12. L. Müller, Application of dimensional analysis in model 
studies (in Polish). 1983.

CONTACT WITH THE AUTHORS

Zbigniew Korczewski
e-mail: z.korczewski@gmail.com

Gdańsk University of Technology
Narutowicza 11/12

80-233 Gdańsk
Poland

Konrad Marszałkowski
e-mail: konmarsz@pg.edu.pl

Gdańsk University of Technology
Narutowicza 11/12

80-233 Gdańsk
Poland

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

