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A B S T R A C T

Background: Sperm tail morphology and motility have been demonstrated to be important factors in
determining sperm quality for in vitro fertilization. However, many existing computer-aided sperm analysis
systems leave the sperm tail out of the analysis, as detecting a few tail pixels is challenging. Moreover, some
publicly available datasets for classifying morphological defects contain images limited only to the sperm head.
This study focuses on the segmentation of full sperm, which consists of the head and tail parts, and appear
alone and in groups.
Methods: We re-purpose the Feature Pyramid Network to ensemble an input image with multiple masks
from state-of-the-art segmentation algorithms using a scale-specific cross-attention module. We normalize
homogeneous backgrounds for improved training. The low field depth of microscopes blurs the images, easily
confusing human raters in discerning minuscule sperm from large backgrounds. We thus propose evaluation
protocols for scoring segmentation models trained on imbalanced data and noisy ground truth.
Results: The neural ensembling of noisy segmentation masks outperforms all single, state-of-the-art segmen-
tation algorithms in full sperm segmentation. Human raters agree more on the head than tail masks. The
algorithms also segment the head better than the tail.
Conclusions: The extensive evaluation of state-of-the-art segmentation algorithms shows that full sperm
segmentation is challenging. We release the SegSperm dataset of images from Intracytoplasmic Sperm
Injection procedures to spur further progress on full sperm segmentation with noisy and imbalanced ground
truth. The dataset is publicly available at https://doi.org/10.34808/6wm7-1159.
1. Introduction

Many deep learning applications require figure-ground segmenta-
tion. The performance of segmentation models varies across modalities
and acquisition settings. Our study focuses on segmenting full sperm
from the background in blurry images using ensembles of deep neural
networks. As embryologists seek sperm with desired shape and motion
attributes to increase chances of fertilization, sperm assessment can
take advantage of the segmentation task. However, modern deep neural
networks are still challenged by blurry microscopic images of minus-
cule sperm, with spatially uneven contrast, despite their significant
progress in binary segmentation in the last decade.

The studied application is important for human well-being. Infertil-
ity affects up to 15% of reproductive-aged couples worldwide. It may

∗ Corresponding author at: Department of Modelling and Optimization of Dynamical Systems, Systems Research Institute Warsaw, Poland.
E-mail address: anna.jezierska@ibspan.waw.pl (A. Jezierska).

lead to multiple psychological disorders, including stress, sadness, and
depression. The stigmatization of infertile couples is common. Some
cultures demand that, for a woman to be socially acceptable, she should
have at least one biological child [1]. Male infertility is estimated to
contribute to more than half of all global childlessness cases [2]. The
most common causes of male infertility are the absence or low sperm
levels and abnormal sperm morphology and motility.

Some infertility problems can be solved through In-Vitro Fertil-
ization (IVF), such as Intracytoplasmic Sperm Injection (ICSI). This
method involves the injection of a single sperm into an oocyte. The
very first step of the whole procedure is sperm selection – a key deci-
sion affecting the fertilization outcome. It has been shown that sperm
abnormalities correlate with embryo development at later stages [3].
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Therefore, the selection of high-quality spermatozoon is crucial. Mean-
while, the success rate of these Assisted Reproductive Technologies
(ART) has plateaued at ∼33% per fertilization cycle [4], largely due to
suboptimal sperm selection practices [5].

The sperm quality assessment criteria by the World Health Organi-
zation (WHO) are morphology, motility, and vitality [6]. An embryolo-
gist performs the assessment analysis, which is subjective, inconsistent,
non-repeatable, time-consuming, and costly. In contrast, Computer-
Assisted Sperm Analysis (CASA) systems can provide objective and
fast semen assessment. The treatment costs are lower than manual
analysis, which is currently hardly affordable for financially disad-
vantaged couples. CASA systems aim to systematically quantify shape
and movement and perform statistical analysis after counting sperm
according to specific selection criteria.

Most CASA systems classify sperm by their deformations [7,8]. The
morphology is an important quality parameter, and the WHO precisely
defines a plethora of malformations (Fig. 1). Some CASA systems
that use computer vision methods focus on motility analysis [9,10].
Other systems use supervised training of shape malformation classifiers
end-to-end, bypassing sperm segmentation. This approach has been
validated for the sperm head with some success [11]. Nevertheless,
increased black-boxing of a decision process counters the expected
explainability in healthcare systems [12]. Additionally, it is challenging
for human raters to prepare quality labels for the tail part and for the
motility and vitality of groups of sperm. Automatic sperm classification
still lacks acceptable precision for widespread clinical use [8].

We suggest two main advantages of using segmentation in the
CASA systems. Firstly, sperm segmentation can be viewed as an aux-
iliary task to quality classification. The segmentation masks increase
explainability in the system for sperm quality assessment. We argue the
system should know what pixels belong to sperm in the image when
deciding sperm quality because segmentation and classification tasks
are related [13–15]. Secondly, the raters can use segmentation masks
to highlight the shape and motion of blurred sperm parts for improved
sperm visibility and parameterization of sperm attributes. In effect, less
noisy defect labels should translate, in turn, to better-trained sperm
quality classifiers [16].

Most works prioritize efforts towards detecting sperm heads to
simplify the problem at the expense of accuracy. Namely, the sperm
tail also plays a key role in assessing the abnormal morphology [6]
and motility [9,10]. Studies have established that the shapes of flagellar
beats determine the movement path [17]. Therefore, analyzing sperm
tail’s beating patterns can provide new information supporting high-
quality cell selection. It is therefore important to develop methods that
increase the quality of segmentation of all sperm parts [18].

On the other hand, the segmentation of the flagellum is much
more challenging than the segmentation of the head due to the micro-
scopic video characteristics. With small width and quick movements,
the flagella are hardly visible under blurry and low-contrast imaging
conditions, often confusing the human raters. The collection of noise-
free ground truth labels of the tail’s shape and motion quality seems
daunting and could result in a low inter-rater agreement. In particular,
the recording conditions such as brightness and contrast variations
(Fig. 2a,b), elongated artifacts (Fig. 2c,f), and overlapping objects
(Fig. 2d,e) are a major reason why a labeler finds it difficult to identify
the subtle features and defects in tail morphology and motility. The
tail should be uniform along its length, thinner than the midpiece,
approximately 45 μm long, and should not have a sharp bend or a
coil [6,19]. Sperm’s tail that is short, multiple, broken, bent, irregular
in shape, coiled, or with any combination of these attributes is abnor-
mal [6]. Consequently, many existing detection-based solutions exclude
sperm flagellum from computer-aided analysis [7,20]. Moreover, some
publicly available datasets for the morphological defects classification
contain labels limited only to the head part [21–23].

This work aims to investigate the potential of ensembling state-of-
the-art segmentation algorithms in figure-ground sperm segmentation
2

Fig. 1. An atlas of sperm malformations [24,25]: (a) round head/no acrosome, (b)
small acrosome, (c) elongated head, (d) megolo head, (e) small head, (f) pinhead, (g)
vacuolated head, (h) amorphous head, (i) bicephalic, (j) loose head, (k) amorphous
head, (l) broken neck, (m) coiled tail, (n) double tail, (o) abaxial tail attachment,
(p) multiple defects, (q) immature germ cell, (r) elongated spermatid, (s) proximal
cytoplasmic droplet, (t) distal cytoplasmic droplet.

on a new dataset of ICSI images. It is well known that ensembling
improves results to some extent. This study describes a neural ensem-
bling approach for joint sperm head and tail segmentation. We analyze
the performance of modern binary segmentation algorithms with a
particular focus on the accuracy of tail segmentation. We argue the
correct segmentation of the flagella will support not only the sperm
classification based on the flagella’s structure (see Fig. 1j,l–t) but also
aid in assessing sperm’s motility. Our contributions include:

1. a new full sperm problem formulation and quantitative measure
for the evaluation of sperm segmentation results with noisy
labels (Section 3);

2. a new ensembling deep neural network, composed of an FPN
backbone and a two-branch encoder of the input image and
segmentation masks, fused with a new cross-attention module
(Section 4) which was shown in an experimental study to out-
perform the state-of-the-art methods in terms of the quality of
the segmentation results (Section 6);

3. an extensive experimental study of deep learning in sperm seg-
mentation problem showing optimal training settings, e.g., im-
age normalization, and limitations of state-of-the-art segmenta-
tion methods (Section 6).

4. a new SegSperm dataset of fully labeled sperm in regular ICSI
images, with a subset of multiple labels, coupled with ground
truth masks aggregation method (Section 5). We make the
dataset publicly available at https://doi.org/10.34808/6wm7-
1159.

The rest of the paper is organized as follows. Section 2 presents the
related work. Section 3 introduces the problem of full sperm segmenta-
tion. Section 4 describes the proposed neural ensembling architecture.
The dataset is presented in Section 5. The experimental studies are
presented in Section 6. In Section 6.3, we describe the results of
ensembling segmentation masks, followed by Discussion in Section 6.4.
Finally, Section 7 concludes this work.

2. Related work

The problem of sperm segmentation has gained a lot of attention.
Traditional computer vision techniques [26–28] and more recently

https://doi.org/10.34808/6wm7-1159
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Fig. 2. Different working conditions: (a) blurry semen, (b) differences in brightness, (c) elongated artifacts in the background, such as lines, (d) groups of overlapping sperm, (e)
sperm near background artifacts, (f) sperm-like background artifacts.
deep learning techniques [18,29–32] have been proposed. Most sperm
segmentation approaches are limited to sperm head [5,22,29,33]. The
head segments are used to analyze the motion tracks, parameterized
by, e.g., progressive velocity or path linearity, and head morphology
analysis [34].

The contributions to the tail segmentation problem have been
limited [28,35–39]. The authors proposed two-step, no-training ap-
proaches for sperm tail segmentation in early works [35,36]. The first
step was to detect the sperm head and its midpoint. The tail was then
searched iteratively in the surrounding region. In [36], the first step
used the Gaussian Mixtures Model for modeling the appearance of
the background and the head and the Bayesian approach for figure-
ground segmentation. It was followed by the tail identification step,
using a structural similarity index [40] and Rényi entropy [41] in the
iterative scheme. Several difficult cases were illustrated in the article,
including the detection of tails in images with low contrast. In addition
to being highly sensitive to fixed thresholds, modeling sperm as a chain
of points compromised the robustness to occlusions and self-occlusions.
Video processing techniques were explored in [28]. After background
subtraction, the resulting full sperm segments were further refined by
morphological filtering. The identified problems included missing tail
fragments in the middle or at the end of the tail. The main limitation
of this method was its sensitivity to background artifacts with similar
color or shape attributes to sperm.

A framework for automatic sperm analysis, grounded on automatic
assessment of sperm morphology, including the head, midpiece, and
tail parameters, such as tail length, was presented for the first time
in [37]. The authors automated the measurement of motility and mor-
phology parameters per single sperm, where motility parameters were
computed at low magnifications and morphology parameters at high
magnifications. The main challenges were tracking individual sperm
when they intersected with each other and segmentation of individual
sperm for accurate morphology assessment. The latter problem was
approached by a sequential scheme including image restoration, min-
imizing a quadratic cost function with total variation prior and fuzzy
c-means clustering [42]. The limitation of this approach was that the
morphology parameters were computed only for target single sperm.
Hence, although the morphology of the tail of individual sperm could
be assessed, the same analysis could not be performed simultaneously
for a group of sperm, a necessity for the sperm selection task.
3

Recent studies have demonstrated the significance of sperm tail
morphology in assessing sperm motility. In [38], the authors found
that tail defects correlate with DNA fragmentation levels. In other
contributions [43,44], the authors presented a systematic study on the
correlation and prediction of sperm DNA integrity from morphological
parameters and developed a machine learning framework for predicting
DNA fragmentation levels based on sperm morphology. Morphology
parameters were confined mainly to standard head parameters. How-
ever, these approaches demonstrated the possibility of developing an
automatic method for assessing sperm quality without human bias [45]
and might serve as a foundation for further development, for exam-
ple, extending the number of sperm morphological parameters to tail
parameters. It is possible to obtain these parameters based on the
segmentation of full sperm.

For successful fertilization, the potential benefits of analyzing sperm
locomotion [9,46–49] are discussed in [19]. It is concluded that the
discovery of sperm locomotion patterns contributes to our understand-
ing of how sperm navigate inside the female reproductive system.
These behaviors can be used to design approaches for selecting sperm
that are highly fertile. In [49], it is noted that the CASA systems
provide only limited insight into sperm motion. Motility is assessed
by tracking the movement of the head, ignoring the flagellum. Recent
studies have suggested that tail beating may be an effective method of
studying the motility of single sperms [19,45]. The pattern analysis of
bovine sperm tail motions can be found in [50]. Some novel tail-related
parameters have been proposed in [49], such as the frequency of
flagellar beats, the speed of flagellar arc waves, and the tail’s maximal
length and width. Software for tracking sperm using high-speed camera
systems has been developed, such as SpermQ [51] or FAST [49]. Since
these methods require sperm to be imaged under dark background
conditions, analyzing many individual sperm can be challenging [45].
For standard ICSI imaging, however, discovering locomotion patterns
involves reconstructing all points along the centerline of the sperm tail.
This requires some segmentation of the entire spermatozoon.

Ensembling has been extensively studied in the literature. For the
review of the ensembling methods, please see [52], and deep ensem-
bling models for segmentation are discussed in more recent work [53].
As part of our study, we analyze the neural ensembling of multiple
variants of inputs, including the input image. A similar formulation
was considered in [54]. This formulation produced the optimized final
result by concatenating the results of multiple segmentation algorithms

http://mostwiedzy.pl
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Fig. 3. The thinning of a sperm segmentation mask (gray) yields the white skeleton.
The dilation inflates the mask (black contour).

with the input image in the second step. However, the input image
is not generally ensembled with segmentation masks in such so-called
stacked ensemble models [55–58]. The authors of [57] propose to
ensemble the segmentation masks from different model training check-
points. Instead of using output masks, ensembling models learn from
the features extracted by various individual models. The final results
will vary based on the features selected for the model. Depending
on the number of features in each model, the ensembling may be
biased towards some models. Our study uses a more straightforward
approach that leverages soft segmentation masks and an image as
input. Ensembling has been proposed for sperm quality assessment
in [5]. Traditional convolutional neural networks were ensembled for
automated classification of human sperm head morphology. We are the
first to propose the ensembling of segmentation networks to address the
problem of full sperm segmentation.

3. Problem statement

We cast sperm segmentation as a binary classification problem,
where the first class is small, elongated objects that are partially out
of focus, and the second class is the background. Let 𝐼 ∈ 𝐻×𝑊 and
𝑀 ∈ {0, 1}𝐻×𝑊 denote an input image and a corresponding binary
segmentation mask, respectively. The sperm and background pixels are
denoted with 1 and 0, respectively, and the pair 𝐻,𝑊 corresponds to
the image height and width. The segmentation  is a mapping such
that  ∶ 𝐼 ↦ 𝑀 .

In the context of deep learning, network 𝛩 is a mapping 𝛩 ∶
𝐼 ↦ 𝑆, where 𝑆 denotes soft segmentation mask and 𝛩 is a set of
parameters. Soft segmentation mask assigns a single-valued score to
each pixel in the image within the range of 0 and 1. These heatmaps
are loosely interpreted as probabilities of pixels belonging to one of two
classes, a foreground object or a background scene. Hence, a common
value for the binary classification threshold is 0.5. The following will
refer to the binarization mapping as  ∶ (𝑆, 𝑡) ↦ 𝑀 , where 𝑡 denotes a
threshold.

In the studied microscopic images, the background dominates over
the minuscule sperm. The inherent class imbalance thus affects clas-
sifier training. The discriminatively trained model miscalibrates the
segmentation scores for the minority class [61], as measured e.g. by the
stratified Brier score [62], and shifts its optimal classification threshold
towards the scores closer to the majority class. We calculate optimal
thresholds 𝑡 for state-of-the-art methods and show that the threshold
values vary slightly between methods but are far from the standard
𝑡 = 0.5 threshold.

The segmentation results can be enhanced not only by studying
an impact of a threshold but also by reducing the variance of the
background. A microscopic image of sperm is dominated by a homoge-
neous background that can have varying light intensity in ICSI videos.
This study considered an image normalization approach to reduce the
variance of image intensity and increase contrast helping models focus
on sperm shape more than on accounting for the varying light intensity
during training.

The segmentation problem defined in Eq. (2) is spatially not equally
difficult. Among all pixels corresponding to 𝑀(𝑖, 𝑗) = 1, the pixels
presenting sperm head are less blurry than the ones presenting thin,
elongated semen tail. Long and flexible sperm tail easily moves out of
4

focus as the microscope has a narrow depth of field [63]. Let 𝑀𝑝 and
𝑀𝑟 denote binary segmentation masks where the 𝑟 mask is the refer-
ence. We assume the most important pixels of the true segmentation
mask lie in the elongated center of the mask. Imprecise labeling at the
sperm contours is inevitable as the imaged sperm often has low-contrast
and vanishing boundaries. In effect, we develop more optimistic yet
practical quality measures for the sperm segmentation problem. To
compute recall, the reference mask is thinned (skeletonized) with a
thinning operator 𝑡(𝑀), and the evaluated 𝑝 mask is dilated with a
𝑑(𝑀,𝑘) operator, where 𝑘 is a morphological kernel. The reference
mask is dilated to compute precision, and the evaluated 𝑝 mask is
eroded with an 𝑒(𝑀,𝑘) operator. Fig. 3 illustrates the operations of
mask thinning and mask dilation. In the following for the sperm seg-
mentation problem, we propose the asymmetric evaluation measure
IoU′ defined as:

𝑅′ = Recall(𝑡(𝑀𝑟), 𝑑(𝑀𝑝, 𝑘))

𝑃 ′ = Precision(𝑑(𝑀𝑟, 𝑘), 𝑒(𝑀𝑝, 𝑘))

IoU′ = 𝑅′ ∗ 𝑃 ′

𝑅′ + 𝑃 ′ − 𝑅′ ∗ 𝑃 ′

(1)

4. Method

We propose a deep neural ensembling network with cross-attention
modules for aggregating soft segmentation masks of individual segmen-
tation algorithms. Let  ∶

(

𝐼, {�̂�𝑖}𝑛𝑖=1
)

↦ �̂� denote an ensembling
network, where �̂� is an estimate of 𝑀 after ensembling 𝑛 ∈ 
different soft segmentation masks �̂�. The proposed architecture (Fig. 4)
re-purposes the Feature Pyramid Network (FPN) backbone [59,64].
The FPN has found various applications, among others, in object de-
tection [64], multi-class segmentation [59], and instance segmenta-
tion [65,66]. We propose a new adaptation of FPN by augmenting it
with attention modules and applying it to ensemble-based full sperm
segmentation.

The proposed FPN-based architecture has two encoder branches.
The first branch serves feature extraction from an input image 𝐼 . The
second branch extracts features from a stack of soft segmentation masks
{�̂�𝑖}𝑛𝑖=1. We use three levels of a pyramid feature. We denote each
pyramid feature level with 𝑠 ranging from 1 to 3. The spatial dimension
is reduced by a factor × 1

2 . Two bottom-up paths are integrated with the
same structure and feature dimension.

Additionally, we introduce a cross-attention block (Fig. 5). The main
goal of this block is to combine features from both branches by leverag-
ing the channel and spatial information between them. To this end, we
leverage the spatial and channel attention module (CBAM) from [60].
Specifically, to point out what is meaningful in the input feature,
the Channel Attention Module aggregates spatial context descriptors
by average-pooling and max-pooling operations. Channel attention is
focused on meaningful spatial attention in the area of interest. The
introduced channel attention mechanism produces an output added to
top-down pathways’ features. The Spatial Attention Module involves
average-pooling and max-pooling operations in the channel axis space
and concatenates them to generate feature descriptors highlighting
where are the informative regions.

Our method uses three separate attention branches, one per scale.
Each branch gets the corresponding attention mask. Each attention
mask is multiplied by the input feature maps to obtain the final output
separately. After that, at each sale level, we apply two convolution
operations. Dimension features are upsampled to the input dimension
and concatenated. The outputs of each scale are concatenated as well.
Finally, convolution filters were applied to reduce the number of output
channels.

For the proposed architecture, the optimal set of parameters 𝛩 is
derived by minimizing the loss :

(𝛩) =
𝐾
∑

𝐻
∑

𝑊
∑

𝐿
(

𝑆𝑘(𝑖, 𝑗), �̂�𝑘
𝛩(𝑖, 𝑗)

)

, (2)

𝑘 𝑖 𝑗
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Fig. 4. Architecture of our ensembling deep neural network. The network with FPN backbone [59] has a two-branch encoder structure. The first branch extracts features of an
input image with dimensions 𝐻 ×𝑊 . The second branch computes features of the concatenated 𝑛 soft segmentation masks with dimensions 𝐻 ×𝑊 , which are output by different
segmentation algorithms. At each pyramid level, features from two branches are passed to the cross-attention module (red boxes).
Fig. 5. A cross-attention module is proposed in two variants (V1 and V2). It incorpo-
rates features from two network branches. The cross-attention module is based upon
the spatial and channel attention modules (CBAM) from [60]. Variant V1 cross-weights
both network branches with the associated channel and spatial modules. The red boxes
represent input and output feature maps. According to variant V2, the channel and
spatial modules refine the image feature branch based on the features from the soft
mask segmentation branch.

where �̂�𝑘
𝛩 ∈ [0, 1]𝐻×𝑊 is an estimate of ground truth 𝑆𝑘 for 𝑘th sample

in training dataset  and distance measure 𝐿(𝑎, �̂�) given by:

𝐿(𝑎, �̂�) = −
3
∑

𝑠=1
𝛼𝑠

(

𝑎 log(�̂�𝑠) + (1 − 𝑎) log(1 − �̂�𝑠)
)

(3)

where �̂�𝑠 is an up-sampled estimate of 𝑎 at scale 𝑠 and an impact of
each scale is weighted by a factor 𝛼𝑠 ∈ (0,∞).

5. Dataset

Microscopic images of sperm were acquired by Invicta.1 The original
videos recorded the whole ICSI injection procedure. We chose video
frames from intervals of the sperm selection phase. The frames were
selected based on sharpness degree, large spermatozoa appearance, and
background variability with artifacts like lines, spills, and stains.

The SegSperm dataset consists of 551 gray images with binary
ground truth masks of sperm. The training set consists of 432 images
from 40 videos, and the test set consists of 119 images from 9 videos.
The binary masks of spermatozoa were segmented manually by one

1 www.invictaclinics.com.
5

Table 1
Summary of SegSperm dataset. The dataset consists of gray images with 512 × 512
resolution.

Sets #Videos Resolution #Segmentation masks

GT1 GT2 GT3

Train 40 512 × 512 432 0 0
Test 9 512 × 512 119 23 23

Table 2
Inter-rater agreement on 23 sperm segmentation masks. The masks belong to the test
set with triple labels from three raters GT1–3. The lower agreement between raters
for the strict IoU measure (top) considerably increases for the optimistic IoU′ measure
(bottom), computed with kernel size 3 × 3. The IoU′ measure indicates the agreement
is high for the head part and moderate for the tail part.

IoU

GT1 vs. GT2 GT1 vs. GT3 GT2 vs. GT3

Full 0.5767 0.5790 0.5661
Head 0.7016 0.6635 0.7339
Tail 0.4806 0.4957 0.4702

IoU′ (Eq. (1))

Full

GT1 GT2 GT3

GT1 1 0.8356 0.8541
GT2 0.8428 1 0.8304
GT3 0.8485 0.8307 1

Head

GT1 1 0.9838 0.9866
GT2 0.9155 1 0.9638
GT3 0.8802 0.9376 1

Tail

GT1 1 0.7684 0.7888
GT2 0.7856 1 0.7624
GT3 0.7961 0.7648 1

rater GT1. In addition, 23 images of sperm from the validation set were
annotated using the same annotation tool by two more raters, GT2 and
GT3. Table 1 summarizes the dataset.

The intersection-over-union measure IoU∈ [0, 1], which compares
binary segmentation masks by precision and recall, informs about the
moderate agreement between three raters in Table 2. The head part
is easier to detect than the tail part, as evidenced by the average
difference in IoU= 0.2175 between the parts, while IoU is below 0.6 for
the full sperm across all three rater-to-rater comparisons. Consequently,
the certainty of the ground truth masks of GT1 may raise initial
concerns about the protocol that evaluates and ranks algorithms for
the sperm segmentation task. The visual inspection of the 23 human
segmentation masks of GT1, GT2, and GT3 reveals that human raters
disagree mostly at the contours of sperm and the tail end. The raters

http://www.invictaclinics.com
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Fig. 6. Three variants of ground truth segmentation masks after aggregating masks from three raters GT1–3 with the following protocols: feeling lucky (at least one rater is
positive), majority voting (majority is positive), and full agreement (all raters are positive). Feeling lucky is the most optimistic, majority voting balances between recall and
precision, and full agreement is the most conservative. The ground truth masks of three mask aggregation variants differ, especially at the end of the semen tail part, and to some
extent impact the quantitative comparison between segmentation methods.
rarely confuse debris with sperm. The agreement between the human
raters considerably increases according to the measure IoU′ compared
to the standard, strict IoU measure, as shown in Table 2 for the kernel
𝑘 of size 3 × 3. As the IoU′ depends on the kernel 𝑘, it increases further
with a larger kernel size. The mean IoU′ scores over six pairs of rater-
to-rater comparisons at the kernel size of 3 × 3 are 0.8404, 0.9446, 0.7777
for full sperm, and head and tail part, respectively, while they increase
to 0.9315, 0.9847, 0.8554 at the kernel size of 5 × 5.

Thus increased inter-rater agreement suggests that the raters consis-
tently agree in segmenting most parts of sperm. They mostly disagree
on the sperm contours, where labeling errors stem partly from manual
imprecision rather than clinical misjudgment. The tail part, though,
which is a marker of sperm motility, can be more troublesome. The
raters disagree mostly on the vanishing ending of the tail. Therefore,
apart from evaluating the segmentation algorithm on ground truth
masks of rater GT1, we propose three ground truth aggregation variants
of masks GT1–3, as shown in Fig. 6. In particular, Feeling lucky aggre-
gates segmentation masks such that at least one rater has to be positive.
It is the most optimistic label aggregation heuristic, with more false
positives than the other two variants. Majority voting is the common
label aggregation method, where the majority is positive. It balances
true and false positives. Full agreement requires all raters to agree at a
pixel. It is the most conservative ground truth aggregation variant, with
the lowest number of false positives at the cost of missed true positives.

6. Experiments, evaluation, and results

This section describes experiments that evaluated the potential of
ensembling segmentation algorithms for figure-ground segmentation of
sperm in microscopic images. In our experiments, we selected 10 state-
of-the-art figure-ground segmentation methods with publicly available
code: Unet [67], FC-DenseNet [68,69], Unet++ [70], AttUNet [71],
Multi-scale Attention-Net (MAnet) [72], Spatial Attention Unet (SA-
Unet) [73], DeepLabV3+ [74], Feature Pyramid Network (FPN) [59,
64], Unet3+ [75] and UC-TransNet [76].

The performance of segmentation models is evaluated with the aver-
age precision (AP) measure, which summarizes the precision and recall
of a model irrespective of a given threshold. We thus avoid search-
ing for an optimal threshold during model selection for validation.
Additionally, we report optimal intersection-over-union scores IoU
6

𝑜𝑝𝑡
Fig. 7. Dependence of segmentation performance (IoU) on the selected threshold (best
viewed in color). Optimal thresholds, which lead to the best IoU score on the test set,
are marked with a cross.

and IoU0.5 for the binary segmentation masks 𝑀 that are resulting
from binarization of 𝑆 with optimal 𝑡 = 𝑡𝑜𝑝𝑡 and 𝑡 = 0.5 thresholds,
respectively.

The models were trained with the binary cross-entropy loss using
the Adam optimizer [77], without pretraining on another dataset.
The training used an initial learning rate of 0.001 on a multistep
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Fig. 8. Image normalization. Original images (top row) are processed to zero-mean
images (middle row) that share similar histograms. Minmax increases their contrast
(bottom row). For example, the two original images in the middle come from the same
video sequence but significantly vary in brightness. After the image-specific minmax
normalization, the dataset has a lower variation in brightness and higher contrast.

schedule with milestones 30 and 80 and gamma parameters 0.3. We
used batch normalization during training. We set the batch size to 5
and training epochs to 300. The ensemble models expected different
training parameters than the state-of-the-art segmentation models. We
reduced the learning rate earlier, with milestones at 5 and 15. We also
set the batch size to 6 for training the ensemble models. We additionally
experimented with other batch sizes (2, 4, 8), a combination of DICE
and binary cross-entropy losses, and with the focal loss and class-
instance weighting (1:2, 1:3, 1:5) to account for class imbalance. Still,
the results were either on par or worse. The size of our ensemble
models was 4M parameters, the computational efficiency reached 33
fps. All experiments were run on NVidia GeForce RTX 2080Ti and
NVidia Quadro RTX 5000. The models were implemented in PyTorch.

The training of segmentation models for elongated objects [78] can
be improved by a careful choice of data augmentation. In the following,
we propose to use Gaussian blur (random selection of kernel size in the
range of 2–10), zooming in and out (with scale factor ×0.67), rotation,
and horizontal and vertical flipping. Each of the transformations was
applied with a probability of 50%. We further augmented the training
data by contrast and brightness changes up to ±20% and ±30%, re-
spectively. Furthermore, we explored two image normalization variants
during training and validation and reported performance improvements
in all segmentation algorithms.

The Section is organized as follows. First, we study the optimal
training settings, including normalization and threshold in Section 6.1.
We also report inter-rater agreement as the apparent variability be-
tween the manually segmented masks relates to the uncertainty of
evaluation protocols. By adopting tailored evaluation measures and
data normalization techniques, our rigorous evaluation showed that the
proposed ensembling consistently outperforms individual segmentation
algorithms (Section 6.3). Finally, we discuss the results in Section 6.4.

6.1. Optimal thresholds

Multiple factors affect the performance of deep neural networks for
object segmentation, ranging from data preprocessing to training to
mask postprocessing and evaluation protocols in the presence of noisy
labels. We carefully search for improved training of the segmentation
7

methods as segmented masks of sperm are used by and compared to
ensembling. Here, we present the impact of the optimal threshold on
the final results. Fig. 7 illustrates the optimal thresholds of segmenta-
tion models for IoU measure that were trained on our training set and
evaluated on the test set (Table 1). The optimal thresholds vary slightly
between all segmentation methods and cluster near 0.2, far from the
typical threshold of 0.5.

6.2. Image normalization

The ten state-of-the-art models were trained without image normal-
ization and with two image normalization variants: mean subtraction
and mean subtraction followed by minmax range extension (Fig. 8).
Fig. 9 illustrates the validation results of the architectures that show
the impact of image normalization variants on trained models. Training
with minmax image normalization led to the highest AP results for all
models, often keeping a significant margin of 𝛥AP ∼ 1–1.5 over models
trained without image normalization. Consequently, we adopted this
normalization procedure for training all methods in the following
quantitative and qualitative analyses.

6.3. Ensembling segmentation masks

The most straightforward approach to ensembling is averaging the
outputs of multiple classifiers to expect performance improvement. On
the other hand, we show that a deep neural network can ensemble soft
segmentation masks of individual algorithms further to improve the
segmentation accuracy of sperm in microscopic images. We validate
our findings by ranking 10 segmentation methods and 24 ensembling
variants according to evaluation measures defined in Eq. (1). Each
result shows the mean and standard deviation computed on the test
set for models from 5 training runs with random initialization. As gen-
eralization and robustness are prime deployment aspects, we examine
their robustness to progressively blurred images of sperm. The numbers
in bold indicate the best results in the tables.

The evaluation of segmentation methods in Table 3 ranks AttUnet
and Unet3+ as the top two performers according to the AP and IoU𝑜𝑝𝑡
measures. The next four best methods, Unet, FC-DenseNet, Unet++, and
SA-Unet, are worse by 𝛥AP ∼ 0.5–1.0. DeepLabV3+ achieves the lowest
AP on our dataset, being inferior to AttUnet by 𝛥AP ∼ 2.5. The AP
measure ranks the methods similar to the IoU𝑜𝑝𝑡 measure that indicates
a larger advantage of the attention mechanism of AttUnet over other
methods. The reported results for IoU0.5 measure with the segmentation
threshold of 0.5 ranks the methods differently, signifying the impor-
tance of properly selecting the decision threshold when training on
heavily imbalanced datasets.

Soft segmentation masks differ between the methods in Fig. 10.
The algorithms react differently on the non-sperm, elongated patterns
such as borders between two homogeneous backgrounds and on sperm
image regions. The differences are especially visible at the end of tails,
the most blurry and the hardest to detect part of sperm. These results
suggest that ensembling can potentially reduce the number of false
positives, thereby improving the final segmentation masks. While false
negatives can be challenging, we note that the ensembling models
take soft segmentation masks as input, thus without hard thresholding,
allowing for improvement of the final masks by raising the input soft
scores.

6.3.1. Selection and fusion of inputs
The selection of soft segmentation masks and the fusion of inputs

affect ensembling performance. Four groups of inputs with six fusion
configurations evaluate the performance of ensembling. The four ar-
rangements of inputs to the second branch of the network (Section 4)
are all masks (E1), single best mask (E2), three best masks (E3), and
three best masks on train set (E4). The fusion configurations are the
following: averaging soft segmentation masks (Avg, S), ensembling by
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Table 3
Comparison of state-of-the-art segmentation models with our ensembling configurations. We specify four sets of segmentation masks E1–4 for ensembling. Two ensembling models
with a single encoder branch input a set of segmentation masks (S) and a concatenation of an input image with a set of segmentation masks (I+S). The other two ensembling
models (I,S), with the first encoder branch for the input image and the second encoder branch for the set of segmentation masks, fuse features between the branches at each scale
either by concatenation (concat) or our two cross-attention modules (AttV1 and AttV2).

Full semen segmentation results of base models and their ensembling configurations E1–4

Base model AP IoU0.5 IoU𝑜𝑝𝑡 E1 E2 E3 E4

AttUnet [71] 0.8334 ± 0.0023 0.5876 ± 0.0043 0.6348 ± 0.0043 ✓ ✓ ✓

Unet3+ [75] 0.8327 ± 0.0036 0.5739 ± 0.0122 0.6286 ± 0.0137 ✓ ✓ ✓

Unet [67] 0.8273 ± 0.0056 0.5710 ± 0.0141 0.6268 ± 0.0034 ✓ ✓

FC-DenseNet [68] 0.8258 ± 0.0036 0.5811 ± 0.0035 0.6219 ± 0.0042 ✓

Unet++ [70] 0.8240 ± 0.0021 0.5795 ± 0.0072 0.6278 ± 0.0012 ✓ ✓

SA-Unet [73] 0.8222 ± 0.0035 0.5688 ± 0.0069 0.6224 ± 0.0051 ✓

UCTransNet [76] 0.8191 ± 0.0067 0.5932 ± 0.0076 0.6255 ± 0.0070 ✓ ✓

MAnet [72] 0.8138 ± 0.0065 0.5936 ± 0.0075 0.6194 ± 0.0062 ✓

FPN [59] 0.8126 ± 0.0025 0.5851 ± 0.0059 0.6146 ± 0.0033 ✓

DeepLabV3+ [74] 0.8073 ± 0.0054 0.5837 ± 0.0097 0.6103 ± 0.0052 ✓

AP results (mean+stddev) of five models with ensembles of four sets of segmentation masks E1–4

Ensemble
model

Inputs AP (E1) AP (E2) AP (E3) AP (E4)

Avg S 0.8397 0.8368 0.8344 0.8303
Ensemble S 0.8340 ± 0.0025 0.8350 ± 0.0012 0.8444 ± 0.0008 0.8424 ± 0.0007
Ensemble I+S 0.8318 ± 0.0018 0.8279 ± 0.0007 0.8392 ± 0.0018 0.8377 ± 0.0014
Ensemble+concat I,S 0.8260 ± 0.0019 0.8310 ± 0.0019 0.8392 ± 0.0015 0.8389 ± 0.0015
EnsembleAttV1 I,S 0.8190 ± 0.0038 0.8284 ± 0.0022 0.8348 ± 0.0022 0.8346 ± 0.0024
EnsembleAttV2 I,S 0.8305 ± 0.0025 0.8332 ± 0.0015 0.8419 ± 0.0022 0.8369 ± 0.0039

IoU results (mean+stddev) of five models with ensembles of four sets of segmentation masks E1–4

Ensemble
model

Inputs IoU0.5 (E1) IoU0.5 (E2) IoU0.5 (E3) IoU0.5 (E4)

Avg S 0.5967 0.5922 0.5932 0.5939
Ensemble S 0.6353 ± 0.0019 0.6426 ± 0.0035 0.6440 ± 0.0036 0.6442 ± 0.0035
Ensemble I+S 0.6384 ± 0.0025 0.6395 ± 0.0023 0.6398 ± 0.0031 0.6424 ± 0.0046
Ensemble+concat I,S 0.6286 ± 0.0054 0.6347 ± 0.0074 0.6386 ± 0.0033 0.6412 ± 0.0064
EnsembleAttV1 I,S 0.6337 ± 0.0050 0.6401 ± 0.0036 0.6406 ± 0.0058 0.6447 ± 0.0030
EnsembleAttV2 I,S 0.6305 ± 0.0060 0.6382 ± 0.0069 0.6413 ± 0.0079 0.6304 ± 0.0076

Ensemble
model

Inputs IoU𝑜𝑝𝑡 (E1) IoU𝑜𝑝𝑡 (E2) IoU𝑜𝑝𝑡 (E3) IoU𝑜𝑝𝑡 (E4)

Avg S 0.6443 0.6410 0.6442 0.6423
Ensemble S 0.6382 ± 0.0012 0.6455 ± 0.0015 0.6469 ± 0.0017 0.6472 ± 0.0009
Ensemble I+S 0.6394 ± 0.0023 0.6436 ± 0.0014 0.6434 ± 0.0010 0.6465 ± 0.0015
Ensemble+concat I,S 0.6351 ± 0.0020 0.6454 ± 0.0015 0.6448 ± 0.0024 0.6486 ± 0.0011
EnsembleAttV1 I,S 0.6360 ± 0.0041 0.6429 ± 0.0026 0.6451 ± 0.0022 0.6469 ± 0.0019
EnsembleAttV2 I,S 0.6407 ± 0.0043 0.6462 ± 0.0004 0.6475 ± 0.0029 0.6485 ± 0.0008
Fig. 9. Performance (AP) comparison of ten segmentation methods, without image normalization and after applying image normalization: mean subtraction (avg) and mean
subtraction followed by minmax range extension (minmax).
concatenation of soft segmentation masks in the single-branch network
(Ensemble, S), concatenation of soft segmentation masks and input
image (Ensemble, I+S), features concatenation from masks and im-
age branches (Ensemble+concat, I,S), combining the features of both
branches by cross-attention V1 as shown in Fig. 5a (EnsembleAttV1,
I,S) and by cross-attention V2 as shown in Fig. 5b (EnsembleAttV2, I,S).

The results of the experiments are presented in Table 3. As the
results are obtained after 5 independent training runs, the masks to all
ensembling variants come from a model that achieved the top score out
of the 5 runs.
8

As indicated by AP and IoU𝑜𝑝𝑡 measures, ensembling by averaging
is most effective when input comprises all segmentation masks (E1).
Ensembling is least effective with the single, top model (E2). Best
AP performance is achieved by ensembling the top three base mod-
els (E3). Although the E4 configuration of base models achieves the
highest average IoU𝑜𝑝𝑡 result, the top-performing ensembling from a
single trial is attributed to the E3 configuration. The fusion of inputs
affects segmentation accuracy as well. In three cases, E2–4, ensembling
segmentation masks with an input image works best. Then, the network
with the attention module V2 outperforms the attention module V1 in
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Fig. 10. Sperm segmentation masks of state-of-the-art methods can differ substantially in ICSI images. All methods detect sperm heads mostly correctly. The sperm tail is troublesome.
Some methods are sensitive to background artifacts. Difference maps of segmentation results wrt the ground truth labels of annotator GT1: red, blue, and green regions represent
true positive (TP), false negative (FN), and false positive (FP) pixels, respectively.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Computers in Biology and Medicine 166 (2023) 107520

10

E. Lewandowska et al.

Fig. 11. Comparison between base models of the E3 ensemble (Table 3) and EnsembleAttV2|E3. Ensembling the soft segmentation masks of base models shows that
EnsembleAttV2|E3 can select the best segments locally in the presence of false positives (rows 1 and 2) and thickens the masks (rows 3 and 4). Difference maps of segmentation
results wrt the ground truth labels of annotator GT1: red, blue, and green regions represent true positive (TP), false negative (FN), and false positive (FP) pixels, respectively.
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all cases for both AP and IoU𝑜𝑝𝑡 measures. Our ensembling model uses
the FPN backbone. The FPN algorithm achieves AP = 0.81 and IoU𝑜𝑝𝑡 =
0.61 and most of our ensembling models achieve AP > 0.83 and IoU𝑜𝑝𝑡 >
0.63. The qualitative results of the best ensemble model EnsembleAttV2
with E3-selection of base models are presented in Fig. 11. The ensemble
model reduces mistakes of the top three base models. It thickens the
masks and generates fewer false positives.

6.3.2. Noisy labels of blurred images
The relationship between image sharpness and the quality of pre-

dicted segmentation masks of full sperm is shown in Fig. 12. Gaussian
kernels with sizes of 1–15 blurred the 119 validation images of rater
GT1 from the ICSI dataset. After blurring the images with each ker-
nel, the algorithms segmented the sperm and were compared to the
segmentation masks of rater GT1. The ensembling algorithm Ensem-
bleAttV2|E3 consistently maintains its advantage over other algorithms
despite the increasing blur in the images until kernel size 9. The results
spread after kernel sizes 6, showing that some algorithms are more
robust to blur than others. In general, blurry images lower the precision
and recall of all segmentation algorithms. Tail segmentation is thus a
challenging image segmentation task.

The evaluation protocol must address the ground truth uncertainty
that increases with blurry images. To study the ranking consistency of
segmentation methods, evaluated on multiple ground truth variants, we
quantify the performance of the methods on 23 images from the vali-
dation set on (i) individual ground true segmentation masks of raters
GT1–3 and (ii) ground truth variants that aggregate masks of GT1–3 in
three ways, as shown in Fig. 6. In Table 4, we compare the performance
of AttUnet, which achieves top accuracy on our dataset (Table 1), with
the ensembling methods Avg|E3 and EnsembleAttV2|E3. Six variants
of ground truth segmentation masks evaluate the accuracy of predicted
segmentation masks obtained at the optimal binarization threshold.
Head segmentation is far easier than tail segmentation for all methods
across all ground-truth variants, as in Table 2. Ensembling improves
segmentation over the top performing AttUnet in all cases. Ensem-
bleAttV2|E3 is slightly worse than Avg|E3 in half of the cases for the
head part but considerably better for the tail part.

6.4. Discussion and limitations

Object segmentation algorithms generally focus on images that
contain cluttered backgrounds of indoor and outdoor scenes. The back-
ground of ICSI microscopic images is generally homogeneous, with
rare local artifacts and non-local light intensity variations. Despite
this seemingly simplified setting, image-based sperm segmentation still
challenges state-of-the-art deep neural networks, as the appearance of
sperm can be non-discriminative. The tail part is especially prone to
blur, contrasting little with the background. Precise segmentation of
blurred tails is difficult even for human raters (Section 6.3.2).

The improved accuracy of segmentation algorithms by image-
specific normalization (Section 6.1) suggests that potential further
accuracy gains align with improving the normalization method. In-
voking a straight line detector allows image normalization to separate
two homogeneous regions of different mean intensities for obtaining
more homogeneous images. However, we used state-of-the-art straight
line detection [79] on ICSI images that confused lines with elongated
artifacts and sperm. Moreover, curved lines in ICSI images separate two
homogeneous regions of different intensities, making image normaliza-
tion more difficult. Then, highly blurred lines bias the estimation of
mean intensities of separated regions.

Noisy human labeling and the resulting inter-rater disagreement
affect the evaluation protocols that use uncertain ground truth and
the supervised learning regimes that penalize incorrect network pre-
dictions based on human labels. However, incorporating noisy label
training [16] will help little in the presence of false negative errors that
raters consistently make. It thus limits the potential of ensembling that
11
Fig. 12. Assessing the robustness of full sperm segmentation to varying blur levels. Our
best ensembling model EnsembleAttV2|E3 consistently outperforms ten state-of-the-art
methods across lower magnitudes of an artificial blur.

Table 4
Semen segmentation results (IoU𝑜𝑝𝑡) on 23 test images with triple labels GT1–3.
Comparison between the best base model (AttUnet), ensembling by averaging (Avg|E3),
and ensembling by cross-attention module (EnsembleAttV2|E3) wrt masks of raters
GT1–3 and wrt three aggregation variants of ground truth masks. For all methods
across all evaluation variants, head segmentation is far easier than tail segmentation
due to less blur. The results between methods vary more for the tail than for the head
part. Generally, our ensembling method EnsembleAttV2|E3 outperforms the other two
approaches.

IoU𝑜𝑝𝑡 head

GT variants AttUnet Avg|E3 EnsembleAttV2|E3

GT1 0.7589 0.7649 0.7875
GT2 0.7251 0.7352 0.7422
GT3 0.7452 0.7522 0.7506
Full agreement 0.5724 0.5784 0.5612
Majority voting 0.7151 0.7260 0.7156
Feeling lucky 0.7821 0.7886 0.8008

IoU𝑜𝑝𝑡 tail

GT variants AttUnet Avg|E3 EnsembleAttV2|E3

GT1 0.4850 0.4871 0.4976
GT2 0.4354 0.4355 0.4458
GT3 0.4939 0.4913 0.5022
Full agreement 0.3853 0.3939 0.3911
Majority voting 0.5389 0.5437 0.5491
Feeling lucky 0.4955 0.4932 0.5023

IoU𝑜𝑝𝑡 full

GT variants AttUnet Avg|E3 EnsembleAttV2|E3

GT1 0.6007 0.6054 0.6210
GT2 0.5557 0.5609 0.5723
GT3 0.6145 0.6176 0.6270
Full agreement 0.4930 0.5030 0.4957
Majority voting 0.6388 0.6482 0.6496
Feeling lucky 0.6165 0.6185 0.6305

prefers more false positives and fewer false negatives. False positives of
human raters are rare, though, mostly resulting from lower annotation
precision due to fatigue and often indecisiveness due to subjective per-
ception of high-contrast boundaries. Repetitive false negatives across
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Fig. 13. Soft masks of the ensembling model EnsembleAttV2|E3 on out-of-dataset images. Cluttered backgrounds with head-like patches (a,b), straight lines (b), high-contrasted
curves (c), elongated spills (d), and overlapping sperm (e,f) are challenging working conditions that mislead segmentation algorithms. On the positive side, many head-like patches
were correctly classified as background (a), borders between dark and light backgrounds were also classified as background despite thin, elongated patterns (b,d), and some stains
were correctly classified as background (c,e).
Fig. 14. Sperm segmentation in a video snippet. We define three visible error categories: broken tail, short tail, and eroded head. AttUnet and Unet3+ output masks with brief
but frequent temporal inconsistencies. The Unet struggles to maintain temporally consistent segmentation masks, with eroded heads and disappearing tails in the middle and end
tail parts. EnsembleAttV2—E3 segments the thickest masks that are most consistent over time.
images are common, particularly for the tail part. This raises questions
about whether additional multi-rater labeling of training data and
multi-label training regimes add value to the trained models for ICSI
image-based sperm segmentation.

Sperm shape is a composition of an egg-like head and a wavy, thin
tail. Annotating such tiny image structures requires much manual effort
and is time-consuming. Because ICSI image backgrounds are mostly
homogeneous, casting the sperm segmentation problem as anomaly de-
tection via one-class classification could avoid laborious image labeling.
Moreover, soft segmentation masks of one-class classifiers could add
extra diversity to segmentation masks for ensembling. To verify this,
we trained a state-of-the-art one-class model [80]. We observed that
it could find sperm heads but also artifacts, thereby increasing the
false positives. However, the tail part was not discriminative enough
for the network. It was neglected, thereby not decreasing the false
negatives and having no effect on ensembling the segmentation masks
from binary and one-class classifiers. We argue the shape attributes of
sperm can be confused quite easily with ICSI image artifacts in one-class
classification.
12
Qualitative analysis in Fig. 13 indicates that air bubbles, elongated
spills, and curved high-contrast artifacts can be hard to discern from
sperm. Further failure occurs when cells are very close to each other
forming tangled tails in large groups. Figure-ground segmentation of
crowded regions is challenging, suggesting that datasets from ICSI
procedures yield a good testbed for instance-level segmentation under
heavy occlusions [81].

Processing videos of ICSI procedures opens new avenues for re-
search. The main ICSI acceptance criterion is sperm motility. Still,
sperm or slowly moving sperm is rejected from further procedures.
Motion is thus an important cue for (i) filtering out many false posi-
tive detections as numerous artifacts are static and (ii) reducing false
negatives [82] due to blur. A video-based analysis in Fig. 14 displays
temporal inconsistencies of soft mask predictions. Ensembling produces
sperm segments that are the most consistent across time, as evidenced
by the number of maintained pixels in the soft segmentation masks.
However, all image-based segmentation methods struggle to produce
error-free segments of a moving sperm cell over time.
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7. Conclusions

This study described a deep neural network for ensembling soft
segmentation masks. It was successfully applied to the sperm segmen-
tation problem in blurry microscopic images. The ensembling network
performed better than state-of-the-art figure-ground segmentation net-
works on our new dataset. Microscopic imaging blurs the images of
sperm, especially at the sperm tail part, which can move out of focus.
Blurred object parts can confuse human raters in correct manual seg-
mentation leading to higher inter-rater disagreement. Our future work
will go beyond image analysis and focus on segmenting the sperm and
computing the sperm motion from videos.
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