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Standard quantum cryptographic protocols are not secure if one assumes that nonlocal hidden variables exist
and can be measured with arbitrary precision. The security can be restored if one of the communicating parties
randomly switches between two standard protocols.

DOI: 10.1103/PhysRevA.73.034303 PACS number�s�: 03.67.Dd, 03.65.Ta, 03.65.Ud

It is known that quantum mechanics can be replaced with-
out difficulty by a nonlocal-hidden-variable theory �1–13�.
Simultaneously, it is a rather popular belief that an exact
knowledge of nonlocal hidden variables would destroy the
security of quantum cryptography. In this Brief Report we do
not want to get into the crossfire of the discussion if such
exact knowledge is possible or not in a hidden-variable
theory that is exactly equivalent to standard quantum me-
chanics. Perhaps, the problem we discuss is present only in
theories that are “infinitesimally close” to quantum mechan-
ics. We are not experts in nonlocal hidden variables and,
keeping in mind that impossibility proofs may only prove
our lack of imagination, prefer to assume the worst possible
scenario: Nonlocal hidden variables exist and can be exactly
known to our enemies. We harness the nonlocality as a
means of protection by a simple modification of a quantum
protocol. The idea is illustrated on nonrelativistic Bohm
theory, but one can argue that the effect is typical of all
nonlocal-hidden-variable theories.

Bohm’s theory in its simplest nonrelativistic version �1�
involves nonlocal hidden variables q j�x1 , . . . ,xn , t� that have
a meaning of trajectories. The Schrödinger equation for an
n-particle wave function ��x1 , . . . ,xn , t� is related by the rule
�=R exp�iS /�� to the system of partial differential equations
involving the Hamilton-Jacobi and continuity equations

�S/�t + �
j=1

n

mjv j
2/2 + Q + V = 0, �1�

��/�t + �
j=1

n

� j��v j� = 0. �2�

�=R2 is the density of particles, v j =� jS /mj the velocity of
the jth particle, V=V�x1 , . . . ,xn , t� the usual potential, and
Q=−�2� j=1

n � j
2R / �2mjR� the so-called quantum potential.

The hidden trajectories are found by integrating the “guid-
ance equation” dq j /dt=v j. If the particles are not entangled
�and thus not interacting via V�, that is, the wave fuction
takes the product form ��x1 , . . . ,xn , t�=�1�x1 , t�¯�n�xn , t�,
then Q=� j=1

n Qj where Qj =−�2� j
2Rj / �2mjRj�. Such particles

cannot communicate via the quantum potential. However, for
entangled states the particles do interact via Q even if in the
sense of V they are uninteracting. Systems described by en-

tangled states are thus nonlocal: The dynamics of the kth
particle depends on what happens to the remaining n−1 par-
ticles. What is important, the influences remain within the
entangled system. The quantum potential is a useful concep-
tual tool in this context, but the Bohm theory needs only the
Schrödinger and guidance equations.

An eavesdropper �Eve� attempting to read the secret code
via the quantum potential, would have to get entangled �in
the quantum sense� with the information channel and would
be detected by the usual means, say, an Ekert-type procedure
�14,15�. If the eavesdropper does not get entangled, the
quantum potential will not carry the information she needs.

Let us now assume that Eve can know the hidden trajec-
tory q�t� of the particle carrying the key between the two
communicating parties. A Bohmian analysis of spin-1 /2
measurements performed via Stern-Gerlach devices �4,5�
shows that the knowledge of q�t0� at some initial time t0
uniquely determines the results of future measurements of
spin in any direction ��5�, pp. 412–415�. Single-particle
schemes of the variety of the Bennet-Brassard 1984 protocol
�16� are thus clearly insecure from this perspective. To make
matters worse, a similar statement can be deduced from the
analysis of two-electron singlet states described in detail in
Chap. 11 of �5�. If two Stern-Gerlach devices are aligned
along the same direction �0, 0, 1� and the particles propagate
toward the Stern-Gerlach devices of Alice and Bob with ve-
locities v1= �0,−�v1� ,0� and v2= �0, �v2� ,0�, respectively,
then the results of spin measurements are always opposite
�that is why we use them for generating the key� but are
uniquely determined by the sign of z1�t0�−z2�t0�, where the
respective trajectories are q1�t�= (0,y1�t� ,z1�t�) and q2�t�
= (0,y2�t� ,z2�t�) �cf. the discussion on p. 470 in �5��. The
result agrees with the analysis of �6�.

Still, if one looks more closely at the derivation given in
�5� one notices that the two particles interact with identical
magnetic fields. We can weaken this assumption. Following
�5� we assume that the time of interaction with the Stern-
Gerlach magnets is T, the particles are identical, their mag-
netic moments and masses equal � and m, and the initial
wave functions are Gaussians of half-width �0 in the z direc-
tion. We also assume that Alice’s Stern-Gerlach magnet pro-
duces the field B1�q1�= �0,0 ,B0+Bz1� but, contrary to �5�,
the Bob field is taken as B2�q2�=��0,0 ,B0+Bz2�, where � is
a real number �in �5� �=1�. Then the velocities in the z
direction �0, 0, 1� read
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dz1�t�/dt = �2tz1�t�/�4m2�0
4��t��

+ �m��t��−1B�T tanh��m�0
2��t��−1

��z1�t� − �z2�t��B�Tt� , �3�

dz2�t�/dt = �2tz2�t�/�4m2�0
4��t��

− �m��t��−1�B�T tanh��m�0
2��t��−1

��z1�t� − �z2�t��B�Tt� , �4�

where ��t�=1+ �2t2

4�0
4m2 . The above formulas differ from Eqs.

�11.12.15� and �11.12.16� found in �5� only by the presence
of �. This apparently innocent generalization has a funda-
mental meaning for the quantum protocol. For reasons that
are identical to those discussed by Holland in his book the
signs of spin found in the laboratories of Alice and Bob
depend on the sign of the term under tanh. However, as
opposed to the case of identical magnetic fields this sign is
controlled not only by the initial values of z1�t0� and z2�t0�, in
principle known to Eve, but also by the parameter � which is
known only to Bob. If ���	1 then the sign of this term is
practically controlled by the sign of � �recall that the range
of z1 is limited by the size of the Gaussian�. Choosing the
sign of � randomly, Bob can flip the spin of the particle
which is already in the laboratory of Alice and is beyond the
control of Eve. Eve knows, by looking at z1�t0� and z2�t0�,
what will be the result of Alice’s measurement if sgn���
= +1, and that if sgn���=−1 the result will be the opposite.
But she does not know this sign if Bob keeps it secret. It
follows that she gains nothing by watching the trajectory. But
Bob always knows the result of Alice’s measurement due to

the Einstein-Podolsky-Rosen correlations. If he keeps �
0
then Alice got the result opposite to what he found in his
laboratory because B1 and B2 are parallel; if he takes ��0
then both Alice and Bob find the same number because B1
and B2 are antiparallel. And this is sufficient for producing
the key.

Let us finally clarify here one point that can be easily
misunderstood at a first reading of our protocol. In the Ekert
protocol we have four settings of experimental devices that
are used for testing the Bell inequality: �A ,B�, �A ,B��,
�A� ,B�, �A� ,B��. This part of the data cannot be used for
producing the key. We need one more setting, say �C ,C�,
that will be used for the key. In our protocol we have in
addition the setting �C ,−C�. One can even think of our pro-
tocol as a version of the Ekert one but with two alternative
measurements corresponding to the same observable.

What is important, from the hidden-variable point of view
we can predict what will be the results �for each pair of
particles� of �C ,C� and �C ,−C� measurements. If the initial
hidden variables are such that the results of the measurement
of �C ,C� would yield, say, �C ,C�= �+,−� then the result of
�C ,−C� is not �C ,−C�= �+, + �, as one might naively expect,
but �C ,−C�= �−,−�. It is the bit of Bob that does not change
even though it is Bob who flips his device. This is how the
nonlocality works and why Eve does not know the key.
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