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Equitable and semi-equitable coloring of cubic graphs
and its application in batch scheduling

HANNA FURMAŃCZYK and MAREK KUBALE

In the paper we consider the problems of equitable and semi-equitable coloring of vertices
of cubic graphs. We show that in contrast to the equitable coloring, which is easy, the problem
of semi-equitable coloring is NP-complete within a broad spectrum of graph parameters. This
affects the complexity of batch scheduling of unit-length jobs with cubic incompatibility graph
on three uniform processors to minimize the makespan.
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1. Introduction

Graph coloring belongs to the hardest combinatorial optimization problems. There-
fore, some highly-structured graphs and simplified models of coloring are subject to
consideration more often than not. Among others cubic, i.e. 3-regular, graphs are such
highly-structured graphs (see Figs. 2, 3 and 4). These graphs lay close to the boundary
between polynomial and NP-complete coloring problems. For example, the problem of
coloring the vertices of cubic graphs is linear [8], while the problem of coloring the
edges of such graphs is NP-hard.

We say that a graph G = (V,E) is equitably k-colorable if and only if its vertex set
can be partitioned into independent sets V1, . . . ,Vk ⊂V such that |Vi|− |Vj| ∈ {−1,0,1}
for all i, j = 1, . . . ,k. The smallest k for which G admits such a coloring is called the
equitable chromatic number of G and denoted χ=(G). For example, Chen et. al. [1]
proved that every cubic graph can be equitably colored without adding a new color.
Hence we have

χ=(G) = χ(G) (1)

for this class of graphs.
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Figure 1: The smallest cubical corona K4 ◦K4.

Graph G has a semi-equitable coloring with k colors, if there exists a partition of
its vertices into independent sets V1, . . . ,Vk ⊂ V such that one of these subsets, say Vi
is of size s /∈ {⌊n/k⌋,⌈n/k⌉}, and the remaining subgraph G−Vi is equitably (k− 1)-
colorable.

It is easy to see that straightforward reduction from classical graph coloring to equi-
table coloring by introducing sufficiently many isolated vertices to a graph proves that
it is NP-complete to test whether a general graph has an equitable coloring with a given
number of colors (greater than two). Thus in general the NP-hardness of equitable col-
oring implies the NP-hardness of classical coloring and vice versa. But is it true for any
particular class of graphs? Or, in other words, is there a class of graphs for which the
problem of equitable coloring is harder than the problem of classical coloring? Although
it is relatively easy to give a class of graphs for which ordinary coloring is harder than
equitable coloring (e.g. graphs with a spanning star), so far no class of graphs has been
known showing the other way round, i.e. that equitable coloring is harder than ordi-
nary one. However, the authors have given the positive answer to this question [3]. They
found a class of cubical coronas for which the equitable 4-coloring is NP-hard, while the
classical 4-coloring is polynomial. An example of cubical corona is shown in Fig. 1.

This model of coloring has many practical applications [7]. Every time when we
have to divide a system with binary conflict relations into equal or almost equal conflict-
free subsystems we can model this situation by means of equitable graph coloring. One
motivation for equitable graph coloring stems from scheduling problems. In this appli-
cation the vertices of a graph represent a collection of jobs to be performed, and each
edge connects two jobs that should not be performed at the same time. A coloring of this
graph represents a partition of jobs into subsets that may be performed simultaneously.
Due to load balancing considerations, it is desirable to perform equal or nearly-equal
numbers of jobs in each time slot, and this balancing is exactly what an equitable col-
oring achieves. A good example of this type of scheduling is the problem of assigning
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university courses to time slots in a way that avoids incompatible pairs of courses at the
same time and spreads the courses evenly among the available time slots, since then the
usage of scarce additional resources (e.g. rooms) is maximized.

In this paper, we focus on the problem of equitable and semi-equitable coloring of
cubic graphs. In particular, we show that in contrast to the equitable coloring problem
for such graphs, which is easy, the semi-equitable coloring problem for cubic graphs be-
comes NP-hard. We than give a simple example of using this model of coloring in a prob-
lem of batch processing on three uniform batching machines to minimize the makespan
(i.e. maximal batch completion time).

2. Tripartite cubic graphs

Note that if G is a bipartite cubic graph then any 2-coloring is equitable and there may
be no equitable 3-coloring (cf. K3,3). On the other hand, all cubic graphs with χ(G) =
2 have semi-equitable 3-coloring of type (n/2,⌈n/4⌉,⌊n/4⌋). Moreover, they are easy
colorable in linear time while traversing in a depth-first search (DFS) way. Therefore,
in the sequel we shall concentrate on the hardest case, i.e. tripartite cubic graphs. We
denote the class of 3-chromatic cubic graphs by Q3. Next, let Q3(n) ⊂ Q3 stand for the
class of tripartite cubic graphs on n vertices.

We consider the following combinatorial decision problems:

IS3(Q,k): given a cubic graph Q on n vertices and an integer k, the question
is: does Q have an independent set I of size at least k?

and its subproblem

IS3(Q, .4n): this means the IS3(Q,k) problem with 10|n and k = 4n/10.

Note that the IS3(Q,k) problem is NP-complete [6] and remains so even if n is a
multiplication of 10. This is so because we can enlarge Q by adding j (0 ¬ j ¬ 4)
isolated copies of K3,3 to it so that the number of vertices in the new graph is divisible
by 10. Graph Q has an independent set of size at least k if and only if the new graph
has an independent set of size at least k + 3 j. Next theorems will imply considerable
complexity problems as far as semi-equitable coloring is concerned.

Theorem 3 Problem IS3(Q, .4n) is NP-complete.

Proof Our polynomial reduction is from NP-complete problem IS3(Q,k). For an n-
vertex cubic graph Q fulfilling 10|n, and an integer k, let r = |4n/10− k|. If k  4n/10
then we construct a cubic graph G = Q∪rK4∪rP else we construct G = Q∪rK4∪2rP∪
4rK3,3, where P ∈ Q3(6) is the prism graph (see Fig. 2). It is easy to see that the answer
to problem IS3(Q,k) is ’yes’ if and only if the answer to problem IS3(G, .4n) is ’yes’.
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Figure 2: Example of a cubic graph - the prism graph P on 6 vertices.

Theorem 4 Let Q ∈ Q3(n) and let k = 4n/10, where 10|n. The problem of deciding
whether Q has a coloring of type (4n/10,3n/10,3n/10) is NP-complete.

Proof We prove that Q has a coloring of type (4n/10,3n/10,3n/10) if and only if there
is an affirmative answer to IS3(Q, .4n).

Suppose first that Q has the above 3-coloring. Then the color class of size 4n/10 is
an independent set that forms a solution to IS3(Q, .4n).

Now suppose that there is a solution I to IS3(Q, .4n). Thus |I|  4n/10. We know
from [4] that in this case there exists an independent set I′ of size exactly 4n/10 such
that the subgraph Q− I′ is an equitably 2-colorable bipartite graph. This means that Q
can be 3-colored so that the color sequence is (4n/10,3n/10,3n/10).

On the other hand, let us note that a cubic graph usually has such a big independent
set. Frieze and Suen [2] have proven that for almost all cubic graphs Q their indepen-
dence number α(Q) fulfills the inequality α(Q) 4.32n/10− εn for any ε > 0. In prac-
tice this means that a random graph from Q3(n) is very likely to have an independent set
of size k  4n/10 and the probability of this fact increases with n.

Note that the existence of an independent set I of size at least 4n/10 does not mean
that Q− I is bipartite. It may happen that there remain some odd cycles in Q− I, even if
a big independent set is found (see Fig. 3). Nevertheless, the authors proved in [4]

Theorem 5 If Q ∈ Q3(n) and α(Q)  4n/10, then there exists an independent set I of
size k in Q such that Q− I is bipartite for ⌊(n−α(Q))/2⌋¬ k ¬ α(Q).

The proof of this theorem is constructive, i.e. it gives an algorithm that transforms,
step by step, an independent set I′ into an independent set I such that |I|= |I′| and Q− I
is bipartite. The complexity of this algorithm is polynomial.

We state the question: If |I|  4n/10 and Q− I is bipartite, does Q− I is equitably
2-colorable? The answer is affirmative. Indeed, assume that |I| = 4n/10. Notice that
6n/10 vertices of Q− I induce binary trees (some of them may be trivial) and/or graphs
whose 2-core is equibipartite (even cycle possibly with chords). Note that deleting an
independent set I of cardinality 4n/10 from a cubic graph Q means also that we remove
12n/10 edges from the set of all 15n/10 edges of Q. The resulting graph Q− I has 6n/10
vertices and 3n/10 edges. Let si, 0¬ i¬ 3, be the number of vertices in Q− I of degree i.
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Figure 3: Example of a graph Q for which a greedy algorithm, which repeatedly elimi-
nates the closed neighborhood of a minimum degree vertex, finds an independent set I
(vertices in black) such that Q− I contains K3.

Certainly, s0 + . . .+ s3 = 6n/10. Since the number of edges is half of the number of
vertices, the number of isolated vertices, s0, is equal to s2 +2s3. If s0 = 0, then Q− I is a
perfect matching and its equitable coloring is obvious. Suppose that s0 > 0. Let L denote
the set of isolated vertices in Q− I. Let us consider subgraph Q− I − L. Each vertex
of degree 3 causes the difference between cardinalities of color classes ¬ 2, similarly
each vertex of degree 2 causes the difference at most 1. The difference between the
cardinalities of color classes in any coloring fulfilling these conditions does not exceed
s2 +2s3 in Q− I−L. Thus, the appropriate assignment of colors to isolated vertices in L
makes the whole graph Q−I equitably 2-colored. This means that every graph Q∈Q3(n)
having an independent set I of size 4n/10 has coloring of type (4n/10,3n/10,3n/10).
Hence, we have

Theorem 6 If Q ∈ Q3(n) has an independent set I of size |I|  4n/10 then it has a
semi-equitable coloring of type (|I|,⌈(n−|I|)/2⌉,⌊(n−|I|)/2⌋).
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3. Example

Let us consider the following batch processing problem. Given three uniform pro-
cessors P1,P2,P3 such that one of them, say P1 is twice slower than the remaining two,
which are of the same speed. Next, we have 10 identical jobs to perform. Among the
jobs there are incompatibility constraints such that each job is in conflict with exactly 3
other jobs, which means that they cannot be processed on the same processor. Our aim is
to find a schedule that minimizes the makespan, i.e. maximal batch completion time, in
symbols Q3|s−batch,UET,G= cubic|Cmax. Suppose that our jobs induce a cubic graph
of the shape shown in Fig. 4. An optimal solution to this particular situation involves a
semi-equitable coloring of G and is shown in Fig. 5a. Fig. 5b depicts a suboptimal solu-
tion. Note that C∗

max = 4 in this particular case. Also note that if P1 is twice slower than
the remaining two processors then the optimal value of schedule length fulfills

n/2.5¬C∗
max ¬ n/1.5. (2)

Figure 4: A scheduling graph G.

Let us notice that both bounds in (2) are tight. An example of achievement the lower
bound is given in our example (Fig. 5a), while the proof for the tightness of upper bound
follows from the case where the mutual exclusion graph is the prism (Fig. 2).

If processor P1 is at least twice faster than the remaining two and the scheduling
graph G is bipartite then obtaining an optimal solution is easy. All we need is finding
a 2-coloring of G and splitting the second color into two thus obtaining a 3-coloring of
type (n/2,⌈n/4⌉,⌊n/4⌋). Then the vertices of the first color go to P1 and the remaining
vertices go to P2 and P3. If P1 is faster than P2 and P3 but its speed factor is less than 2, we
have to use a modified Chen’s et. al. algorithm [1] which finds a required decomposition
of a G in O(n2) time. If, however, graph G is tripartite then the scheduling problem
becomes NP-hard [5].
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Figure 5: a) optimal schedule; b) suboptimal schedule.

4. Summary

Above, we have shown that every cubic graph with k independent vertices has eq-
uitable coloring for k ∈ {⌈n/3⌉,⌊n/3⌋} and semi-equitable coloring for k  4n/10. The
problem for ⌈n/3⌉< k < 4n/10 stays open. Our results on the guarantee of the existence
of appropriate colorings in bicubic and tricubic graphs are summarized in Table 9.

Table 9: The existence of appropriate 3-colorings in a function of size I, |I|= k.

χ(Q) 3-coloring k ∈ {⌊n/3⌋,⌈n/3⌉} ⌈n/3⌉< k < n/2.5 n/2.5¬ k < n/2

2
equitable yes yes yes

semi-equitable no yes yes

3
equitable yes yes yes

semi-equitable no ? yes

Finally, note that our considerations cannot be generalized to all 3-colorable graphs,
since the sun S3 graph, depicted in Fig. 6, is a counterexample. There is an independent
set I of size 3 in S3 such that χ(S3 − I) = 3, where 3 = n/2 > 4n/10. Thus, a semi-
equitable 3-coloring does not exist.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl
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Figure 6: The sun graph S3. The vertices in black indicate the independent set I.
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