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a b s t r a c t

A hypergraph is equitably k-colorable if its vertices can be partitioned into k sets/color
classes in such a way that monochromatic edges are avoided and the number of vertices
in any two color classes differs by at most one. We prove that the problem of equitable
2-coloring of hypergraphs is NP-complete even for 3-uniform hyperstars. Finally, we
apply the method of dynamic programming for designing a polynomial-time algorithm to
equitably k-color linear hypertrees, where k ≥ 2 is fixed.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A hypergraph is a pair H = (V ,E), where V (or V (H)) is the n element set of vertices of H and E (or E(H)) is a family ofm
non-empty subsets of V called edges or hyperedges. Let [k] denote the set of integers {1, . . . , k}. A k-coloring of H = (V ,E)
is a mapping c : V → [k] such that for each e ∈ E with |e| ≥ 2 there exist u, v ∈ e with c(u) ̸= c(v). That is, there is no
monochromatic edge of size at least two. If every edge e is of cardinality r , then a hypergraph H is called r-uniform. Simple
graphs are 2-uniform hypergraphs. The chromatic number χ (H) of H is the smallest k such that H has a k-coloring. Note that
the set E is often defined as a multiset, thus allowing multiple hyperedges spanned on the same set of vertices. However,
such hyperedges do not have influence on vertex coloring, so we omit them. For a similar reason, we may assume that each
edge contains at least two vertices.

In this paper, we consider the problemof equitable coloring of hypergraphs. An equitable vertex k-coloring of a hypergraph
H = (V ,E) is a partition of the vertex set V into subsets V1, . . . , Vk such that no Vj contains an edge ei with |ei| ≥ 2, and
∥Vx|−|Vy∥ ≤ 1, for each x, y ∈ [k]. The smallest k such that H admits an equitable vertex k-coloring is called the equitable
chromatic number and is denoted by χ=(H). In other words, an equitable k-coloring of an n-vertex graph is an assignment
of colors to the vertices in such a way that monochromatic edges are avoided and each color class is of size ⌈n/k⌉ or ⌊n/k⌋.
Examples of such colorings are given in Fig. 1(b) and Fig. 3. The above definition can be viewed as an extension of equitable
vertex coloring for simple graphs.

The notion of equitable colorability of simple graphs was introduced by Meyer in 1973 [17]. This definition was
generalized to hypergraphs by Berge and Sterboul [2] in 1977. To the best of our knowledge, only a few papers concerning
equitable coloring of hypergraphs have been published since then (see [20–22]).

It is worth pointing out that equitable k-colorability of a graph or hypergraph G does not imply that G is equitably (k+1)-
colorable. A counterexample is the complete bipartite graph K3,3 which can be equitably colored with two colors, but not
with three. Examples of non-equitably k-colorable hypergraphs are given in [2].
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Fig. 1. (a) Simple graph G on 5 vertices with independent set of size 2 (white vertices). (b) 3-uniform hypergraph H constructed from G and its equitable
2-coloring (white and black vertices).

The model of equitable coloring of simple graphs has received considerable attention due to its multiple practical
applications. Every time when we have to divide a system with binary conflict relations into equal or almost equal conflict-
free subsystemswe canmodel this situation bymeans of equitable graph coloring. In particular, onemotivation for equitable
coloring suggested by Meyer [17] concerns scheduling problems. In this application, the vertices of a graph represent a
collection of (unit execution times) tasks to be performed and an edge connects two tasks that should not be executed at
the same time. A coloring of this graph represents a partition of tasks into subsets that may be performed simultaneously.
Hyperedges of size greater than two could be understood as a constraint that forbids scheduling all the vertices of e at the
same time. Some applications of equitable coloring in scheduling are also discussed in [5,9,10].

Hypergraphs in general are very useful in real-life problems modeling, for example in chemistry, telecommunications,
and many other fields of science and engineering [3]. They have also applications in image representation [14]. Thus,
generalization of equitable coloring of simple graphs to hypergraphs seems to be justified.

Let us recall some basic properties concerning hypergraphs.

Definition 1.1. We say that a hypergraph H has an underlying (host) graph G (spanned on the same set of vertices) if each
hyperedge of H induces a connected subgraph in G. Furthermore, it is assumed that for each edge eG in G there exists a hyperedge
eH in H such that eG ⊆ eH .

Note that for each hypergraph its host graph can be found by replacing each hyperedge ewith a clique of size |e|. However,
such graph will be a maximal host, while we often search for a sparse one. That is why other techniques of host searching
need to be applied.

Definition 1.2. A hypergraph that has an underlying tree is a hypertree.

By analogy hyperstars, hypercycles, and hyperpaths are defined.

Definition 1.3. A hypergraph is linear if each pair of edges has at most one vertex in common.

Definition 1.4 ([1]). A subhypergraph HA of a hypergraph H = (V ,E) induced by a vertex subset A ⊆ V is defined as
HA = (A, {Ei ∩ A: Ei ∈ E, Ei ∩ A ̸= ∅}.

The remainder of the paper is organized as follows. In the next section we establish the complexity status of equitable
coloring of hypergraphs,while in Section 3we give a polynomial-time algorithm for equitable k-coloring of linear hypertrees,
where k ≥ 2 is fixed.

2. Complexity status

In general, the problemof equitable coloring of simple graphswith theminimumnumber of colors is NP-hard and remains
so for corona products of graphs [7]. We are now interested in the computational complexity of the following problem:

Equitable k-Coloring of Hypergraph, ECH(H, k)
Instance: A hypergraph H on n vertices and an integer k.
Question: Does there exist an equitable vertex k-coloring of H?

and its subproblem:

Equitable Coloring of 3-uniform Hypergraph, ECH3(H, k)
Instance: A 3-uniform hypergraph H on n vertices and an integer k.
Question: Does there exist an equitable vertex k-coloring of H?
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It is known [16] that 2-coloring of a hypergraph is NP-complete. However, this does not seem to directly imply the
hardness of ECH(H, 2). In most cases equitable coloring is not easier than ordinary coloring, but there are also known
graphs such that the problem of ordinary coloring is NP-complete while the equitable coloring of these graphs is solvable in
polynomial time. Let us define the join G1 + G2 of graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge sets X1 and
X2 as the graph union G1 ∪ G2 together with all the edges joining V1 and V2. Let Nn be a graph on n vertices without edges,
i.e. the graph ({v1, . . . , vn}, ∅), while let Kn denote a clique on n vertices.

Vertex k-Coloring
Instance: A graph G on n vertices and an integer k.
Question: Does there exist a proper vertex k-coloring of G?

Fact 2.1. Vertex k-Coloring is NP-complete when restricted to graphs of the form G + N1, while χ=(G + N1) can be found in
polynomial time.

Proof. It is known that Vertex k-Coloring of a general graph is NP-complete [15], for k ≥ 3, and remains so also for graphs
of type G + N1 and k ≥ 4. Let us consider now equitable vertex coloring of such a graph G + N1. The color assigned to the
vertex v ∈ V (N1) cannot be used to color any other vertex in G. Since coloring must be equitable, every other color in this
coloring can be used at most twice. Thus, we need to partition the vertex set of G into minimum number of color classes
of size at most 2. This problem is equivalent to finding maximal matching in the complement of G, which may be done in
polynomial time [18,23]. □

In this section we show that ECH3(H, 2) is NP-complete even for hyperstars. Note that ECH(H, 2) restricted to hyperpaths
is decidable in polynomial time. Indeed, every hyperpath on n ≥ 2 vertices is equitably 2-colorable and such a coloring
corresponds to an equitable 2-coloring of the underlying path. A similar result holds for hypercycles andwe leave the details
to the reader.

We will show that the ECH3(H, k) is NP-complete. The proof is based on a reduction from a variant of the following
well-known NP-complete problem [11]:

Independent Set, IS(G, l)
Instance: A simple graph G on n vertices and an integer l.
Question: Does G have an independent set of size at least l?

Fact 2.2. IS(G, ⌈n/2⌉ − 1) is NP-complete.

Proof. Note that if we have NP-complete problem IS(G, l) with an arbitrary G and l there are three cases l = ⌈n/2⌉ − 1,
l < ⌈n/2⌉ − 1, or l > ⌈n/2⌉ − 1. If l = ⌈n/2⌉ − 1, then there is no need of transformation. If l < ⌈n/2⌉ − 1 we
can modify G by adding n − 2l − 2 isolated vertices. In this case we get the new graph G′

= G ∪ Nn−2l−2. Then, finding
IS(G′, ⌈n′/2⌉ − 1) is equivalent to finding IS(G, l). Similarly, if l > ⌈n/2⌉ − 1 then graph G is joined with K2l+2−n that leads us
to graph G′

= G + K2l+2−n, and again IS(G′, ⌈n′/2⌉ − 1) is equivalent to IS(G, l). □

Now we are ready to prove

Theorem 2.3. The problem ECH3(H, 2) is NP-complete even if H is a hyperstar.

Proof. Membership in NP is obvious. As already mentioned, we will reduce from IS(G, ⌈n/2⌉ − 1) (cf. Fact 2.2).
Given a graph G on nG vertices, we construct an instance of ECH3(H, 2) as follows. We add a dominating vertex u to G

and we let H to be the hypergraph with hyperedges {x, y, u}, for {x, y} ⊆ E(G). Clearly, H is 3-uniform hyperstar and has
nH = nG + 1 vertices. An example of such reduction is given in Fig. 1.

If H can be equitably 2-colorable, then let V1 and V2 be the appropriate color classes with u ∈ V1 and |V1| = ⌊nH/2⌋.
Clearly, the vertices in V1\{u} form an independent set in G of size ⌊nH/2⌋ − 1 = ⌈nG/2⌉ − 1 .

Conversely, if G has an independent set IG of size ⌈nG/2⌉ − 1, then vertices of IG ∪ {u} will form the first color class and
the remaining ⌊nG/2⌋ + 1 vertices the second one. It is easy to see that this 2-coloring of H is proper and equitable. □

Note that ordinary coloring of 3-uniform hyperstar H is solvable in linear time. Furthermore, χ (H) = 2 as long as
|V (H)| > 2. This means that hyperstars form an exemplary hypergraph class for which proper coloring is polynomially
solvablewhile equitable coloring is hard. A hierarchy of bipartite graphs andhypergraphswith the corresponding complexity
status for ordinary coloring and equitable coloring is given in Fig. 2.

3. Equitable coloring of linear hypertrees

Since our 2-coloring problem is NP-complete, we propose a polynomial-time algorithm for more specified classes of
hypergraphs, namely linear hypertrees. We apply the method of dynamic programming, used for example in [6,12], for
determining the set of counters for every proper coloring of H with colors {1, 2}.
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Fig. 2. Hierarchy of bipartite graph and bipartite hypergraphs with the computational complexity status of the problem of (a) ordinary coloring and (b)
equitable coloring: polynomial cases in circles, NP-complete cases in rectangles.

Fig. 3. An example of a linear hypertree H together with its vertex numbering achieved due to aBFS and with its exemplary equitable 2-coloring for a
counter (14, 13) (black and white vertices).

Definition 3.1. For a given coloring of an n-vertex hypertree H with colors {1, . . . , k} the counter of this coloring is a
sequence (n1, . . . , nk), n1 + · · · + nk = n, where ni is the number of vertices colored with color i. A counter is equitable if
maxi,j∈[k] |ni − nj| ≤ 1.

For a given coloring, a counter is sometimes called a feasible sequence, in the literature. In further consideration we will
need a special operation on sets of counters X and Y , defined as follows:

X + Y = {(x1 + y1, . . . , xk + yk) : (x1, . . . , xk) ∈ X ∧ (y1, . . . , yk) ∈ Y },

where ∅ + X = ∅ for any set X . Of course, X + Y = Y + X .
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Given a linear hypertree H = (V ,E) we need to determine an underlying tree T = (V ,E′) with a distinguished root
r ∈ V such that each hyperedge e ∈ E lies on a path from the root of the underlying tree to its leaf. Furthermore, there
is a need for preparing sequence of vertices for dynamic programing. For this purpose we introduce adapted Breadth First
Search algorithm, defined as follows.

algorithm aBFS(H);
begin

T := (V , ∅);
let Q be an empty queue;
i := |V (H)|;
choose arbitrary vertex that will represent root;
add root to the queue Q ;
while Q is non-empty do begin

take top vertex v from Q ;
assign index i to v;
decrement i by 1;
while there is unmarked edge e incident to v do begin

take unmarked e incident to v;
mark e;
add to queue all vertices incident to e apart from vertex v;
add to T a path starting with v with vertices in the same order as added to Q

end
end

end;

Mind that there are some other more complex algorithms finding underlying tree of linear hypertees and general
hypertree as well. One based on maximal spanning trees algorithm was proposed in [19], while another may be inspired
by chordal graphs recognition.

Theorem 3.2. There exists a polynomial-time algorithm (O(n2)) for checking whether a given linear hypertree H on n vertices can
be equitably colored with 2 colors.

Proof. Let us notice that χ=(H) = 1 if and only if n = 1. Thus we can assume that n ≥ 2.
Wewill describe a procedure which checks if a given linear hypertreeH satisfies χ=(H) = 2 and produces an appropriate

equitable 2-coloring, as long as it is feasible. Because the number of colorings may be exponential, we consider only coloring
counters. Thus,wewill determine a set of counters for every proper coloringwith colors {1, 2} for somekind of subhypertrees
of H . It is possible to extend this algorithm to one that finds equitable coloring. It is enough to keep with each counter an
exemplary coloring.

Let us assume that the vertices {v1, . . . , vn} are numbered as in the order achieved in aBFS (cf. Fig. 3).
For each i ∈ [n] we define a hypertree Di as a connected component of a subhypertree H{v1,...,vi} containing vertex vi (cf.

Definition 1.4).
Let fi denote an edge in hypertree H containing vi such that fi ̸∈ E(Di) and there is an edge yi ∈ E(Di) such that yi ⊂ fi.

Mind that |yi| ≥ 1 or fi may not exist.
For every i ∈ [n] we will recursively define sets:

• Col∗(vi)k — a set of counters of colorings of Di with colors {1, 2} such that coloring restricted to Di − yi is proper, a
vertex vi is colored with k, k ∈ {1, 2}, and the edge yi is monochromatic. If fi does not exist, Col∗(vi)k = ∅.

• Col(vi)k — a set of counters of every proper coloring of hypergraph Di with {1, 2}, in which a vertex vi is colored with
k, k ∈ {1, 2}.

We will consider some cases, depending on the situation in Di.

Case 1. Di contains only one vertex, vi, and hence only one edge E(Di) = {{vi}}.
Such case appears for example for D1, D10, or D23 for the hypergraph H from Fig. 3.
The way of determining counter sets is as follows:

Col∗(vi)1 := {(1, 0)}

Col∗(vi)2 := {(0, 1)}

Col(vi)1 = Col(vi)2 := ∅.
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Case 2. Di contains more than one vertex and there is only one edge in Di containing vertex vi.
Such case appears for example for D5, D14, or D21 for the hypergraph H from Fig. 3.
Let {e} be the edge containing vi. Let j be the biggest index among vertices in e, j < i. Then

Col(vi)1 := (Col(vj)1 ∪ Col(vj)2 ∪ Col∗(vj)2) + {(1, 0)},

Col(vi)2 := (Col(vj)1 ∪ Col(vj)2 ∪ Col∗(vj)1) + {(0, 1)}.

If fi exists, then:

Col∗(vi)1 := Col∗(vj)1 + {(1, 0)},

Col∗(vi)2 := Col∗(vj)2 + {(0, 1)},

else

Col∗(vi)1 = Col∗(vi)2 := ∅.

Case 3. Di contains more than one vertex and there are at least two edges in Di containing vertex vi. Moreover, fi exists and
|yi| = 1.
Such case appears for example for D2 for the hypergraph H from Fig. 3.
We consider graphDi−yi as a subhypergraphDi in the further part. Note that the vertex vi is the first vertex of fi and the
last vertex in all edges of Di that is being colored now. Due to the second fact, wewill determine Col(vi)k, k ∈ {1, 2}. But
finally, due to the definition of counter sets, we will determine only Col∗(vi)k, k ∈ {1, 2} for the vertex vi. To achieve
this, we number the edges of Di containing vi randomly: {yi1, . . . , y

i
degDi (vi)

}, where degDi
(vi) denotes the number of

edges in Di to which vertex vi belongs to, i.e. its degree. We will count counter sets for vi by considering consecutive
edges of Di incident to vi. First, we consider yi1 and treat it as the only edge in Di containing vi. We count counter sets
as in Case 2. Nowwe consider yil, for l = 2, . . . , degDi

(vi). Let j be the biggest index among vertices in the edge yil, j < i.
Then

Col(vi)1 := (Col(vj)1 ∪ Col(vj)2 ∪ Col∗(vj)2) + Col(vi)1,

Col(vi)2 := (Col(vj)1 ∪ Col(vj)2 ∪ Col∗(vj)1) + Col(vi)2.

Finally, after degDi
(vi) iterations, since vi is the first vertex in fi thus fi is monochromatic, do:

Col∗(vi)1 := Col(vi)1,

Col∗(vi)2 := Col(vi)2,

Col(vi)1 := ∅,

Col(vi)2 := ∅.

Case 4. Di contains more than one vertex and there are at least two edges in Di containing vertex vi. Moreover, fi does not
exist or |yi| ≥ 2.
Such case appears for example for D6, D8, or D27 for the hypergraph H from Fig. 3.
If fi exists, then let yi1 := yi, otherwise yi1 is a random edge of Di containing vi. We number the remaining edges of Di
containing vi in a random way: {yi1, . . . , y

i
degDi (vi)

}. We will count counter sets for vi by considering consecutive edges
from {yi1, . . . , y

i
degDi (vi)

}. First, we consider yi1 and treat it as the only edge in Di containing vi. We count counter sets as
in Case 2. Now we consider yil, for l = 2, . . . , degDi

(vi). Let j be the biggest index among vertices in the edge yil, j < i.
Then

Col(vi)1 := (Col(vj)1 ∪ Col(vj)2 ∪ Col∗(vj)2) + Col(vi)1,

Col(vi)2 := (Col(vj)1 ∪ Col(vj)2 ∪ Col∗(vj)1) + Col(vi)2,

Col∗(vi)1 := (Col(vj)1 ∪ Col(vj)2 ∪ Col∗(vj)2) + Col∗(vi)1,

Col∗(vi)2 := (Col(vj)1 ∪ Col(vj)2 ∪ Col∗(vj)1) + Col∗(vi)2.

Finally, after degDi
(vi) iterations, a counter set for vi is determined.
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We are interested in a counter set for vn. The hypertree H is equitably 2-colorable if and only if there exists a counter
(⌊n/2⌋, ⌈n/2⌉) in Col(vn)1 ∪ Col(vn)2.

Note that each time two subhypertrees are joined, new counters for a local root vertex vi are calculated which requires
someoperations. In order to count the complexity of the algorithmwe estimate the number of such operations. Let us assume
that the first subhypertree is spanned on a vertex set W1 and the second one on a set W2. Note that the worst case number
of operations 4(|W1| + 1) · 4(|W2| + 1) is proportional to the number of pairs inW1 × W2. AsW1 ∩ W2 = ∅ and the pairs in
various joins are always different, the total number of operations is proportional to the total number of pairs in V ×V . Thus,
the complexity may be estimated by O(n2). □

Note that our algorithm can be easily modified to calculate a counter set for colorings of a linear hypertree for bigger k.

Corollary 3.3. Let k ≥ 2 be fixed integer. Then there exists a polynomial-time algorithm for checking whether a given linear
hypertree H on n vertices can be equitably colored with k colors. □

4. Conclusion

In the paper the complexity status of equitable coloring of hypergraphswas established and a polynomial-time algorithm
for equitable k-coloring of linear hypertrees was proposed. It is worth pointing out that the algorithm from the proof
of Theorem 3.2 leads to determining all feasible sequences/counters for vertex k-coloring of such hypergraphs. Thus,
our method can be applied in any other model of linear hypertrees coloring where the model definition is connected
with cardinality constraints. An example of such graph/hypergraph coloring model is, next to equitable coloring, bounded
coloring [13].

The subject has a great potential for development. There is still space for tightening the gap between the known
polynomial and NP-complete subproblems. Moreover, it would be interesting to determine other hypergraph classes for
which ordinary coloring and equitable coloring have different complexities. Notice also that, to the best of our knowledge,
equitable coloring of mixed hypergraphs, as a structure of many potential applications (cf. [8]), has not been studied. Finally,
research on generalizing the known conjectures concerning equitable coloring of simple graphs to hypergraphs would be
desirable. We think for example about Coloring Conjecture (ECC) [17] or Equitable ∆-Coloring Conjecture (E∆CC) [4].
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