# Equitable coloring of hypergraphs 

Hanna Furmańczyk ${ }^{\text {a }}$, Paweł Obszarski ${ }^{\text {b,* }}$<br>${ }^{\text {a }}$ Institute of Informatics, University of Gdańsk, Wita Stwosza 57, 80-309 Gdańsk, Poland<br>${ }^{\mathrm{b}}$ Department of Algorithms and System Modeling, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

## A R TICLE INFO

## Article history:

Received 31 March 2017
Received in revised form 9 January 2019
Accepted 15 January 2019
Available online 11 February 2019

## Keywords:

Equitable coloring
Hypergraph
Linear hypertree
Feasible sequence


#### Abstract

A hypergraph is equitably $k$-colorable if its vertices can be partitioned into $k$ sets/color classes in such a way that monochromatic edges are avoided and the number of vertices in any two color classes differs by at most one. We prove that the problem of equitable 2-coloring of hypergraphs is NP-complete even for 3-uniform hyperstars. Finally, we apply the method of dynamic programming for designing a polynomial-time algorithm to equitably $k$-color linear hypertrees, where $k \geq 2$ is fixed.


© 2019 Elsevier B.V. All rights reserved.

## 1. Introduction

A hypergraph is a pair $H=(V, \mathbb{E})$, where $V($ or $V(H))$ is the $n$ element set of vertices of $H$ and $\mathbb{E}($ or $\mathbb{E}(H))$ is a family of $m$ non-empty subsets of $V$ called edges or hyperedges. Let $[k]$ denote the set of integers $\{1, \ldots, k\}$. A $k$-coloring of $H=(V, \mathbb{E})$ is a mapping $c: V \rightarrow[k]$ such that for each $e \in \mathbb{E}$ with $|e| \geq 2$ there exist $u, v \in e$ with $c(u) \neq c(v)$. That is, there is no monochromatic edge of size at least two. If every edge $e$ is of cardinality $r$, then a hypergraph $H$ is called $r$-uniform. Simple graphs are 2 -uniform hypergraphs. The chromatic number $\chi(H)$ of $H$ is the smallest $k$ such that $H$ has a $k$-coloring. Note that the set $\mathbb{E}$ is often defined as a multiset, thus allowing multiple hyperedges spanned on the same set of vertices. However, such hyperedges do not have influence on vertex coloring, so we omit them. For a similar reason, we may assume that each edge contains at least two vertices.

In this paper, we consider the problem of equitable coloring of hypergraphs. An equitable vertex $k$-coloring of a hypergraph $H=(V, \mathbb{E})$ is a partition of the vertex set $V$ into subsets $V_{1}, \ldots, V_{k}$ such that no $V_{j}$ contains an edge $e_{i}$ with $\left|e_{i}\right| \geq 2$, and $\| V_{x}\left|-\left|V_{y}\right|\right| \leq 1$, for each $x, y \in[k]$. The smallest $k$ such that $H$ admits an equitable vertex $k$-coloring is called the equitable chromatic number and is denoted by $\chi=(H)$. In other words, an equitable $k$-coloring of an $n$-vertex graph is an assignment of colors to the vertices in such a way that monochromatic edges are avoided and each color class is of size $\lceil n / k\rceil$ or $\lfloor n / k\rfloor$. Examples of such colorings are given in Fig. 1(b) and Fig. 3. The above definition can be viewed as an extension of equitable vertex coloring for simple graphs.

The notion of equitable colorability of simple graphs was introduced by Meyer in 1973 [17]. This definition was generalized to hypergraphs by Berge and Sterboul [2] in 1977. To the best of our knowledge, only a few papers concerning equitable coloring of hypergraphs have been published since then (see [20-22]).

It is worth pointing out that equitable $k$-colorability of a graph or hypergraph $G$ does not imply that $G$ is equitably $(k+1)$ colorable. A counterexample is the complete bipartite graph $K_{3,3}$ which can be equitably colored with two colors, but not with three. Examples of non-equitably $k$-colorable hypergraphs are given in [2].

[^0]

Fig. 1. (a) Simple graph $G$ on 5 vertices with independent set of size 2 (white vertices). (b) 3 -uniform hypergraph $H$ constructed from $G$ and its equitable 2 -coloring (white and black vertices).

The model of equitable coloring of simple graphs has received considerable attention due to its multiple practical applications. Every time when we have to divide a system with binary conflict relations into equal or almost equal conflictfree subsystems we can model this situation by means of equitable graph coloring. In particular, one motivation for equitable coloring suggested by Meyer [17] concerns scheduling problems. In this application, the vertices of a graph represent a collection of (unit execution times) tasks to be performed and an edge connects two tasks that should not be executed at the same time. A coloring of this graph represents a partition of tasks into subsets that may be performed simultaneously. Hyperedges of size greater than two could be understood as a constraint that forbids scheduling all the vertices of $e$ at the same time. Some applications of equitable coloring in scheduling are also discussed in [5,9,10].

Hypergraphs in general are very useful in real-life problems modeling, for example in chemistry, telecommunications, and many other fields of science and engineering [3]. They have also applications in image representation [14]. Thus, generalization of equitable coloring of simple graphs to hypergraphs seems to be justified.

Let us recall some basic properties concerning hypergraphs.
Definition 1.1. We say that a hypergraph $H$ has an underlying (host) graph $G$ (spanned on the same set of vertices) if each hyperedge of $H$ induces a connected subgraph in $G$. Furthermore, it is assumed that for each edge $e_{G}$ in $G$ there exists a hyperedge $e_{H}$ in $H$ such that $e_{G} \subseteq e_{H}$.

Note that for each hypergraph its host graph can be found by replacing each hyperedge $e$ with a clique of size $|e|$. However, such graph will be a maximal host, while we often search for a sparse one. That is why other techniques of host searching need to be applied.

Definition 1.2. A hypergraph that has an underlying tree is a hypertree.
By analogy hyperstars, hypercycles, and hyperpaths are defined.
Definition 1.3. A hypergraph is linear if each pair of edges has at most one vertex in common.
Definition 1.4 ([1]). A subhypergraph $H_{A}$ of a hypergraph $H=(V, \mathbb{E})$ induced by a vertex subset $A \subseteq V$ is defined as $H_{A}=\left(A,\left\{E_{i} \cap A: E_{i} \in \mathbb{E}, E_{i} \cap A \neq \emptyset\right\}\right.$.

The remainder of the paper is organized as follows. In the next section we establish the complexity status of equitable coloring of hypergraphs, while in Section 3 we give a polynomial-time algorithm for equitable $k$-coloring of linear hypertrees, where $k \geq 2$ is fixed.

## 2. Complexity status

In general, the problem of equitable coloring of simple graphs with the minimum number of colors is NP-hard and remains so for corona products of graphs [7]. We are now interested in the computational complexity of the following problem:

Equitable $k$-Coloring of Hypergraph, ECH $(H, k)$
Instance: A hypergraph $H$ on $n$ vertices and an integer $k$.
Question: Does there exist an equitable vertex $k$-coloring of $H$ ?
and its subproblem:
Equitable Coloring of 3-uniform Hypergraph, $\mathrm{ECH}_{3}(H, k)$ Instance: A 3-uniform hypergraph $H$ on $n$ vertices and an integer $k$.
Question: Does there exist an equitable vertex $k$-coloring of $H$ ?

It is known [16] that 2-coloring of a hypergraph is NP-complete. However, this does not seem to directly imply the hardness of $\operatorname{ECH}(H, 2)$. In most cases equitable coloring is not easier than ordinary coloring, but there are also known graphs such that the problem of ordinary coloring is NP-complete while the equitable coloring of these graphs is solvable in polynomial time. Let us define the join $G_{1}+G_{2}$ of graphs $G_{1}$ and $G_{2}$ with disjoint vertex sets $V_{1}$ and $V_{2}$ and edge sets $X_{1}$ and $X_{2}$ as the graph union $G_{1} \cup G_{2}$ together with all the edges joining $V_{1}$ and $V_{2}$. Let $N_{n}$ be a graph on $n$ vertices without edges, i.e. the graph $\left(\left\{v_{1}, \ldots, v_{n}\right\}, \emptyset\right)$, while let $K_{n}$ denote a clique on $n$ vertices.

## Vertex k-Coloring

Instance: A graph $G$ on $n$ vertices and an integer $k$.
Question: Does there exist a proper vertex $k$-coloring of $G$ ?
Fact 2.1. Vertex $k$-Coloring is NP-complete when restricted to graphs of the form $G+N_{1}$, while $\chi=\left(G+N_{1}\right)$ can be found in polynomial time.

Proof. It is known that Vertex $k$-Coloring of a general graph is NP-complete [15], for $k \geq 3$, and remains so also for graphs of type $G+N_{1}$ and $k \geq 4$. Let us consider now equitable vertex coloring of such a graph $G+N_{1}$. The color assigned to the vertex $v \in V\left(N_{1}\right)$ cannot be used to color any other vertex in $G$. Since coloring must be equitable, every other color in this coloring can be used at most twice. Thus, we need to partition the vertex set of $G$ into minimum number of color classes of size at most 2 . This problem is equivalent to finding maximal matching in the complement of $G$, which may be done in polynomial time $[18,23]$.

In this section we show that $\mathrm{ECH}_{3}(H, 2)$ is NP-complete even for hyperstars. Note that $\mathrm{ECH}(H, 2)$ restricted to hyperpaths is decidable in polynomial time. Indeed, every hyperpath on $n \geq 2$ vertices is equitably 2-colorable and such a coloring corresponds to an equitable 2-coloring of the underlying path. A similar result holds for hypercycles and we leave the details to the reader.

We will show that the $\mathrm{ECH}_{3}(H, k)$ is NP-complete. The proof is based on a reduction from a variant of the following well-known NP-complete problem [11]:

Independent Set, IS(G, l)
Instance: A simple graph $G$ on $n$ vertices and an integer $l$.
Question: Does $G$ have an independent set of size at least $l$ ?
Fact 2.2. $I S(G,\lceil n / 2\rceil-1)$ is NP-complete.
Proof. Note that if we have NP-complete problem $\operatorname{IS}(G, l)$ with an arbitrary $G$ and $l$ there are three cases $l=\lceil n / 2\rceil-1$, $l<\lceil n / 2\rceil-1$, or $l>\lceil n / 2\rceil-1$. If $l=\lceil n / 2\rceil-1$, then there is no need of transformation. If $l<\lceil n / 2\rceil-1$ we can modify $G$ by adding $n-2 l-2$ isolated vertices. In this case we get the new graph $G^{\prime}=G \cup N_{n-2 l-2}$. Then, finding $\operatorname{IS}\left(G^{\prime},\left\lceil n^{\prime} / 2\right\rceil-1\right)$ is equivalent to finding $\operatorname{IS}(G, l)$. Similarly, if $l>\lceil n / 2\rceil-1$ then graph $G$ is joined with $K_{2 l+2-n}$ that leads us to graph $G^{\prime}=G+K_{2 l+2-n}$, and again $\operatorname{IS}\left(G^{\prime},\left\lceil n^{\prime} / 2\right\rceil-1\right)$ is equivalent to $\operatorname{IS}(G, l)$.

Now we are ready to prove

Theorem 2.3. The problem $E C H_{3}(H, 2)$ is NP-complete even if $H$ is a hyperstar.
Proof. Membership in NP is obvious. As already mentioned, we will reduce from IS(G, $\lceil n / 2\rceil-1$ ) (cf. Fact 2.2).
Given a graph $G$ on $n_{G}$ vertices, we construct an instance of $E H_{3}(H, 2)$ as follows. We add a dominating vertex $u$ to $G$ and we let $H$ to be the hypergraph with hyperedges $\{x, y, u\}$, for $\{x, y\} \subseteq E(G)$. Clearly, $H$ is 3-uniform hyperstar and has $n_{H}=n_{G}+1$ vertices. An example of such reduction is given in Fig. 1.

If $H$ can be equitably 2 -colorable, then let $V_{1}$ and $V_{2}$ be the appropriate color classes with $u \in V_{1}$ and $\left|V_{1}\right|=\left\lfloor n_{H} / 2\right\rfloor$. Clearly, the vertices in $V_{1} \backslash\{u\}$ form an independent set in $G$ of size $\left\lfloor n_{H} / 2\right\rfloor-1=\left\lceil n_{G} / 2\right\rceil-1$.

Conversely, if $G$ has an independent set $I_{G}$ of size $\left\lceil n_{G} / 2\right\rceil-1$, then vertices of $I_{G} \cup\{u\}$ will form the first color class and the remaining $\left\lfloor n_{G} / 2\right\rfloor+1$ vertices the second one. It is easy to see that this 2-coloring of $H$ is proper and equitable.

Note that ordinary coloring of 3-uniform hyperstar $H$ is solvable in linear time. Furthermore, $\chi(H)=2$ as long as $|V(H)|>2$. This means that hyperstars form an exemplary hypergraph class for which proper coloring is polynomially solvable while equitable coloring is hard. A hierarchy of bipartite graphs and hypergraphs with the corresponding complexity status for ordinary coloring and equitable coloring is given in Fig. 2.

## 3. Equitable coloring of linear hypertrees

Since our 2-coloring problem is NP-complete, we propose a polynomial-time algorithm for more specified classes of hypergraphs, namely linear hypertrees. We apply the method of dynamic programming, used for example in [6,12], for determining the set of counters for every proper coloring of $H$ with colors $\{1,2\}$.


Fig. 2. Hierarchy of bipartite graph and bipartite hypergraphs with the computational complexity status of the problem of (a) ordinary coloring and (b) equitable coloring: polynomial cases in circles, NP-complete cases in rectangles.


Fig. 3. An example of a linear hypertree $H$ together with its vertex numbering achieved due to aBFS and with its exemplary equitable 2-coloring for a counter (14, 13) (black and white vertices).

Definition 3.1. For a given coloring of an $n$-vertex hypertree $H$ with colors $\{1, \ldots, k\}$ the counter of this coloring is a sequence $\left(n_{1}, \ldots, n_{k}\right), n_{1}+\cdots+n_{k}=n$, where $n_{i}$ is the number of vertices colored with color $i$. $A$ counter is equitable if $\max _{i, j \in[k]}\left|n_{i}-n_{j}\right| \leq 1$.

For a given coloring, a counter is sometimes called a feasible sequence, in the literature. In further consideration we will need a special operation on sets of counters $X$ and $Y$, defined as follows:

$$
X+Y=\left\{\left(x_{1}+y_{1}, \ldots, x_{k}+y_{k}\right):\left(x_{1}, \ldots, x_{k}\right) \in X \wedge\left(y_{1}, \ldots, y_{k}\right) \in Y\right\}
$$

where $\emptyset+X=\emptyset$ for any set $X$. Of course, $X+Y=Y+X$.

Given a linear hypertree $H=(V, \mathbb{E})$ we need to determine an underlying tree $T=\left(V, \mathbb{E}^{\prime}\right)$ with a distinguished root $r \in V$ such that each hyperedge $e \in \mathbb{E}$ lies on a path from the root of the underlying tree to its leaf. Furthermore, there is a need for preparing sequence of vertices for dynamic programing. For this purpose we introduce adapted Breadth First Search algorithm, defined as follows.

```
algorithm aBFS(H);
begin
    T:= (V,\emptyset);
    let Q be an empty queue;
    i:= |V(H)|;
    choose arbitrary vertex that will represent root;
    add root to the queue Q;
    while Q is non-empty do begin
        take top vertex v from Q;
        assign index i to v;
        decrement i by 1;
        while there is unmarked edge e incident to v}\mathrm{ do begin
                take unmarked e incident to v;
                mark e;
                add to queue all vertices incident to e apart from vertex v;
                add to T a path starting with v}\mathrm{ with vertices in the same order as added to Q
            end
    end
end;
```

Mind that there are some other more complex algorithms finding underlying tree of linear hypertees and general hypertree as well. One based on maximal spanning trees algorithm was proposed in [19], while another may be inspired by chordal graphs recognition.

Theorem 3.2. There exists a polynomial-time algorithm $\left(O\left(n^{2}\right)\right)$ for checking whether a given linear hypertree $H$ on $n$ vertices can be equitably colored with 2 colors.

Proof. Let us notice that $\chi_{=}(H)=1$ if and only if $n=1$. Thus we can assume that $n \geq 2$.
We will describe a procedure which checks if a given linear hypertree $H$ satisfies $\chi_{=}(H)=2$ and produces an appropriate equitable 2-coloring, as long as it is feasible. Because the number of colorings may be exponential, we consider only coloring counters. Thus, we will determine a set of counters for every proper coloring with colors $\{1,2\}$ for some kind of subhypertrees of $H$. It is possible to extend this algorithm to one that finds equitable coloring. It is enough to keep with each counter an exemplary coloring.

Let us assume that the vertices $\left\{v_{1}, \ldots, v_{n}\right\}$ are numbered as in the order achieved in aBFS (cf. Fig. 3).
For each $i \in[n]$ we define a hypertree $D_{i}$ as a connected component of a subhypertree $H_{\left\{v_{1}, \ldots, v_{i}\right\}}$ containing vertex $v_{i}$ (cf. Definition 1.4).

Let $f_{i}$ denote an edge in hypertree $H$ containing $v_{i}$ such that $f_{i} \notin \mathbb{E}\left(D_{i}\right)$ and there is an edge $y_{i} \in \mathbb{E}\left(D_{i}\right)$ such that $y_{i} \subset f_{i}$. Mind that $\left|y_{i}\right| \geq 1$ or $f_{i}$ may not exist.

For every $i \in[n]$ we will recursively define sets:

- $\operatorname{Col}{ }^{*}\left(v_{i}\right)^{k}-$ a set of counters of colorings of $D_{i}$ with colors $\{1,2\}$ such that coloring restricted to $D_{i}-y_{i}$ is proper, a vertex $v_{i}$ is colored with $k, k \in\{1,2\}$, and the edge $y_{i}$ is monochromatic. If $f_{i}$ does not exist, $\operatorname{Col}\left(v_{i}\right)^{k}=\emptyset$.
- $\operatorname{Col}\left(v_{i}\right)^{k}-$ a set of counters of every proper coloring of hypergraph $D_{i}$ with $\{1,2\}$, in which a vertex $v_{i}$ is colored with $k, k \in\{1,2\}$.

We will consider some cases, depending on the situation in $D_{i}$.
Case 1. $D_{i}$ contains only one vertex, $v_{i}$, and hence only one edge $\mathbb{E}\left(D_{i}\right)=\left\{\left\{v_{i}\right\}\right\}$.
Such case appears for example for $D_{1}, D_{10}$, or $D_{23}$ for the hypergraph $H$ from Fig. 3.
The way of determining counter sets is as follows:

$$
\begin{aligned}
& \operatorname{Col}^{*}\left(v_{i}\right)^{1}:=\{(1,0)\} \\
& \operatorname{Col}^{*}\left(v_{i}\right)^{2}:=\{(0,1)\} \\
& \operatorname{Col}\left(v_{i}\right)^{1}=\operatorname{Col}\left(v_{i}\right)^{2}:=\emptyset
\end{aligned}
$$

Case 2. $D_{i}$ contains more than one vertex and there is only one edge in $D_{i}$ containing vertex $v_{i}$. Such case appears for example for $D_{5}, D_{14}$, or $D_{21}$ for the hypergraph $H$ from Fig. 3 .
Let $\{e\}$ be the edge containing $v_{i}$. Let $j$ be the biggest index among vertices in $e, j<i$. Then

$$
\begin{aligned}
& \operatorname{Col}\left(v_{i}\right)^{1}:=\left(\operatorname{Col}\left(v_{j}\right)^{1} \cup \operatorname{Col}\left(v_{j}\right)^{2} \cup \operatorname{Col}^{*}\left(v_{j}\right)^{2}\right)+\{(1,0)\}, \\
& \operatorname{Col}\left(v_{i}\right)^{2}:=\left(\operatorname{Col}\left(v_{j}\right)^{1} \cup \operatorname{Col}\left(v_{j}\right)^{2} \cup \operatorname{Col} l^{*}\left(v_{j}\right)^{1}\right)+\{(0,1)\} .
\end{aligned}
$$

If $f_{i}$ exists, then:

$$
\begin{aligned}
& \operatorname{Col}^{*}\left(v_{i}\right)^{1}:=\operatorname{Col}^{*}\left(v_{j}\right)^{1}+\{(1,0)\}, \\
& \operatorname{Col}^{*}\left(v_{i}\right)^{2}:=\operatorname{Col}^{*}\left(v_{j}\right)^{2}+\{(0,1)\},
\end{aligned}
$$

else

$$
\operatorname{Col}^{*}\left(v_{i}\right)^{1}=\operatorname{Col}^{*}\left(v_{i}\right)^{2}:=\emptyset .
$$

Case 3. $D_{i}$ contains more than one vertex and there are at least two edges in $D_{i}$ containing vertex $v_{i}$. Moreover, $f_{i}$ exists and $\left|y_{i}\right|=1$.
Such case appears for example for $D_{2}$ for the hypergraph $H$ from Fig. 3 .
We consider graph $D_{i}-y_{i}$ as a subhypergraph $D_{i}$ in the further part. Note that the vertex $v_{i}$ is the first vertex of $f_{i}$ and the last vertex in all edges of $D_{i}$ that is being colored now. Due to the second fact, we will determine $\operatorname{Col}\left(v_{i}\right)^{k}, k \in\{1,2\}$. But finally, due to the definition of counter sets, we will determine only $\operatorname{Col}^{*}\left(v_{i}\right)^{k}, k \in\{1,2\}$ for the vertex $v_{i}$. To achieve this, we number the edges of $D_{i}$ containing $v_{i}$ randomly: $\left\{y_{1}^{i}, \ldots, y_{\operatorname{deg}_{D_{i}}\left(v_{i}\right)}^{i}\right\}$, where $\operatorname{deg}_{D_{i}}\left(v_{i}\right)$ denotes the number of edges in $D_{i}$ to which vertex $v_{i}$ belongs to, i.e. its degree. We will count counter sets for $v_{i}$ by considering consecutive edges of $D_{i}$ incident to $v_{i}$. First, we consider $y_{1}^{i}$ and treat it as the only edge in $D_{i}$ containing $v_{i}$. We count counter sets as in Case 2. Now we consider $y_{l}^{i}$, for $l=2, \ldots, \operatorname{deg}_{D_{i}}\left(v_{i}\right)$. Let $j$ be the biggest index among vertices in the edge $y_{l}^{i}, j<i$. Then

$$
\begin{aligned}
& \operatorname{Col}\left(v_{i}\right)^{1}:=\left(\operatorname{Col}\left(v_{j}\right)^{1} \cup \operatorname{Col}\left(v_{j}\right)^{2} \cup \operatorname{Col}^{*}\left(v_{j}\right)^{2}\right)+\operatorname{Col}\left(v_{i}\right)^{1}, \\
& \operatorname{Col}\left(v_{i}\right)^{2}:=\left(\operatorname{Col}\left(v_{j}\right)^{1} \cup \operatorname{Col}\left(v_{j}\right)^{2} \cup \operatorname{Col} l^{*}\left(v_{j}\right)^{1}\right)+\operatorname{Col}\left(v_{i}\right)^{2} .
\end{aligned}
$$

Finally, after $\operatorname{deg}_{D_{i}}\left(v_{i}\right)$ iterations, since $v_{i}$ is the first vertex in $f_{i}$ thus $f_{i}$ is monochromatic, do:

$$
\begin{aligned}
& \operatorname{Col}^{*}\left(v_{i}\right)^{1}:=\operatorname{Col}\left(v_{i}\right)^{1}, \\
& \operatorname{Col}^{*}\left(v_{i}\right)^{2}:=\operatorname{Col}\left(v_{i}\right)^{2}, \\
& \operatorname{Col}\left(v_{i}\right)^{1}:=\emptyset, \\
& \operatorname{Col}\left(v_{i}\right)^{2}:=\emptyset .
\end{aligned}
$$

Case 4. $D_{i}$ contains more than one vertex and there are at least two edges in $D_{i}$ containing vertex $v_{i}$. Moreover, $f_{i}$ does not exist or $\left|y_{i}\right| \geq 2$.
Such case appears for example for $D_{6}, D_{8}$, or $D_{27}$ for the hypergraph $H$ from Fig. 3 .
If $f_{i}$ exists, then let $y_{1}^{i}:=y_{i}$, otherwise $y_{1}^{i}$ is a random edge of $D_{i}$ containing $v_{i}$. We number the remaining edges of $D_{i}$ containing $v_{i}$ in a random way: $\left\{y_{1}^{i}, \ldots, y_{\operatorname{deg}_{D_{i}}\left(v_{i}\right)}\right\}$. We will count counter sets for $v_{i}$ by considering consecutive edges from $\left\{y_{1}^{i}, \ldots, y_{\operatorname{deg}_{D_{i}}\left(v_{i}\right)}^{i}\right\}$. First, we consider $y_{1}^{i}$ and treat it as the only edge in $D_{i}$ containing $v_{i}$. We count counter sets as in Case 2. Now we consider $y_{l}^{i}$, for $l=2, \ldots, \operatorname{deg}_{D_{i}}\left(v_{i}\right)$. Let $j$ be the biggest index among vertices in the edge $y_{l}^{i}$, $j<i$. Then

$$
\begin{aligned}
& \operatorname{Col}\left(v_{i}\right)^{1}:=\left(\operatorname{Col}\left(v_{j}\right)^{1} \cup \operatorname{Col}\left(v_{j}\right)^{2} \cup \operatorname{Col}{ }^{*}\left(v_{j}\right)^{2}\right)+\operatorname{Col}\left(v_{i}\right)^{1}, \\
& \operatorname{Col}\left(v_{i}\right)^{2}:=\left(\operatorname{Col}\left(v_{j}\right)^{1} \cup \operatorname{Col}\left(v_{j}\right)^{2} \cup \operatorname{Col}{ }^{*}\left(v_{j}\right)^{1}\right)+\operatorname{Col}\left(v_{i}\right)^{2}, \\
& \operatorname{Col}^{*}\left(v_{i}\right)^{1}:=\left(\operatorname{Col}\left(v_{j}\right)^{1} \cup \operatorname{Col}\left(v_{j}\right)^{2} \cup \operatorname{Col}^{*}\left(v_{j}\right)^{2}\right)+\operatorname{Col}^{*}\left(v_{i}\right)^{1}, \\
& \operatorname{Col}^{*}\left(v_{i}\right)^{2}:=\left(\operatorname{Col}\left(v_{j}\right)^{1} \cup \operatorname{Col}\left(v_{j}\right)^{2} \cup \operatorname{Col}^{*}\left(v_{j}\right)^{1}\right)+\operatorname{Col}^{*}\left(v_{i}\right)^{2} .
\end{aligned}
$$

Finally, after $\operatorname{deg}_{D_{i}}\left(v_{i}\right)$ iterations, a counter set for $v_{i}$ is determined.

We are interested in a counter set for $v_{n}$. The hypertree $H$ is equitably 2-colorable if and only if there exists a counter $(\lfloor n / 2\rfloor,\lceil n / 2\rceil)$ in $\operatorname{Col}\left(v_{n}\right)^{1} \cup \operatorname{Col}\left(v_{n}\right)^{2}$.

Note that each time two subhypertrees are joined, new counters for a local root vertex $v_{i}$ are calculated which requires some operations. In order to count the complexity of the algorithm we estimate the number of such operations. Let us assume that the first subhypertree is spanned on a vertex set $W_{1}$ and the second one on a set $W_{2}$. Note that the worst case number of operations $4\left(\left|W_{1}\right|+1\right) \cdot 4\left(\left|W_{2}\right|+1\right)$ is proportional to the number of pairs in $W_{1} \times W_{2}$. As $W_{1} \cap W_{2}=\emptyset$ and the pairs in various joins are always different, the total number of operations is proportional to the total number of pairs in $V \times V$. Thus, the complexity may be estimated by $O\left(n^{2}\right)$.

Note that our algorithm can be easily modified to calculate a counter set for colorings of a linear hypertree for bigger $k$.
Corollary 3.3. Let $k \geq 2$ be fixed integer. Then there exists a polynomial-time algorithm for checking whether a given linear hypertree $H$ on $n$ vertices can be equitably colored with $k$ colors.

## 4. Conclusion

In the paper the complexity status of equitable coloring of hypergraphs was established and a polynomial-time algorithm for equitable $k$-coloring of linear hypertrees was proposed. It is worth pointing out that the algorithm from the proof of Theorem 3.2 leads to determining all feasible sequences/counters for vertex $k$-coloring of such hypergraphs. Thus, our method can be applied in any other model of linear hypertrees coloring where the model definition is connected with cardinality constraints. An example of such graph/hypergraph coloring model is, next to equitable coloring, bounded coloring [13].

The subject has a great potential for development. There is still space for tightening the gap between the known polynomial and NP-complete subproblems. Moreover, it would be interesting to determine other hypergraph classes for which ordinary coloring and equitable coloring have different complexities. Notice also that, to the best of our knowledge, equitable coloring of mixed hypergraphs, as a structure of many potential applications (cf. [8]), has not been studied. Finally, research on generalizing the known conjectures concerning equitable coloring of simple graphs to hypergraphs would be desirable. We think for example about Coloring Conjecture (ECC) [17] or Equitable $\Delta$-Coloring Conjecture (E $\Delta C C$ ) [4].

## References

[1] C. Berge, Graphs and hypergraphs, North-Holland, 1989.
[2] C. Berge, F. Sterboul, Equipartite colorings in graphs and hypergraphs, J. Comb. Theory Ser. B 22 (1977) 97-113.
[3] A. Bretto, Applications of hypergraph theory: a brief overview, in: Hypergraph Theory: An Introduction, Springer International Publishing, Heidelberg, 2013, pp. 111-116.
[4] B.L. Chen, K.W. Lih, Equitable coloring of trees, J. Combin. Theory Ser. B 61 (1994) 83-87.
[5] H. Furmańczyk, Equitable coloring of graph products, Opuscula Math. 26 (2006) 31-44.
[6] H. Furmańczyk, K. Giaro, M. Kubale, Equitable coloring of cacti and edge-cacti in polynomial time, Int. J. Pure Appl. Math. 27 (3) (2006) $379-392$.
[7] H. Furmańczyk, K. Kaliraj, M. Kubale, J.V. Vivin, Equitable coloring of corona products of graphs, Adv. Appl. Discrete Math. 11 (2013) $103-120$.
[8] H. Furmańczyk, A. Kosowski, P. Żyliński, Scheduling with precendence constraints. mixed graph coloring in series-parallel graphs, in: LNCS, vol. 4967, 2007, pp. 1001-1008.
[9] H. Furmańczyk, M. Kubale, Scheduling of unit-length jobs with cubic incompatibility graphs on three uniform machines, Discrete Appl. Math. http://dx.doi.org/10.1016/j.dam.2016.01.036 (in press).
[10] H. Furmańczyk, M. Kubale, Equitable and semi-equitable coloring of cubic graphs and its application in batch scheduling, Arch. Control Sci. 25 (1) (2015) 109-116.
[11] M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplified NP-complete problems, Theoret. Comput. Sci. 1 (1976) 237-267.
[12] K. Giaro, M. Kubale, P. Obszarski, A graph coloring approach to scheduling of multiprocessor tasks on dedicated machines with availability constraints, Discrete Appl. Math 157 (17) (2009) 3625-3630.
[13] P. Hansen, A. Hertz, J. Kuplinsky, Bounded vertex colorings of graphs, Discrete Math. 111 (1993) 305-312.
[14] D. Ibaroudene, R. Acharya, Linear hypertree for multi-dimensional image representation, Inform. Sci. 68 (1993) 123-154.
[15] R.M. Karp, Reducibility among combinatorial problems, in: Complexity of computer computations, Springer, Boston, MA, 1972.
[16] L. Lovasz, Coverings and colorings of hypergraphs, Util. Math. 8 (1973) 3-12.
[17] W. Meyer, Equitable coloring, Amer. Math. Monthly 80 (1973) 920-922.
[18] S. Micali, V.V. Vazirani, An $O(\sqrt{|V|}|E|)$ algorithm for finding maximum matching in general graphs, in: Twenty First Annual IEEE Symp. on the Foundations of Computer Science, 1980, pp. 17-27.
[19] P. Obszarski, J. Dąbrowski, Hipergrafowy model szeregowania w rozrzedzonych systemach zadań wieloprocesorowych, Zesz. Nauk. WETI PG 10 (2006) 499-506.
[20] D.A. Shabanov, Equitable two-colorings of uniform hypergraphs, Eur. J. Comb. 43 (2015) 185-203.
[21] I. Shirgazina, Equitable colorings of non-uniform simple hypergraphs, Electron. Notes Discrete Math. 49 (2015) 699-703.
[22] I. Shirgazina, Equitable colorings of nonuniform hypergraphs, Math. Notes 99 (2016) 444-456.
[23] V.V. Vazirani, A proof of the MV matching algorithm, 2014. http://www.cc.gatech.edu/~vazirani/new-proof.pdf (unpublished manuscript).


[^0]:    * Corresponding author.

    E-mail addresses: hanna@inf.ug.edu.pl (H. Furmańczyk), pawel.obszarski@pg.gda.pl (P. Obszarski).

