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1. Introduction

Let X be a locally compact metric space and assume that there is a given flow on X. In [3] Conley and Zehnder proved
that if a finite collection of compact and invariant sets {M, : m € D} forms a so-called Morse decomposition of an
isolated invariant set S, then the equality

> Pt h(My)) = P(t, h(S)) + (1+1)Q(1) (ME)

neD

holds true. Here Q is a polynomial in t having non-negative integer coefficients and P stands for the Poincaré polynomial
of the homotopy Conley index of M, and S. In the following we will refer to equations of type (ME) as the Morse
equation.

* E-mail: marcins@mifpg.gda.pl
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This result is a generalization of the classical Morse relations, which give a relationship between the set of critical
points of a Morse function f: M — R defined on a Riemannian closed n-manifold and the topology of the underlying
domain. Namely, let ¢, denote the number of critical points of f of the Morse index k and let BX(M) be the k-th Betti
number of M. Then one can consider the negative gradient flow of f and apply the above equality to obtain the formula
Y o etk =31 BXM)t* + (1+1)Q(t). A survey exposition of this material is presented in the joint paper of Izydorek
and the author [14].

The purpose of this paper is to present a generalization of the above mentioned result of Conley and Zehnder to the
equivariant setting, i.e., when the equivariant flows acting on the representation of a compact Lie group are taken into
considerations. Namely, we prove the following.

Theorem 1.1.
Let V' be an orthogonal representation of a compact Lie group. If S is an isolated invariant set of an equivariant flow
onV and (My,...,M,) is a Morse decomposition of S, then there exists

Qlt) =) (ZP?H)“) uiiy (1)

(H) q

with all integer coefficients p(qH) > 0 such that

> Palt, ha(M) = Pa(t, ha(S)) + (1+1)Qa(1). (EME)
j=1

This generalization is consistent with the evolution of the equivariant counterparts of such tools as the topological
mapping degree and the Conley index. The main reference for this subject are the papers of Geba [8], Geba & Rybicki [9]
and the papers of Rybicki and his collaborators [10, 17, 19, 20]. The equivariant version of the Conley index is the subject
of the papers of Floer [6], Floer & Zehnder [7]. In [13] lzydorek extends the equivariant Conley index to the situations
where the local compactness property of the phase space fails, and he successfully applies it to the strongly indefinite
problems.

We will use the equation (EME) to derive some multiplicity results for critical-point orbits of invariant functions defined
on the G-representation (G = SO(2), Z,, p prime). We also obtain a relationship between the equivariant Conley index
and the gradient equivariant degree. This should be seen as an illustration of application of the Morse equation (EME),
because the ideas are contained in the work of Geba [8].

The equation (ME) is expressed in terms of the Poincaré polynomials with integer coefficients being the Betti numbers
of certain index pairs, for details we refer to [3, 14]. We are going to define the Betti numbers of the equivariant Conley
index and then to define the Poincaré polynomial appropriate for our purposes. One can expect that in the case of the
trivial group, the obtained equation will coincide with the classical one. As a matter of fact, a proper definition of the
Poincaré polynomial of the index is actually crucial on the way to obtain our result. The motivations of such definition
become clear, having regard to the form of the elements in the Euler ring U(G) of a compact Lie group G. Let us mention
only that in our approach to the equivariant theory there is no equivariant cohomology at all.

After this introduction the paper is organized as follows. Section 2 outlines the material from equivariant topology
including the concept of the Euler ring of the compact Lie group. Sections 3 and 4 are devoted to the equivariant
versions of the mapping degree and the Conley index theory. Simple examples are presented. Section 5 contains the
proof of the equivariant Morse equation. Then we give a calculation of the Poincaré polynomial of an isolated orbit and
deduce a relationship between the gradient equivariant degree and the equivariant Conley index. The last part of this
work is devoted to some simple multiplicity results for critical orbits of invariant functions. The presented work is a part
of the author’s PhD thesis [22].
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2. Preliminaries

Let G be a compact Lie group. A subgroup H C G is called conjugate to a subgroup K C G if there is g € G such
that H = g7'Kg. The conjugacy defines an equivalence relation, and we will write (H) for a conjugacy class of H. The
set of all conjugacy classes of closed subgroups of G will be denoted by ®(G). The set ®(G) is partially ordered. We
write (H) < (K) if gHg™" c K for some g € G.

An action of a group G on a topological space X (also called G-action) is a continuous map G x X — X sending (g, x)
to gx and satisfying the following properties:

e ex = x for all x € X, where e stands for the identity of G;

e h(gx) = (hg)x forall g,h € G and x € X.

A G-space is a pair consisting of an underlying space X and a given G-action. A linear representation of a group G is
a pair (V, p), where V' is a vector space and p is a G-action such that for all g € G the map p; = p(g, -) is a linear
automorphism of V. If V is equipped with an inner product (-, -), then we say that the representation is orthogonal
if (pgx, pgy) = (x,y) for all x,y € V and g € G. Throughout the paper, all representations are assumed to be finite
dimensional, real and orthogonal.

Let X be a G-space. For x € X, the set G, = {g € G : gx = x} is the isotropy subgroup of G at x and the set
Gx = {gx : g € G} is the orbit of G through x. For each x € X, the group G, is closed in G.

Points x,y € X are of the same orbit type if the isotropy subgroups G, and G, are conjugate subgroups of G. Since
Ggx = g7 G,g, the points on the same orbit are of the same orbit type. Hence, the set ®(G) of all conjugacy classes
also will be called the set of orbit types.

Let H be a closed subgroup of G. We will use the following notation:

X'={xeX:HcG}={xeX:hx=x, he H}, X" =GX"={xeX:(H)=(K)forKcG]}

Xy ={x€X:G, =H}, Xy = GXy = {x € X : (G,) = (H)},
XPH = X\ Xy = U XK
(K)>(H)
Definition 2.1.

An orbit Gx and its orbit type (G,) are called principal if Gx has a G-invariant open neighbourhood that contains no
orbit of smaller orbit type with respect to the partial order < in ®(G).

Theorem 2.2 ([1, Theorem 3.1]).
Let (H) be a principal orbit type. Then the union Xy of orbits of principal type is open and dense in X.

A subset Q) of a G-space X is called a G-invariant (a G-set) provided that x € Q and g € G imply gx € Q. If X and Y
are G-spaces, then a continuous map f: X — Y is called a G-equivariant map (a G-map) if the relation f(gx) = gf(x)
holds for all x € X and g € G.

2.1. G-complexes

The object of our interest, the Conley index, is a homotopy type of a pointed space which supports the structure of
CW-complex. Although the notion of CW-complex is well known in topology, we present here some basic definitions,
since the G-equivariant Conley index joins the notion of CW-complex and G-space. The definitions are borrowed from
the paper by Geba and Rybicki [9].

We use the standard notation S"' = {x € R" : ||x| = 1} and D" = {x € R" : ||x|| < 1} for the unit (n —1)-sphere and
the unit n-ball in R” respectively. In what follows we assume that D" carries the trivial G-action, i.e. gx = x for all
x € D" and g € G. We set B" = D"\ S",
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Definition 2.3.

Let (X, A) be a compact pair of G-spaces and {H,}, j = 1,2,...,q, a family of closed subgroups of G. We say that
X is obtained from A by simultaneously attaching a family of equivariant k-cells of orbit type {(H,) : j =1,...,q} if
there exists a G-map ¢: |_|;7:1 D*x (G/H;) — X which maps ;7:1 B* x (G/H,) homeomorphically onto X \ A. We call
@(D* x (G/H;)) a closed k-dimensional cell of orbit type (H,).

Definition 2.4.
Let X be a compact G-space. A finite equivariant CW-decomposition of X consists of an increasing family of G-subsets
X0 c X' c...cX"=Xand afamily J;_o{Hjx:j=1.....q(k)} of closed subgroups of G such that

q(0

)
o X°= || G/H;p;
J

=1

e the space X* is obtained from X*~' by simultaneously attaching a family of equivariant k-cells of orbit type
{(Hix) :j=1,...,q(k)} for each 1 < k < n.

A pointed G-space is a pair (X, xo), where X is a G-space with a distinguished point xp called the base point and such
that the action of G leaves the base point fixed. The pointed G-spaces are the objects of the category whose morphisms
are G-maps preserving the base point. If X is a G-space, then the superscript plus X* means that X is considered as
a pointed space with a separate base point added.

Definition 2.5.

Let (X, xo) be a pointed compact G-space. A pointed finite equivariant CW-decomposition of (X, xo) consists of an
increasing family of G-subsets X=" ¢ X® c X' c ... € X" = X and a family ;_o{Hjx : j = 1....,q(k)} of closed
subgroups of G such that

o X' ={x}
q(0)

o XO = {XO} L |_| G/H/’,O;
j=1

e the space X* is obtained from X*~! by simultaneously attaching a family of equivariant k-cells of orbit type
{(Hix):j=1,...,q(k)} for each 1 < k < n.

The family U;_o{Hjx : j = 1....,q(k)} is called the orbit type of the decomposition of X. For short we use the term
G-complex (pointed G-complex) for a (pointed) G-space if there exists a (pointed) finite equivariant CW-decomposition
of X (resp. (X, xo))-

2.2. Eulerring U(G)

If (X, x0) and (Y, yo) are pointed G-spaces (gxo = xo and gyo = yo for all g € G), then we say that (X, xo) and (Y, yo)
have the same G-homotopy type iff there exists a pair of G-maps f: (X,x0) — (Y, yo) and g: (Y, yo) — (X, x0) such
that gf ~¢ idxx,) and fg ~¢ id(y ). The symbol ~; means that if H; is a homotopy joining two G-equivariant maps,
then for all t € [0, 1] the map H; is a G-map as well. Of course, the relation ~¢ is an equivalence and the equivalence
class under relation ~¢ is denoted by [X]g. We say that [X]g is the G-homotopy type of X.

Let us introduce the symbol F(G) for the category whose objects are pointed G-complexes and F[G] for the set of
all G-homotopy types of pointed G-complexes. For (X, xo), (Y, yo) € F(G) we define its wedge sum to be X VY =
((X>< {yo}) U ({x0} x V), (xo,yo)) € F(G), and its smash product X AN Y = (XxY/[X)V Y. Of course we also have
XANY € F(Q).

Let F = Z[F[G]] be the free abelian group generated by the G-homotopy classes of pointed G-complexes and let N be
the subgroup of F generated by all elements [Alg — [X]g + [X/A]c, where A is a pointed G-subcomplex of X. Define
U(G) = FIN. The class of [X]c € F[G] under this identification will be denoted by u(X). Directly from the definition
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of U(G) we see that the addition can be obtained via the wedge sum u(X) +u(Y) = u(X Vv Y). Moreover, the assignment
(X, Y) = X AY induces the multiplication in U(G), cf. [4], that is u(X)u(Y) = u(XAY).

Definition 2.6.
The set U(G) with the composition laws defined as above is called the Euler ring of the group G.

It is a classical result that the coset space G/H of a compact Lie group over the closed subgroup H is a smooth compact
G-manifold, cf. for instance [15]. Hence, due to a theorem of Illman [12], it is a G-complex. Therefore G/H* € F(G)
and one can consider the element u(G/H*) € U(G). In what follows we will write u(CH) instead of u(G/H*). The abelian
group structure of the ring U(G) is fairly easy and its description is given in the following statement.

Proposition 2.7 ([4]).
As a group U(G) is the free abelian group with basis u , where (H) € ®(G). If X € F(G), then

uX)= > x(X"G, x>"G)uf,.
(H)ed(G)

Here x stands for the Euler characteristic of the pair of CW-complexes. As a ring U(G) is commutative with the unit u(CC).

The Euler characteristic of a cell complex K can be expressed as an alternating sum x(K) = 3 ¢ (—1)*sk, where s is
the number of k-cells in the complex K. This formula holds in an equivariant setting as well and we have a nice tool
for computations.

Proposition 2.8 ([9]).
Let X € F(G) and let |J{H;«:j=1,...,q(k)} be an orbit type of the decomposition of X. Then
k=0

uX) = > ney(X)uf, 2)

(H)e(G)

n

where nyy(X) = Y_(=1)*v((H), k) and v((H), k) is the number of equivariant k-cells of orbit type (H).
k=0

3. Degree for equivariant gradient maps

In this section we briefly recall a definition of the degree for gradient G-maps presented in [8]. The paper [8] is the main
reference for this section, where the reader can find proofs of theorems discussed below.

Let V be an orthogonal G-representation, G a compact Lie group. We say that a function ¢: V — R is G-invariant if
@ is constant on the orbits of G, i.e, ¢(gx) = @(x) for x € Vand g € G. If f: V — V is a gradient of a continuously
differentiable G-invariant function ¢, ie. f = Vg, then we call it @ G-equivariant gradient map. As an immediate
consequence of the above definition and the chain rule we get the property that f(gx) = gf(x) forall x € V and g € G.

In the same manner we define a homotopy joining two equivariant gradient maps. Namely, a map h : V x[0,1] —» V
is a gradient G-homotopy if there exists a G-invariant function g: V x[0,1] — R of class C' (q(gx, t) = gq(x, t)) such
that h(x, t) = Vq(x, t) for all t €]0,1] and x € V. The gradient is taken with respect to the x variable.
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Definition 3.1.
Let QO C V be an open bounded and G-invariant subset and f: V — V a gradient G-map.

e We say that a pair (f, Q) is V-admissible provided that f(x) # 0 for x € 9Q. In other words, a V-admissible
pair is an equivariant map of pairs f: (V,0Q) — (V, V\ {0}).

e Two V-admissible pairs (fy,Q) and (f1,Q) are Vg-homotopic if there exists a gradient Vs-homotopy
h: Vx[0,1] - V connecting them, te, h; = f;, i = 0,1, and such that the pair (h;, Q) is V-admissible for
t €0,1].

From now on, f: V — V will always mean an equivariant gradient map. Let x be a fixed point in V' of an orbit type (H),
i.e., H = G,. We have an orthogonal splitting

V = T(Gx)d W, & N,, 3)
where W, is the orthogonal complement of T,(Gx) in the tangent space T,(V(s)) and N, = T,(Vi))*. Assume that x €

f~1(0) and f is differentiable at x. With respect to the decomposition (3) the derivative Df(x) is of the form (for details,
see [8))

00 0
0 Kflx) 0 |,
0 0 Lfx)

ie., Kf(x) = Df(x)|w, and Lf(x) = Df(x)|x,.

Definition 3.2.

An orbit Gx is called a regular zero orbit of f, if f(x) = 0 and kerDf(x) = T,(Gx). It means that the map
Kf(x)®Lf(x): WydN, - W,®N, is an isomorphism. The Morse index of the reqular zero orbit Gx is defined to
be the number of negative eigenvalues of Kf(x), k = dim W_. We set o(Gx) = (—=1)~.

For an open G-set U such that U is a compact subset of V{z; and € > 0, define
NWU,e)={veV:iv=x+nxe U neN,, |n <&}

The set N(U, €) will be called a tubular neighbourhood of type (H) provided that the decomposition v = x + n is unique.
Let € > 0 be small enough so that N(U, €) is a tubular neighbourhood of type (H). A gradient equivariant map f is
(H)-normal on N(U, ¢) if for all v =x+n € N(U, g),

f(v) = f(x) + n.

Definition 3.3 (generic pair).
We say that a V;-admissible pair (f, Q) is generic if there exists an open G-subset Qg C Q such that

(@) F10)NnQ c Qp;
(b) f‘QO is of class C';
(c) £71(0) N Qg is composed of regular zero orbits;

(d) for each H with Z = f~'(0) N Q) # @ there exists a tubular neighbourhood N(U, €) of type (H) such that Z C
N(U, ) Cc Q and f is (H)-normal on N(U, ¢).

The next theorem allows us to define the gradient degree for a V-admissible pair (f, Q).

Theorem 3.4 (generic approximation theorem, [8]).
For any V-admissible pair (f, Q) there exists a generic pair (f;, Q) such that (f, Q) and (f;, Q) are V-homotopic.
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Lemma 3.5 ([8]).
If (f,Q) is a Vg-admissible pair then there exists a gradient G-map f1: V — V such that (i) f1(x) = f(x) for x € V\ Q
and (i) (1, Q) is V-admissible and generic.

Proof of Theorem 3.4. Let (f;,Q) be a Vs-admissible and generic pair from Lemma 3.5. Define G-homotopy
h: Vx[0,1] = V as h(x, t) = (1—t)f(x) + tfi(x). Clearly the pair (h(-,t),Q) is V-admissible for all t € [0, 1]. O

Definition 3.6.
Let (f,Q) be a V-admissible pair. The G-equivariant gradient degree of (f,Q) is an element of the Euler ring U(G)
defined as

degg(f, Q) = Z n(H)u(CH),
(H)ed(G)

where

nH = Z O'(GX[)

(Gx;)=(H)

and Gx; are the disjoint orbits of type (H) in £;(0) N Q. Here (f1, Q) is any generic pair G-homotopic to (f, Q).

Theorem 3.7 ([8]).
If two generic pairs (fy, Q) and (f;, Q) are G-homotopic, then deq((fo, Q) = degg (f1, Q).
Example 3.8.
Let Q = {(x,y) € R? : 1/2 < x* + y? < 3/2} and the action of G = SO(2) on R? be given by
cos @ —sin @
o = [sin 0 cos 9] e S0(2), 0 €[0,2x), (4)
Yo(x,y) = (x cos k@ — y sin kB, xsin kO + y cos k6O), k e N.

Hence V is the plane R? with rotations by the angle k6. Define ¢: V' — R by the formula ¢(x, y) = —(x*+y>—1)% It
is easy to check that ¢ is an SO(2)-invariant function, and the pair (Vg, Q) is V-admissible. Each point except the
origin has an orbit type (Zy), that is Viz,) = R?\ {(0,0)}. The map f = Ve vanishes at the point (x, yo) = (1,0), and
consequently the whole orbit G(1,0) & S' is the set of zeros of f. The derivative at (1,0) is a map (u,v) — (—8u,0)
with the kernel ker Df(1,0) = span([0, 1]) which is exactly the tangent space T(10G(1,0). The Morse index of G(1,0)
is 1 and hence o(G(1,0)) = —1. Directly from the definition one obtains degg(f, Q) = —u(%k).

4. Equivariant Conley index

With a locally Lipschitz vector field v: R” — R” one can associate a local flow by integration of a differential equation.
More precisely, through each point x € R” there passes a maximal integral curve ¢,: (ay, B,) — R” satisfying ¢,(t) =
v(¢x(t)) and ¢,(0) = x. Setting D = {(t,x) e Rx V : t € (ay, B)} and ¢(t, x) = ¢P«(t) we obtain a local flow on V, that
is (i) D € Rx V is an open neighbourhood of {0} x V and ¢: D — R” is continuous; (ii) if (t,x) € D and (s, ¢(t, x)) € D
then (s+t,x) € D and ¢(s, ¢(t, x)) = (s +t, x); (iii) ¢(0, x) = x.

We will be concerned with an equivariant vector field.

Lemma 4.1 (cf. [5]).
Let V be a representation of a compact Lie group G and v: V — V a G-equivariant, locally Lipschiz vector field. Then
the differential equation

X(t) = v(x(t))

defines a local G-flow. That is: (i) the set D C RxV is a G-set, ie, if (t,x) € D then (t,gx) € D for all g € G;
(i) &(t, gx) = go(t, x) for all (t,x) € D and g € G.
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From now on we will consider local flows generated by vector fields at least of class C'. Without loss of generality, for
our purposes, we can assume that the equation x = v(x) generates a flow, i.e, D =R x V.

We will give some basic definitions and notions which are necessary for the definition of the Conley index in the presence
of an action of a Lie group G. For the classical notion of the Conley (homotopy) index we refer the reader to [2]. Let ¢
be a G-flow on V. For a G-set X C V the maximal invariant subset under the flow ¢ in X is given by

inv(X) = {x € X: ¢'(x) € X for all t € R}

Since X is G-invariant so is inv(X). If X is in addition compact and inv(X) C intX, then X is called an isolating
neighbourhood and inv(X) is an isolated invariant set. For an isolated invariant set there exists a G-index pair (N, L),
i.e., the pair of compact G-invariant subsets of V' such that

(i) the closure of N'\ L is an isolating neighbourhood;
(it) L is positively invariant rel. N; and

(iii) if x € N and ¢*I(x) ¢ N for some t > 0, then ¢*(x) € L for some s € [0, t].

For the existence of a G-index pair we refer to [6, 8].

The G-homotopy type of the quotient N/L does not depend on the particular choice of the index pair. Recall that N/L
is obtained from N by collapsing all points in L to the point [L] which is distinguished in N/L. The action of G on N/L
is induced from the action on N and g[L] = [L] for all g € G.

Assume X C V is an isolated neighbourhood of a flow ¢.

Definition 4.2.

The G-equivariant Conley index of S = inv(X), denoted by h¢(S) (or sometimes hg(X, @), to indicate the isolating
neighbourhood and the flow), is defined to be a G-homotopy type of a pointed G-space N/L, where (N, L) is an arbitrary
G-index pair for S. That is, hg(X, ¢) = [N/L]g.

In fact, this index is a homotopy type of some finite G-CW-complex, cf. [22]. The equivariant Conley index has the same
properties as the ordinary one. In particular the continuation property holds. We say that ¢: Rx V x[0,1] > V is a
continuous family of G-flows on V if ¢*: RxV — V is a G-flow on V for all A € [0,1], where ¢*(t,x) = ¢(t, x, A).
Notice that we do not restrict the class of flows to the gradient one if it is not specified otherwise.

Proposition 4.3.
Suppose that X is a compact G-subset of V and ¢ is a continuous family of G-flows on V. If X is an isolating
neighbourhood for ¢*, A € [0, 1], then hg(X, ¢°) = hg(X, ¢").

Example 4.4.
Let G = SO(2) and V be the real plane with the action of G given by rotation, i.e., for

cos B —sin 6
ye_[sin@ cosQ]EG' 0 €10, 2m),

Yo(x, y) = (x cos kO — y sin kB, xsin kO + y cos kO), keN.
Consider the G-flow on V given by the vector field
v(x,y) = (X(X2+ y2—1), y(x2+y2—1)).

The set N = {(x,y) € V : 1/2 < x>+ y? < 3/2} is an isolating G-invariant neighbourhood and inv(N) = {(x,y) € V :
x*+y? = 1}. The index pair can be chosen to be (N, dN), see Figure 1(a). The Conley index is a G-homotopy type of
a G-complex consisting of one 0-cell of orbit type (G) (as a distinguished point with the trivial action) and one 1-cell
of orbit type (Zi). According to formula (2) we have u(hg(N)) = —u(GZk). Notice that we do not take into account the
distinguished point.
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() (b)

Figure 1.

We give another simple example that shows the difference between the classical Conley index and the equivariant one.

Example 4.5.
Let G = Z, = {e,y} and let V equal R? with the action given by y(x,y) = (x, —y). Let ¢ be a G-flow given by the
system of two equations

X =sinx, = —ycosx.

It is easily seen that (kx,0), k € Z, are equilibrium points. These are isolated, ¢- as well as G-invariant sets of the flow
and the equivariant Conley index is well defined. Let M, = (0,0) (red dot) and M; = (1, 0) (green dot). The equilibria
(kst,0) for k even (resp. odd) are qualitatively the same. The index pairs for M, and M; are shown in the Figure 1(b).
The indices of M, and My are [S®]z, and [SRe];, respectively, where S®t (resp. S®¢) is a compactification of the real
line with the trivial (resp. antipodal) action. Since u(S®) = u%i - u? and u(S®) = —u%, these indices turns out to be
different.

5. Equivariant Morse equation

Now and subsequently let H* denote the Alexander-Spanier cohomology with coefficients in some principal ideal
domain R. This particular cohomology theory is chosen because it satisfies the following strong excision property:
Given two closed pairs (X, A) and (Y, B) in V and a closed continuous map f: (X, A) — (Y, B) such that f induces a
bijection of X \ A onto Y \ B, one has an isomorphism f*: HY(Y, B; R) — H9(X, A; R) for all ¢ > 0. For a more general
statement of this fact we refer to the book by Spanier [21, Theorem 6.6.5].

If E is an R-module then we set rank E = dim (E ®3Qr), whenever dim(E ®Qg) is finite. Otherwise rank E = co. Here
Qg stands for the field of quotients of the ring R. The comparison of the classical Euler characteristic with its equivariant
analogue u(X) (defined merely for a homotopy type of G-complexes, see Proposition 2.7), being an element of the Euler
ring U(G), leads us to the conclusion that the k-th Betti numbers of X € F(G) should be the collection of the numbers
rank H*(X"/G, X>")G), where (H) € ®(G). Since we are concerned with the G-index which is determined by an
arbitrary G-invariant index patr, the following definition seems to be reasonable.
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Definition 5.1.
Let (X, A) be a compact pair of G-invariant subsets of V. The numbers

Bl (X, A) = rank HY(XW1G, (Xx>PUuAM)/G), (H) € 9(G),

are called the g-th Betti numbers of the pair (X, A).

For an abbreviation we put (XyA) = (X"/G, (X>MUAM)/G). Assuming that the modules H(X};A) are of finite rank,
we define the formal power series taking values in U(G):

Po(t, X, A) = )

(H)e®(G)

Z Bly(X, A)t? ) ufy.

q=0

If B(qH)(X, A) = 0 for g sufficiently large and for all (H) € ®(G), then we call it the Poincaré polynomial of the pair (X, A).
Notice that Pg(-, X, A) can be viewed as an element of the polynomial ring U(G)[t].

Definition 5.2.
Let S be an isolated invariant set of a G-equivariant flow ¢. Define the Poincaré polynomial of the G-index of S as
Pa(t, hg(S)) = Pa(t, N, L), where (N, L) is an arbitrary index pair for S.

Let ¢' be a flow on X. Recall that the a-limit and the w-limit sets of a point x € X are defined as follows:

al) = (V=) and  wlx) =[] g*I(x).

t>0 t>0

Definition 5.3.

A Morse decomposition of an isolated invariant set S is a finite collection M(S) = {M; : 1 < i < [} of subsets M; C S,
which are disjoint, compact and invariant, and which can be ordered, (M, M5, ..., M,), so that for every x € S\U1§j§, M;
there are indices i < j such that w(x) C M; and a(x) C M,.

Recall that for compact sets X D Y D Z there exists a connecting homomorphism §%: H9(Y,Z) — H9*'(X,Y), and a
long exact sequence of the triple (X, Y, Z):

2 mix, YY) S Hix,z) D ey, z)

where (7 and ;9 are homomorphisms induced by inclusions ¢: (X, Z) — (X, Y) and j: (Y, Z) — (X, Z), respectively.

The remainder of this section is devoted to the proof of the Equivariant Morse Equation, Theorem 1.1. In order to overcome
difficulties connected with definition of the Betti numbers, exposition is divided into several lemmas and propositions.

Lemma 5.4.
If N, D Ny D Ny is a triple of compact G-sets, (H) € ®(G), then

N U N NGO NG
G G

H* [ NG, = H

Ny U NG
G
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Proof. We are going to use the strong excision property of the Alexander—Spanier cohomology. Firstly we check
that the pairs in question are closed. Indeed, for a closed G-subset N C V and a closed subgroup H C G one
has N7 = NN V", Since V7 is a linear subspace of V, VH is closed and so is N". Further N = GN" is closed,
because the action of a compact Lie group is a closed map [1, Theorem 1.1.2]. The set of orbit types of a finite dimensional
representation is always finite, hence N> is closed as a finite sum of closed sets. Lastly, the set of orbits N/G endowed
with the quotient topology is closed since the projection N — N/G taking x into its orbit is closed [1, Theorem 1.3.1].
Clearly, the inclusion

N> H G N
e: (NG, = !

G ' G

~ ( NS NI D

is continuous and closed. Moreover, for each x € (NgH)/G)\((Nf(H) UN(()H))/G) one has e(x) = x. So the strong excision
property applies and the result follows. O

Lemma 5.5.
Assume that the bottom row of the diagram

L WX, Z) L A B) T X,y —

H [ H
*4+1

L WX Z) —L s Hr (v 2) = B X Y)
is exact, &: H*(Y,Z) — H*(A, B) is an isomorphism and n* = (&*)~'. Then the upper row is exact.

Proof. leta € Im*. Then a € ker j* is equivalent to a € ker(&*j*) since & is an isomorphism. If b lies in Im(&* %)
then b = &**a for some a € H*(X,Z) and j*a = n*b which means that n*b € ker 0* and b € ker 6*n*. This reasoning
can be reverted. And at last, if c = 0**b for some b, then ¢ € Imd* so ¢ € ker (**'. O

The following lemma is a consequence of a well-known theorem from linear algebra. The proof can be found for instance
in [18].

Lemma 5.6.
IfFEL F S Gis an exact sequence of homomorphisms of R-modules, then rank F = rank Im f + rank Im g.

Proposition 5.7.
If Xo C Xy C ... C Xy is a filtration of compact G-sets, then there exists Q¢(t) of the form (1), with all p(qH) > 0 and
such that

Z?G(t, Xj,qu) = Tc(t, Xm:XO) + (1 + t)QC(t)'
j=1

Proof. Fix (H) € ®(G). By Lemmas 5.4 and 5.5 we have a long exact sequence

8! Ky &l
SO (X, Xier) s HI(X, Xo) — (X, Xo) o (5)

Here 14y and j are suitable inclusions, E('H) stands for the isomorphism

>(H) (H) >(H) (H)
X7 uxt X7 X
G ' G '

H(Xj-1,,X0) = HI
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and n(qH) is its inverse. Set p(qH)(X/,Xj,1,X0) ranklm(6 n(H)) The exactness of (5) and Lemma 5.6 imply that

B(qH)(Xj—1 ’ XO) = ?H

q
(H

(Xj, Xj—1, Xo) + rank Im &8 1y = oy (X, Xj1, Xo) + By (X, Xo) — rank Im ¢fy,
(X5 X1, X0) + Bl (X, Xo) = Bk (X, Xi—) + oy (X5 X1, Xa).

Consequently, BFH)(Xj,Xj,O + B(q,_,)(Xj,1,X0) = B(’H)(XJ,XO) + pf’,_,) + pf’,,ﬁ. Multiplying this equality by t? and summing
over g > 0 and (H) € ®(G) one has

Palt, Xj, Xiza) + Pa(t, Xi—1, Xo) = Pa(t, X;, Xo) + (1 +t)QG(t Xi—1, Xo), (6)
where
Qa(t, Xp, X, Xo) = > | > oy (X, Xjm1, Xo) 1
(H)ed(G) \ g=0
Summing (6) over 2 < j < m and setting Q¢(t) = Z (t, Xj, Xj—1, Xo) we obtain the desired result. O

Definition 5.8.

Let X be an isolating neighbourhood of a G-flow on V and (M;,...,M,) be a G-invariant Morse decomposition
of S = inv(X). A G-invariant index filtration is a sequence Ng C N; C ... C N, of compact G-invariant subsets of V
such that (N, Nk_1) is a G-index pair for M and (N,,, Np) is an index pair for S.

Proposition 5.9.
Every G-invariant Morse decomposition admits a G-invariant index filtration.

Proof. Let us forget for a while that a Morse decomposition has a group symmetry. It is well known that every Morse

decomposition admits an index filtration Ng C ... C N, cf. for instance [16]. Averaging a given filtration over group
G we obtain a G-invariant index filtration for a G-invariant Morse decomposition. The compactness of N;, 0 < i < m,
survives since G is assumed to be compact [1, Corollary 1.1.3]. O

The proof of Morse Equation (Theorem 1.1) is a straightforward consequence of Propositions 5.7 and 5.9.

Example 5.10.

Consider again the Hamiltonian flow from Example 4.5. Let S be the set consisting of equilibria My, M, and connecting
the orbit between them. The sets M; and M, form the Morse decomposition of S. The corresponding Poincaré polynomials
are of the form

Po,(t,hoy(S) = tug?, Pyt hay (M) = uz + tug?,  Pay(t, hy, (M) = tuz,
and one can see the relation

Pz, (t, hz,(Mh)) 4+ Pz, (t, hz, (M) = Pz, (t, hz,(S)) + (1+ t)u%.

5.1. Poincaré polynomial of a critical orbit

Recall that if ¢: M — R is a smooth function defined on compact closed Riemannian manifold, then the point p € M is
called critical if Vg(p) = 0. We say that p € M is a nondegenerate critical point if the Hessian of ¢ at p is nonsingular.
In this case the index of ¢ at p, denoted by ind,(p) is the dimension of the maximal subspace of T,M on which the
Hessian is negative definite. In other words, this is the number of negative eigenvalues of the Hessian, counting with
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multiplicity. It is easy to see that {p} is an isolated invariant set of a flow given by x = — V¢(x) and the Conley index
of {p} is a homotopy type of pointed sphere of dimension ind,(p). In consequence P(t, h({p})) = t"%P), cf. [14]. We
expect a similar result in the equivariant case.

In this section we are going to calculate the Poincaré polynomial of a critical orbit of a G-invariant function ¢: V — R,
see Proposition 5.16. In order to do this, we need to impose some nondegeneracy condition.

Definition 5.11.
Let ¢: V — R be a smooth G-invariant function.

e The orbit Gx is called a critical orbit of ¢, if V¢(x) = 0 (and consequently, for each y € Gx, Vo(y) = 0).

e The critical orbit Gx of ¢ is said to be hyperbolic, if Gx is a regular zero orbit of V¢, cf. Definition 3.2.

Proposition 5.12 ([1, p. 4]).
Let G be a compact group and H a closed subgroup of G. Then gHg™' = H iff gHg™" C H.

Corollary 5.13.
Letx € V, H= G, and S, be a slice at x. If Q C S, N V|, then each point of Q is stationary under H.

Proof, Lety € Q. By the slice theorem [15, p.184] we see that G, C H. Since G, and H are conjugate, there exists
g € G such that gHg™' = G, C H. Proposition 5.12 implies that G, = H. O

Lemma 5.14.
Letx € V, H= G, and S, be a slice at x. If Q C S, N Vi), then (G x Q)" = (G/H) x Q and (G x;Q)>H) = 4.

Proof. By the definition G xyQ is a homogenous space of an action of the group H on G x Q defined by
h(g,x) = (gh=", hx). Since Q C S, N V| we have h(g,x) = (gh~",x) so the quotient space is (G/H) x Q. We claim
that (G/H) x Q C Vi) Indeed, both Q and G/H =~ Gx are contained in V), hence h(Hg, q) = (Hgh™", hq) = (Hg, q)
for h € H, that is (G/H)x Q C V. If there existed K 2 H such that k(Hg,q) = (Hg,q) for all k € K, then
Hg,q € VK and it would be a contradiction, since G/H and Q C V. The result follows. O

Definition 5.15.
We say that a G-invariant subset Xj of a G-set X is a strong G-deformation retract of X if there exists a G-homotopy
r: X x[0,1] = X such that the following properties hold true:

o r(x,0) =x for all x € X;
e r(x,t) = x for all (x,t) € Xox[0,1];

o r(x,1) € Xo.

If 1: E - M is a G-vector bundle, then M is a strong G-deformation retract of E. Indeed, we identify M with a
zero section of a bundle w: E — M, that is M = {(x,v) € E : v = 0 € E,}. The homotopy is given by the formula
r((x,v), t) = (x, (1 —t)v).

Proposition 5.16.
Suppose that (f, Q) is a Vg-admissible and generic pair. Let ¢ denotes the flow generated by x = —f(x) and Gxo is an
isolated zero orbit of f such that Gxy = invg(Q). Then

P(t, ha(Gxo)) = t*" ouf,

where (H) = (G,,). If Gxo is a principal regular zero orbit then the assumption about genericity can be removed. Recall
that W stands for unstable subspace of —Df (xo).
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Proof. (a) Suppose that (f,Q) is a Vs-admissible and generic. We shall construct an index pair for Gxo via
suitable choice of the index pair in the fiber of the bundle over an orbit Gxo. Let E, = (T,Gxo)*. By the slice theorem
[15, p. 184] the projection p: E — Gxg, where E = {(x,v) € Gxox V : v € E,}, is a smooth vector bundle isomorphic
to m: Gx yE,, — Gxo. Recall that E,; is an H-representation space. The subspace E,;, C V splits into E;'OGBEX_O, the
stable and unstable subspaces corresponding to positive and negative spectrum of Df(xo). Since Xy is a nondegenerate
critical point, there exists an open H-neighbourhood U of zero in E,; such that the flow is given in local H-coordinates
¢: U — E,, by the system of equations

Xy =Aixy +g1(x) and  x_ = Ax_ + ga(x), x=(xp,x )€ E OE,

X0
for |x| = max{|x4|, [x=|} < 2 with g1, and Dg1, vanishing at zero, i.e. |g12(x)| = o(|x|) as |x| — 0. Moreover, one

can choose the coordinates so that |g12(x)| and ||[Dg12(x)| are as small as we want, cf. Appendix. The linear parts are
chosen so that there exists A > 0 for which the following estimations hold:

(Aixy, X)) < =Axg (Aox_, x_) > Ax_|°.

If so, let B={x € E, : |x] <1} and B- ={x € B: |x_| =1}. Then N = ¢7'(B) and L = ¢7'(B7) is an
index pair for the system on E, . Finally, the index pair (X,A) for Gxg is given by X = GxyN and A = GxyL
We shall use the assumption that (f,Q) is generic. It implies that the normal direction for V| is attracting. Set
Bo = {(xs,x_) € B: |xy| =0} and By = {(x;,x_) € B~ : |x,| = 0} and next Np = ¢~"(By) and Ly = ~'(By). There is
a strong H-deformation retract of (N, L) onto (No, Lo), hence by the functoriality property of the twisted product the pair
Xo = GxyNy and Ay = G xy Ly is a strong G-deformation retract of (X, A). The sets Ny and Ly are contained in V(g
and by Lemma 5.14 we have

R for g = k,

HY(XnA) = HY(XonAo) = HI(((GIH) x No)/G, ((G/H) x Lo)/G) = HI(No, Lo) = { )
0 otherwise,

since the pair (No, Lo) is a homological pointed k-sphere, where k = dim W, a dimension of a subspace composed by
the repelling directions, that is the number of negative eigenvalues of Df(xp). Hence P¢(t, ha(Gxo)) = tkuﬁ,).

(b) Suppose now that (f, Q) is not a generic pair, but Gxp is a regular zero orbit and (H) is a principal orbit type,
H = G,,. Then one can find an open G-subset )y C Qp C Q such that Gxg = invg(Qp) and Q0 C Viry- The result

follows by using the same arguments as above. O
Corollary 5.17.
Let (f,Q) be a Vi-admissible and generic pair, ¢ a flow generated by x = —f(x) and Gxo an isolated zero orbit of f

such that Gxg = invy(Q). Then
u(ha(Gxo)) = 0(Gxo)u(y,

where (H) = (G,,). The formula remains valid if (f, Q) is a V-admissible pair and Gx is a principal regular zero orbit.

Proof. By the above proposition, u(h¢(Gx)) = P(—1, X, A) = (=1)"" "ouf, = o(Gxo)uf. O
Corollary 5.18.
Let (f, Q) be a V;-admissible generic pair, ¢ a flow generated by x = —f(x), and Gxo an isolated zero orbit of f such

that Gxo = invy(Q). Then u(hg(Gxo)) = degg(f, Q). The formula remains valid if (f,Q) is a Vg-admissible pair and
Gxg is a principal reqular zero orbit.

The G-index of Conley is additive in the following sense.
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Proposition 5.19.

If S is an isolated invariant G-set, and S is a disjoint union Sy U S, of isolated invariant G-sets, then
Pa(t, ha(S)) = Pal(t, ha(51)) + Pa(t, he(S2))-

Proof. Let (X, A) (resp. (Y, B)) be a G-index pair for S; (resp. S;). Since S; and S, are isolated one can chose those
pair to be disjoint. It is clear that (X U Y, AU B) is a G-index pair for S. Since the pairs in question are disjoint and
G-invariant, one has

HY(X U Y)(AUB)) = H (X<H>/c U YHIG, (X>M U AM) G U (V> U B<H>)/c).
Therefore, by the fact that pairs (XyA) and (YyB) are disjoint, we conclude that
HI((XUY)u(AUB)) = HY(XyA) @ H(YyB).

The above isomorphism implies that rank H7((X U Y)4(A U B)) = rank H9(XyA) + rank H7(YyB) and the result follows
(according to the fact that addition in U(G) is coordinatewise, cf. Proposition 2.7). O

5.2. Comparison of the equaivariant gradient degree and the equivariant Conley index

In [8], Geba shows that the gradient equivariant degree of a V-admissible pair (f, Q) is equal to the class in U(G)
representing the homotopy type of the equivariant Conley index hg(Q, ¢¢), where ¢, stands for the flow generated by
x = —f(x). This result is interesting from a theoretical point of view as well as applications, see [10]. We are going to
obtain this equality using the equivariant Morse equation.

Theorem 5.20 (Geba [8]). B
Let (f, Q) be a V-admissible pair and let Q) be an isolating G-invariant neighbourhood of a flow ¢; generated by the
equation x = —f(x), S = inv(Q). Then u(hg(S)) = degg(f, Q).

Proof. The proof of the theorem is divided into two parts. The first one is almost word for word rewritten from [8].

(a) We will show that S can be continued to an isolated invariant G-set of a flow given by generic function. By
the compactness of dQ one can choose T > 0 so that for any x € dQ there is t € [T, T] and ¢(t,x) & Q. Define
O, =0\ ¢(0Qx[—T, T)). Itis clear that (f, () is V-admissible. By Lemma 3.5 there is a gradient G-map f;: V — V
satisfying f1(x) = f(x) for all x € V'\ Q; with the pair (f;, Q1) being generic. Define the homotopy h: V x[0,1] — V by
the formula h(x, A) = (1—=A)f(x) + Af1(x) and let ¢* stand for the flow generated by —h(-, A). Notice that h(x, A) = f(x)
for all x € V\ Qy, that is ¢* = ¢ on the set dQ x[—T, T]. Therefore Q is an isolating neighbourhood for the flow ¢*
for A € [0,1]. The continuation property of the equivariant Conley index applies and one has hg(S1) = hg(S), where
S1 = invg, (Q).

(b) Since the pair (f1, Q) is generic, the set S; is composed of reqgular zero orbits Gxq, ..., Gx, of the function f; and
flow lines between them. Moreover, the collection of orbits M = (Gx, ..., Gx,) forms a Morse decomposition of S;. We
choose an ordering of M given by the potential ¢1: Q — R, f; = Vi, i.e. we order the critical orbits in such a manner
that ¢1(Gx;) < ¢1(Gx;) whenever i > j. By the equivariant Morse equation,

m

u(ha(S1)) = Po(=1,ha(S1) = ) Pa(—1,he(Gxi, ¢r,))

k=1

For 1 < k < m take open G-subsets QO C Q such that Q;NQ; = @ and Qy is an isolating neighbourhood for an isolated
critical zero orbit Gx. By Corollary 5.17 one has Pg(—1, hg(Gxk, ¢r,)) = deg((f1, Q). Hence

u(ha(S)) = u(ha(S1) =Y _deg(fi, Q) = degg(f1, Q) = degl(f, Q)

k=1

by the additivity property and the homotopy invariance of the gradient equivariant degree, cf. [17, Theorem 3.2]. O
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Example 5.21.
As an example we compute the gradient equivariant degree of the pair (—id, B), where —id: V — V, V is an orthogonal
finite dimensional representation of G = SO(2) = {yg : 0 < 0 < 27} (ye is given by (4)) and B stands for the unit ball
in V. The result coincides with the calculation made by Rybicki [20, Lemma 4.1]. Let us introduce the following irreducible
representation of G. The notation is borrowed from [20]. For m € N let R[1, m] = (R?, p,), where p,,: G — O(2) is given
by

Pn(Ve)(x, y) = (xcosmB — y sinm6B, xsinmf + y cos mH).

For k € N set Rlk,m] = EB{;1 R[1,m]. Similarly we define R[k,0] = @fﬂ R[1,0], where R[1,0] stands for trivial
representation on the real line. Each orthogonal finite dimensional representation of G can be represented, up to
equivalence, as V = @F_Rlk;, m;], where k;, m; ENfor 1 <i<p, ke € NU{0}and 0 =mg < mj <...<m,.

The multiplicative structure of U(G) is well known and can be expressed explicitly, cf. [20]. For convenience we denote
the trivial subgroup of G as Zi. If @ = aoug + }_72; ajuf and b = boug + Y, bjug then

ab = agbou + Z(aob,-—ka,-bo)ugj. (7)
j=1

Notice that B is an isolating G-neighbourhood for the flow defined by the identity vector field and the sphere S = 9B
is an exit set. Let SY = B/S with the G-action induced from V. Hence, one has to compute u(S"). According to the
G-homeomorphism SV®W ~ SV A SW and the formula (7),

p p
u(SV) _ u(seaf'zoR[ki \mi] |_|u SRIki ml _ |—|u(SR[1,mg])ki.
i=0

i=0

Since SRl is composed of, for instance, one O-cell of orbit type G and one 1-cell of orbit type Z,., the equality
u(SHIm) = & — ug holds. Also u(S®') = —u&, therefore

P p
u(SY) = (=1)foug [ ](ug —ug, ) = (—1)foul |_|(uC kg, ) = (=1)% (ug +y kg, ) .

i=1 i=1

By Theorem 5.20 we obtain degy(—id, B) = (— 1)k (uf + ¥ 7, ku§ ).

6. Multiplicity results

As an application of the equivariant Morse equation we shall prove a simple multiplicity result in the critical point
problem. Before we proceed to the result's statement we briefly describe some special action of the cyclic group.

Let p be a prime number and ki, ..., k, integers relatively prime to p. Consider an action of Z, on R*” = C" generated
by the rotation
p(Z1, o :Zn) — (627n'k1/p21’ L eZm‘kn/pZn). (8)

This action is free. Any nonzero z € C" has a nonzero coordinate z; and then e*"%i’Pz; £ z; for 0 < s < p since
k; is relatively prime to p. The group acts via isometries hence the sphere $?"~' is a Z,-invariant set. The orbit space
S$%"=1Z, is called the lens space, denoted by L, = L,(ki,..., k,). In particular for p = 2 we have L = RP>~". The
above construction can be performed for an arbitrary integer p > 1. We choose p prime to have a structure of a field in
the set Z,, as a set of coefficients for a cohomology theory. The cohomology groups of L with Z, coefficients are known
and they are [11, Example 3.41, p. 251]

T ~ |0 for g =0,
HI(Ly; Zp) =
Zyp for1<qg<2n-—1.
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Proposition 6.1.
Assume that V = R* is a Z,-representation with the action given by (8) and f: V — R is a smooth Z,-invariant
function. Suppose that

(i) there exists a Z,-isolating neighbourhood Xy such that 0 € So = inv(Xo) and Pz, (t, th(so)) = ué’;;
(i) f(x) = —=|x|*/2 + @oo(x), in a neighbourhood of the infinity and V., is bounded.
If f has only a finite number of critical orbits, say {Zyxo, ..., Zyxn}, and all of them are hyperbolic, then there are at

least 2n of them. Moreover, (Zp)xk = E (E stands for the trivial subgroup) for 1 < k < 2n (2np critical points) and each
number in the set {1,...,2n} is the Morse index of some critical point.

Proof. Consider the negative gradient Z,-flow ¢ of x = —f(x). Let D,(V) (resp. S,(V)) stand for the disk (sphere)
in V of radius p > 0. It follows from (ii) that Dg(V) is a Z,-isolating neighbourhood for sufficiently large R, and
(X, A) = (Dr(V), Sr(V)) is a Z,-index pair for this flow. Notice that X£/Z, ~ (L, x[0,1]))/(L, x {1}) = CL, is a cone
over L, and (X% UAE)/Z, ~ (L, x {0})U(L, x {1}) = (Apr is a disjoint union of the bottom and the top of the cone. One

has

0 for g =0,

Zyp for 1 < g < 2n.
It is easily seen that H(X%|Z,, (X>%» UA®)(Z,) = HI(S°, {pt}) = Z, for ¢ = 0 and is zero otherwise. Thus the
Poincaré polynomial of the Z,-Conley index of S = inv(X) is

112

HI(CL,, CLy; Zy) = HI(S(L,) VS, {pt}; Z,)

Pz, (t,hz, (S) = ul + (7 + 2 o )’

Since all equilibria are hyperbolic they form together with Sy a Morse decomposition (So, My, ..., M) of S. All nonzero
orbits are principal, hence by Proposition 5.16, the Poincaré polynomial of hz, (M;) is tqu?’ provided that g is the Morse
index of M;. Denote by ¢, the number of critical orbits of index k. By the equation (EME) there are nonnegative integers
ag, a1, ... such that

2n 2n 2n
Z Ckfk = Z t* + ag + Z(qu +0k)tk.
k=0 k=1 k=1

That is,
2n 2n
Co + chl‘k =ap+ Z(Gk_1 +Gk+1)tk.
k=1 k=1
Since ag might be zero we have no information about co, but ¢, > 1 for k =1,...,2n. O
Remark 6.2.

The assumption (i) of the above proposition can be achieved by the following: f(x) = |x|?/2 + @o(x), in a neighbourhood
of zero, | Vgo(x)| = o(|x]) as x — 0. Indeed, such condition implies that the origin is a critical point of f, and Sp = {0}
is an isolated invariant set. The Z,-index pair for Sy is given by (D,(V), @), where r is sufficiently small. The pair

(D,E/Zp, D,Z" /Zp) is homotopy equivalent to the pointed one point space and Hq(D,Z" /ZP,[ZJ) = Zp only for g = 0. Hence
Py, (t, bz, (So)) = 7’

In the next proposition, let G = SO(2).

Proposition 6.3.
Let V = R[n+1,1] be a G-representation. Assume that f: V — R is a smooth G-invariant function and

(i) there exists a G-isolating neighbourhood X, such that 0 € Sy = inv(Xy) and P(t, he(So)) = u&;
(i) f(x) = —|x|*/2 + @uo(x) in a neighbourhood of infinity and V¢, is bounded.
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If f has only a finite number of critical orbits, say {Gx, . .., Gx,}, and all of them are hyperbolic, then there is at least
n +1 of them. Moreover, G,, = E for 1 < k < n+1 and each number in the set {2k —1:1 < k < n +1} is a Morse
index of some critical orbit.

Proof. As in the preceding proof we take the pair (X,A) = (Dgr(V),Sr(V)) as a G-index pair for the G flow
of —Vf. Here we have XE/G =~ (CP"x[0,1))/(CP"x {1}) = CCP", a cone over the complex projective space CP"
and (XCUAE)/G = (CP"x {0})U(CP"x {1}) = CCP" is a disjoint union of the bottom and the top of the cone. Now,
we are going to use the cohomology with integer coefficient. Thus

Z for ¢ <2n+1 odd,

HI(CCP", CCP™; Z) = H(S(CP)V S, {pt}; Z) =
0 for g even.
Moreover, HY(X/G, (X>©UA®)/G) £ Z for g = 0 and is zero otherwise. Therefore

Pe(t, ho(X) =ug+ (" + 7+ + £+ t)ug.

Applying the Morse equation one obtains the equality

n+1 n+1 n+1 n+1

Cco + Z Cok—1 2k 4 Z CZktZk = ap + Z(sz_z-f- k-1 +1)t2k_1 + Z(GZk_1 + GZk)tZk, 9)

k=1 k=1 k=1 k=1
where ¢; is the number of critical orbits of index j and ag, as,... are nonnegative integers. From (9) we read off
that cg >0, cor > 0and cp_1 >Tfor1 < k<n+1. O

6.1. The general case of Z,-action

We turn now to the case of the most general Z,-representation. Let R, (resp. R,) be a one-dimensional Z,-representation
with the trivial (resp. antipodal) action. Let V be an orthogonal representation of a group Z, isomorphic to R!@R¥
for k > 1. Notice that a Z,-equivariant isomorphism A : V — V is of the form A;@A,, where A;: R — R’ and
As: R¥ — R Assume that f: V — R is an asymptotically quadratic Z,-invariant smooth function, i.e., there exist two
symmetric linear Z,-maps Ap, Axo: V — V such that

(17) f(x) = =(Aox, x)/2 + @o(x), where Vig(x) = o(|x]) as x —= 0;
(21) (X)) = —=(Acox, X)2 + Poo(x), where Vg (x) = o(|x]) as x = oo.

Clearly, if f is asymptotically quadratic, then the map Vf is asymptotically linear. Moreover, assume that

(3r) f is nonresonance at zero and infinity, i.e., both maps Ay and A, are isomorphisms, and

(4r) f has only a finite number of critical Z,-orbits, {x1, gx1,...,x,, gx,}, and all of them are hyperbolic.

Consider a Z,-flow ¢ generated by — V. It follows, from the assumptions above, that the origin is an isolated invariant
set for ¢ and there is another, maximal isolated invariant Z,-set T such that {0} € T. There is a decomposition
V=Vi®V, (resp. V = Vid VL) corresponding to the positive and negative spectrum of Ag (resp. As). Denote by
D,(V) (resp. S,(V)) the disk (resp. sphere) in V of radius p. It is clear that the pair (D.(V), S;(V;")) is a Z,-index pair
for {0} for r sufficiently small. Similarly, the Z,-pair (Dg(V), Sr(VZ)), for R sufficiently large, is an index pair for T.

To proceed further we will calculate the cohomology groups of the pair (D(V)eS(V)) using Z, coefficients, that is the
groups
HI (D) 1Zo, (D)2 US(V)) /22 Z:), q >0,
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In order to visualize the geometry we need the concept of the join of two topological spaces. Since we are dealing with
quite friendly spaces, as disks and spheres, the task is much simpler than it might be possible in general. Given two
topological spaces X and Y, the join X Y is the quotient space X x Y x[0,1]/ ~, where the equivalence ~ is given
by (x1,y,0) ~ (x2,y,0) for x;,x, € X and y € Y and (x,y1,1) ~ (x,y2,1) for all x € X and y1,y, € Y. We shall
list some properties of the join which will be needed later. (i) The join of X and a O-sphere is homeomorphic to the
(unreduced) suspension of X: S%x X ~ SX; (i) Sk*S? ~ S Since the join is associative it follows by induction
that Skx X ~ Sk*1X, the (k +1)-folded suspension of X. The property (ii) implies in particular that if V and W are two
finite dimensional orthogonal G-representations, and S(V) denotes the sphere {x € V : |x| = 1}, then

S(Ve W) ~ S(V)x S(W).

Notice that SY = D(V)/S(V) ~ S(V@R,), cf. [22, Lemma 4.2]. The disk D(V)E is (k + ¢)-dimensional and contains the
¢-disk D(V)%2 on which the group acts trivially. After collapsing the sphere S(V) in D(V) the ¢-disk D(V)*2 becomes
an ¢-sphere contained as a meridian in a sphere S ~ S(VOR,) = SR @ RE) ~ S(R*T)« S(RX). The group acts on
the join S(R*") x S(R¥) as follows: g(x,y,t) = (gx, gy, t) = (x,—y, t) for all x € S(R*"), y € S(R¥) and t € [0, 1].
Factoring out by the action of Z, we obtain S/*RP*~". Collapsing away the circle S (coming from the disk D(V)?2) one
can see that the pair (D(V):S(V)) is equivalent, up to a homotopy type, to the pair (S°+*RP*", S¢). We will examine
the groups H9(S’*RP*", S 7,) using the long exact sequence of a pair. One has an exact sequence of reduced
cohomology groups

o HITY(SY) = HI(S'«RP*, SY) — HIRPxSY) — HI(SY) — ...

for g > 0. By the suspension isomorphism one obtains H7(S/*RP*~") = Z, for £ + 2 < g < ¢ + k. Substituting in the
above sequence g = ¢ +ifor i =2,...,k we obtain a short exact sequence

0 — H™(S'*RP*, SY =5 7, — 0.

If g =241, then
0 > Zy = H(SY%RPK, %) — 0.
Hence, for k > 1 and ¢ > 0 one has

7o g=0+i for i=1,2,...,k,

HI(D(V)gS(V)) = {0 otherwise

We also are interested in the cohomology of the pair (D(V & U)S(V)), where V is as above and U is an arbitrary
Z,-representation. By the following lemma one can reduce the task to the previous situation.

Lemma 6.4.
The pair (D(V@ U)eS(V)) is homotopy equivalent to the pair (D(V):S(V)).

Proof. It suffices to show that the pairs (D(V @ U), S(V)) and (D(V), S(V)) are Z,-homotopy equivalent. Identify
D(V & U) with D(V) x D(U) via the natural Z,-homeomorphism. Define

p: (D(V)xD(U), S(V)) = (D(V),5(V))  and  g: (D(V),5(V)) = (D(V)x D(U), 5(V))

by setting p(x, y) = x and q(x) = (x,0). Clearly both p and q are Z,-equivariant, pqg = idp(v),s(v) and gp is homotopic
with id(D(\/)xD(U),S(V)) via Zz—homotopg h(X, Yy, t) = (X, ty) O
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Let us now go back to the computations of the indices of {0} and T. Suppose that V;" = RP@RE and Vi = R @Rk,
The above considerations show that the Poincaré polynomials of the indices of {0} and T are of the form

P2, (t, hzy ({0}, &) = t0uz 4 (¢07 4o 070 U2,
Pry(t, hoy (T, @) = tooug? + (154! oo phoothoo) 2,

Notice that if x € V is a nondegenerate critical orbit with isotropy group Z; (i.e., in fact, is a critical point), then
z z
?Zz(tr hZz({X})) — t[xuzi + (tfx+1 T tfx+kx)uE2’

where the numbers ¢, and k, are defined via the equality V;* = R¥@RX. On the other hand, for a nondegenerate
critical orbit {y, gy} with the isotropy group £ one has Pz,(t, hz,({y, gy})) = t" YV u2?, of. Proposition 5.16. Here V.*
(resp. V) is the unstable subspace of a linear map —V2f(x) (resp. —V2f(y)). If (1/)=(4¢) are satisfied, then combining
all these data with the equation (EME) one obtains the following equalities:

o+ aith =t 4 (141)Q(t), (10)
i=1

ko koo

DU = )t (14 1) (1),

i=1 i=1

where Z, 94, Q, are some unknown polynomials with nonnegative integer coefficients. The numbers a; for 1 < i < n may
be one or zero. Notice that a; =1 if x; is a critical orbit of orbit type Z. It may happen that €, = €, for i # j.

Proposition 6.5.

Suppose that f: V. — R is a smooth Z,-invariant function satisfying conditions (1¢)—(4¢). If s #+ &, then f has at
least two nonzero critical points x, y € V (two orbits of orbit type Z,). Additionally, one has estimations on the Morse
indices: dim Vi > €., and dim V;’ >0 —1.

Proof. We will examine the equation (10). The right-hand side of (10) contains the exponent £,,. Therefore there
exists 1 < i < n such that ¢, = ¢. On the left-hand side of (10) there is the exponent &, hence the polynomial
(1+1t)Q, contains two nonzero terms with exponents ¢ and & + 1 or § — 1 and & Therefore, there exists 1 < j < n,
such that EX/. =¥ —1or €X/. = {4y + 1. Consequently x = x; and y = x; are critical points of f. The inclusions Rf“’ c Vit
and RO ¢ V,\ give us the estimations on dimension of V,* and V| O

7. Appendix

Let V be an orthogonal finite dimensional representation of a compact Lie group G. Assume that ®: V — R is a smooth
G-invariant function and the origin is a nondegenerate critical point of ®. It is a rather standard fact, that near the
origin the G-flow given by an equation X = — V®(x) is equivalent to the G-flow given by

Xy =Aixy +g1(x) and  x_ = Ax_ + ga(x), x=(x,x)E VeV, (11)

where [g12(X)] = o(|x|), the norms |g12(x)] < T and ||Dg12(x)|| < 7, where T is arbitrary small. The linear maps
Ai2: V — V are such that
(Arxy, xp) < =Axe %, (Apx_, x_) > Alx_|% (12)

for some A > 0. Here V* (resp. V) denotes the eigenspace of the Hessian V2®(0) corresponding to the positive (resp.
negative) eigenvalues.
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For the sake of completeness we include the proof and next we will show how to find the G-index patr for an isolated
zero.

The equivalence above means that there is a G-neighbourhood U 2 0 and a G-homeomorphism h: U — h(U) such
that h(0) = 0 and h maps orbits in U of the first system onto orbits of the second one preserving the direction in
time. In particular, such an equivalence takes place when the second system is obtained by the smooth (diffeomorphic)
G-equivariant change of coordinates y = h(x), i.e., the flows defined by x = f(x) and § = g(y) are equivalent provided
that f(x) = (Dh(x))""g(h(x)).

Let A = V2®(0). Then Vd(x) = Ax + ¢(x), where |¢(x)| = o(|x]) as |x] — 0. Choose a Jordan basis {v;} of V such
that A with respect to {v;} has a matrix representation

A 0
A =
52
where A; = A|y+ and A, = A|y- are diagonal matrices. The inequalities (12) are clear since A; (resp. A;) has only

negative (resp. positive) entries on the main diagonal. For an element x = (x;,x_) € VT® V™ define its norm
|x] = max{|x4|, |x-|}. The linear change of coordinates x — &x gives us an equivariant map F.(x) = Ax + ¢¢(x), where

Pe(x) = ¢lex)/e.

Lemma 7.1.
For any T > 0 there exists an € > 0 such that |¢.(x)| < T and |D¢.(x)|| < T uniformly for x € B,(0).

Proof. Fix T > 0. Since |p(x)| = o(||x||) as x tends to O, there is a & > 0 such that |¢(ex)|/|ex| < T/2 provided
that |ex| < d. Let € be chosen such that |ex| < d. Then

|p(ex)|

lex|

<2-=r.

900l = 1 I6(ex)] = I

NI~

The derivative of ¢.(x) is Doc(x) = De(ex). Since D¢(x) is continuous and D¢(0) = 0, for any 7 > 0 one can take
01 > 0 such that ||D¢(ex)| < 7 if only |ex| < &. Taking € small enough we are done. O

In order to find the index pair for the isolated invariant set {0} for the flow given by (11) we proceed as follows. Let
N be the square {|x| < 1}. It is easily seen that N is a G-set since the action is orthogonal. If |x;| > |x_| then
dldt|x,|> = 2{xy, x;) = 2{Aixy, x. ) + 2(g1(x), x;) < —Alx,|? provided that 2t < A. The same argument shows that if
|x:| < |x_| then d/dt|x_|> > A|x_|>. Therefore, the flow of (11) leaves the square N via the set N~ = {x € N : [x_| = 1}
while the entrance set is N* = {x € N : |x;| = 1}. That is, the pair (N, N7) is a G-index pair for {0}. To see that N~
is a G-set suppose, to the contrary, that x € N~ and gx € {|x| = 1} \ N~ for some g € G (the sphere {|x| = 1} is
obviously a G-set). If so, there exists sufficiently small ¢ > 0 such that ¢®!(gx) C N while ¢*9(x) ¢ N and by the
G-invariance of N one has g¢®!(x) ¢ N. But this contradicts the fact that ¢ is a G-map.
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