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1. Introduction

Let X be a locally compact metric space and assume that there is a given flow on X . In [3] Conley and Zehnder provedthat if a finite collection of compact and invariant sets {Mπ : π ∈ D} forms a so-called Morse decomposition of anisolated invariant set S, then the equality
∑
π∈D

P(t, h(Mπ)) = P(t, h(S)) + (1+ t)Q(t) (ME)
holds true. Here Q is a polynomial in t having non-negative integer coefficients and P stands for the Poincaré polynomialof the homotopy Conley index of Mπ and S. In the following we will refer to equations of type (ME) as the Morseequation.
∗ E-mail: marcins@mif.pg.gda.pl
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This result is a generalization of the classical Morse relations, which give a relationship between the set of criticalpoints of a Morse function f : M → R defined on a Riemannian closed n-manifold and the topology of the underlyingdomain. Namely, let ck denote the number of critical points of f of the Morse index k and let βk (M) be the k-th Bettinumber of M. Then one can consider the negative gradient flow of f and apply the above equality to obtain the formula∑n
k=0 ck tk = ∑n

k=0 βk (M)tk + (1+ t)Q(t). A survey exposition of this material is presented in the joint paper of Izydorekand the author [14].The purpose of this paper is to present a generalization of the above mentioned result of Conley and Zehnder to theequivariant setting, i.e., when the equivariant flows acting on the representation of a compact Lie group are taken intoconsiderations. Namely, we prove the following.
Theorem 1.1.
Let V be an orthogonal representation of a compact Lie group. If S is an isolated invariant set of an equivariant flow
on V and (M1, . . . ,Mm) is a Morse decomposition of S, then there exists

QG(t) =∑(H)
(∑

q
ρq(H)tq

)
uG(H) (1)

with all integer coefficients ρq(H) ≥ 0 such that

m∑
j=1 PG(t, hG(Mj )) = PG(t, hG(S)) + (1+ t)QG(t). (EME)

This generalization is consistent with the evolution of the equivariant counterparts of such tools as the topologicalmapping degree and the Conley index. The main reference for this subject are the papers of Gęba [8], Gęba & Rybicki [9]and the papers of Rybicki and his collaborators [10, 17, 19, 20]. The equivariant version of the Conley index is the subjectof the papers of Floer [6], Floer & Zehnder [7]. In [13] Izydorek extends the equivariant Conley index to the situationswhere the local compactness property of the phase space fails, and he successfully applies it to the strongly indefiniteproblems.We will use the equation (EME) to derive some multiplicity results for critical-point orbits of invariant functions definedon the G-representation (G = SO(2),Zp, p prime). We also obtain a relationship between the equivariant Conley indexand the gradient equivariant degree. This should be seen as an illustration of application of the Morse equation (EME),because the ideas are contained in the work of Gęba [8].The equation (ME) is expressed in terms of the Poincaré polynomials with integer coefficients being the Betti numbersof certain index pairs, for details we refer to [3, 14]. We are going to define the Betti numbers of the equivariant Conleyindex and then to define the Poincaré polynomial appropriate for our purposes. One can expect that in the case of thetrivial group, the obtained equation will coincide with the classical one. As a matter of fact, a proper definition of thePoincaré polynomial of the index is actually crucial on the way to obtain our result. The motivations of such definitionbecome clear, having regard to the form of the elements in the Euler ring U(G) of a compact Lie group G. Let us mentiononly that in our approach to the equivariant theory there is no equivariant cohomology at all.After this introduction the paper is organized as follows. Section 2 outlines the material from equivariant topologyincluding the concept of the Euler ring of the compact Lie group. Sections 3 and 4 are devoted to the equivariantversions of the mapping degree and the Conley index theory. Simple examples are presented. Section 5 contains theproof of the equivariant Morse equation. Then we give a calculation of the Poincaré polynomial of an isolated orbit anddeduce a relationship between the gradient equivariant degree and the equivariant Conley index. The last part of thiswork is devoted to some simple multiplicity results for critical orbits of invariant functions. The presented work is a partof the author’s PhD thesis [22].
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Equivariant Morse equation

2. Preliminaries

Let G be a compact Lie group. A subgroup H ⊂ G is called conjugate to a subgroup K ⊂ G if there is g ∈ G suchthat H = g−1Kg. The conjugacy defines an equivalence relation, and we will write (H) for a conjugacy class of H. Theset of all conjugacy classes of closed subgroups of G will be denoted by Φ(G). The set Φ(G) is partially ordered. Wewrite (H) ≤ (K ) if gHg−1 ⊂ K for some g ∈ G.An action of a group G on a topological space X (also called G-action) is a continuous map G×X → X sending (g, x)to gx and satisfying the following properties:• ex = x for all x ∈ X , where e stands for the identity of G;
• h(gx) = (hg)x for all g, h ∈ G and x ∈ X .

A G-space is a pair consisting of an underlying space X and a given G-action. A linear representation of a group G isa pair (V , ρ), where V is a vector space and ρ is a G-action such that for all g ∈ G the map ρg = ρ(g, · ) is a linearautomorphism of V . If V is equipped with an inner product 〈 · , · 〉, then we say that the representation is orthogonalif 〈ρgx, ρgy〉 = 〈x, y〉 for all x, y ∈ V and g ∈ G. Throughout the paper, all representations are assumed to be finitedimensional, real and orthogonal.Let X be a G-space. For x ∈ X , the set Gx = {g ∈ G : gx = x} is the isotropy subgroup of G at x and the set
Gx = {gx : g ∈ G} is the orbit of G through x. For each x ∈ X , the group Gx is closed in G.Points x, y ∈ X are of the same orbit type if the isotropy subgroups Gx and Gy are conjugate subgroups of G. Since
Ggx = g−1Gxg, the points on the same orbit are of the same orbit type. Hence, the set Φ(G) of all conjugacy classesalso will be called the set of orbit types.Let H be a closed subgroup of G. We will use the following notation:

XH = {x ∈ X : H ⊂ Gx} = {x ∈ X : hx = x, h ∈ H}, X (H) = GXH = {x ∈ X : (H) = (K ) for K ⊂ Gx},
XH = {x ∈ X : Gx = H}, X(H) = GXH = {x ∈ X : (Gx ) = (H)},

X>(H) = X (H) \ X(H) = ⋃
(K )>(H)X

(K ).

Definition 2.1.An orbit Gx and its orbit type (Gx ) are called principal if Gx has a G-invariant open neighbourhood that contains noorbit of smaller orbit type with respect to the partial order ≤ in Φ(G).
Theorem 2.2 ([1, Theorem 3.1]).
Let (H) be a principal orbit type. Then the union X(H) of orbits of principal type is open and dense in X.

A subset Ω of a G-space X is called a G-invariant (a G-set) provided that x ∈ Ω and g ∈ G imply gx ∈ Ω. If X and Yare G-spaces, then a continuous map f : X → Y is called a G-equivariant map (a G-map) if the relation f(gx) = gf(x)holds for all x ∈ X and g ∈ G.
2.1. G-complexes

The object of our interest, the Conley index, is a homotopy type of a pointed space which supports the structure ofCW-complex. Although the notion of CW-complex is well known in topology, we present here some basic definitions,since the G-equivariant Conley index joins the notion of CW-complex and G-space. The definitions are borrowed fromthe paper by Gęba and Rybicki [9].We use the standard notation Sn−1 = {x ∈ Rn : ‖x‖ = 1} and Dn = {x ∈ Rn : ‖x‖ ≤ 1} for the unit (n−1)-sphere andthe unit n-ball in Rn respectively. In what follows we assume that Dn carries the trivial G-action, i.e. gx = x for all
x ∈ Dn and g ∈ G. We set Bn = Dn \ Sn−1.
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M. Styborski

Definition 2.3.Let (X, A) be a compact pair of G-spaces and {Hj}, j = 1, 2, . . . , q, a family of closed subgroups of G. We say that
X is obtained from A by simultaneously attaching a family of equivariant k-cells of orbit type {(Hj ) : j = 1, . . . , q} ifthere exists a G-map φ : ⊔q

j=1 Dk× (G/Hj ) → X which maps ⊔q
j=1 Bk× (G/Hj ) homeomorphically onto X \ A. We call

φ(Dk× (G/Hj )) a closed k-dimensional cell of orbit type (Hj ).
Definition 2.4.Let X be a compact G-space. A finite equivariant CW-decomposition of X consists of an increasing family of G-subsets
X 0 ⊂ X 1 ⊂ . . . ⊂ Xn = X and a family ⋃n

k=0{Hj,k : j = 1, . . . , q(k)} of closed subgroups of G such that
• X 0 = q(0)⊔

j=1G/Hj,0;
• the space X k is obtained from X k−1 by simultaneously attaching a family of equivariant k-cells of orbit type
{(Hj,k ) : j = 1, . . . , q(k)} for each 1 ≤ k ≤ n.

A pointed G-space is a pair (X, x0), where X is a G-space with a distinguished point x0 called the base point and suchthat the action of G leaves the base point fixed. The pointed G-spaces are the objects of the category whose morphismsare G-maps preserving the base point. If X is a G-space, then the superscript plus X+ means that X is considered asa pointed space with a separate base point added.
Definition 2.5.Let (X, x0) be a pointed compact G-space. A pointed finite equivariant CW-decomposition of (X, x0) consists of anincreasing family of G-subsets X−1 ⊂ X 0 ⊂ X 1 ⊂ . . . ⊂ Xn = X and a family ⋃n

k=0{Hj,k : j = 1, . . . , q(k)} of closedsubgroups of G such that• X−1 = {x0};
• X 0 = {x0} t q(0)⊔

j=1G/Hj,0;
• the space X k is obtained from X k−1 by simultaneously attaching a family of equivariant k-cells of orbit type
{(Hj,k ) : j = 1, . . . , q(k)} for each 1 ≤ k ≤ n.

The family ⋃n
k=0{Hj,k : j = 1, . . . , q(k)} is called the orbit type of the decomposition of X . For short we use the term

G-complex (pointed G-complex) for a (pointed) G-space if there exists a (pointed) finite equivariant CW-decompositionof X (resp. (X, x0)).
2.2. Euler ring U(G)
If (X, x0) and (Y , y0) are pointed G-spaces (gx0 = x0 and gy0 = y0 for all g ∈ G), then we say that (X, x0) and (Y , y0)have the same G-homotopy type iff there exists a pair of G-maps f : (X, x0) → (Y , y0) and g : (Y , y0) → (X, x0) suchthat gf ∼G id(X,x0) and fg ∼G id(Y ,y0). The symbol ∼G means that if Ht is a homotopy joining two G-equivariant maps,then for all t ∈ [0, 1] the map Ht is a G-map as well. Of course, the relation ∼G is an equivalence and the equivalenceclass under relation ∼G is denoted by [X ]G . We say that [X ]G is the G-homotopy type of X .Let us introduce the symbol F(G) for the category whose objects are pointed G-complexes and F[G] for the set ofall G-homotopy types of pointed G-complexes. For (X, x0), (Y , y0) ∈ F(G) we define its wedge sum to be X ∨ Y =((X ×{y0}) ∪ ({x0}×Y ), (x0, y0)) ∈ F(G), and its smash product X ∧ Y = (X ×Y/X ) ∨ Y . Of course we also have
X ∧ Y ∈ F(G).Let F = Z[F[G]] be the free abelian group generated by the G-homotopy classes of pointed G-complexes and let N bethe subgroup of F generated by all elements [A]G − [X ]G + [X/A]G , where A is a pointed G-subcomplex of X . Define
U(G) = F/N. The class of [X ]G ∈ F[G] under this identification will be denoted by u(X ). Directly from the definition
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Equivariant Morse equation

of U(G) we see that the addition can be obtained via the wedge sum u(X ) + u(Y ) = u(X ∨Y ). Moreover, the assignment(X, Y ) 7→ X ∧ Y induces the multiplication in U(G), cf. [4], that is u(X )u(Y ) = u(X ∧Y ).
Definition 2.6.The set U(G) with the composition laws defined as above is called the Euler ring of the group G.
It is a classical result that the coset space G/H of a compact Lie group over the closed subgroup H is a smooth compact
G-manifold, cf. for instance [15]. Hence, due to a theorem of Illman [12], it is a G-complex. Therefore G/H+ ∈ F(G)and one can consider the element u(G/H+) ∈ U(G). In what follows we will write uG(H) instead of u(G/H+). The abeliangroup structure of the ring U(G) is fairly easy and its description is given in the following statement.
Proposition 2.7 ([4]).
As a group U(G) is the free abelian group with basis uG(H), where (H) ∈ Φ(G). If X ∈ F(G), then

u(X ) = ∑
(H)∈Φ(G)χ

(
X (H)/G, X>(H)/G)uG(H).

Here χ stands for the Euler characteristic of the pair of CW-complexes. As a ring U(G) is commutative with the unit uG(G).

The Euler characteristic of a cell complex K can be expressed as an alternating sum χ(K ) = ∑∞
k=0(−1)ksk , where sk isthe number of k-cells in the complex K . This formula holds in an equivariant setting as well and we have a nice toolfor computations.

Proposition 2.8 ([9]).
Let X ∈ F(G) and let

n⋃
k=0{Hj,k : j = 1, . . . , q(k)} be an orbit type of the decomposition of X. Then

u(X ) = ∑
(H)∈Φ(G)n(H)(X )uG(H), (2)

where n(H)(X ) = n∑
k=0(−1)kν((H), k) and ν((H), k) is the number of equivariant k-cells of orbit type (H).

3. Degree for equivariant gradient maps

In this section we briefly recall a definition of the degree for gradient G-maps presented in [8]. The paper [8] is the mainreference for this section, where the reader can find proofs of theorems discussed below.Let V be an orthogonal G-representation, G a compact Lie group. We say that a function φ : V → R is G-invariant if
φ is constant on the orbits of G, i.e., φ(gx) = φ(x) for x ∈ V and g ∈ G. If f : V → V is a gradient of a continuouslydifferentiable G-invariant function φ, i.e. f = ∇φ, then we call it a G-equivariant gradient map. As an immediateconsequence of the above definition and the chain rule we get the property that f(gx) = gf(x) for all x ∈ V and g ∈ G.In the same manner we define a homotopy joining two equivariant gradient maps. Namely, a map h : V × [0, 1] → Vis a gradient G-homotopy if there exists a G-invariant function q : V × [0, 1] → R of class C 1 (q(gx, t) = gq(x, t)) suchthat h(x, t) =∇q(x, t) for all t ∈ [0, 1] and x ∈ V . The gradient is taken with respect to the x variable.
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Definition 3.1.Let Ω ⊂ V be an open bounded and G-invariant subset and f : V → V a gradient G-map.• We say that a pair (f,Ω) is ∇G-admissible provided that f(x) 6= 0 for x ∈ ∂Ω. In other words, a ∇G-admissiblepair is an equivariant map of pairs f : (V , ∂Ω)→ (V , V \{0}).
• Two ∇G-admissible pairs (f0,Ω) and (f1,Ω) are ∇G-homotopic if there exists a gradient ∇G-homotopy
h : V × [0, 1] → V connecting them, i.e., hi = fi, i = 0, 1, and such that the pair (ht ,Ω) is ∇G-admissible for
t ∈ [0, 1].

From now on, f : V → V will always mean an equivariant gradient map. Let x be a fixed point in V of an orbit type (H),i.e., H = Gx . We have an orthogonal splitting
V = Tx (Gx)⊕Wx⊕Nx , (3)

where Wx is the orthogonal complement of Tx (Gx) in the tangent space Tx (V(H)) and Nx = Tx (V(H))⊥. Assume that x ∈
f−1(0) and f is differentiable at x. With respect to the decomposition (3) the derivative Df(x) is of the form (for details,see [8]) 0 0 00 Kf(x) 00 0 Lf(x)

 ,
i.e., Kf(x) = Df(x)|Wx and Lf(x) = Df(x)|Nx .
Definition 3.2.An orbit Gx is called a regular zero orbit of f , if f(x) = 0 and kerDf(x) = Tx (Gx). It means that the map
Kf(x)⊕Lf(x) : Wx⊕Nx → Wx⊕Nx is an isomorphism. The Morse index of the regular zero orbit Gx is defined tobe the number of negative eigenvalues of Kf(x), k = dimW−

x . We set σ (Gx) = (−1)k .
For an open G-set U such that U is a compact subset of V(H) and ε > 0, define

N(U, ε) = {v ∈ V : v = x+n, x ∈ U, n ∈ Nx , |n| < ε}.

The set N(U, ε) will be called a tubular neighbourhood of type (H) provided that the decomposition v = x+n is unique.Let ε > 0 be small enough so that N(U, ε) is a tubular neighbourhood of type (H). A gradient equivariant map f is(H)-normal on N(U, ε) if for all v = x+n ∈ N(U, ε),
f(v) = f(x) + n.

Definition 3.3 (generic pair).We say that a ∇G-admissible pair (f,Ω) is generic if there exists an open G-subset Ω0 ⊂ Ω such that(a) f−1(0) ∩Ω ⊂ Ω0;(b) f|Ω0 is of class C 1;(c) f−1(0) ∩Ω0 is composed of regular zero orbits;(d) for each H with Z = f−1(0) ∩ Ω(H) 6= ∅ there exists a tubular neighbourhood N(U, ε) of type (H) such that Z ⊂
N(U, ε) ⊂ Ω and f is (H)-normal on N(U, ε).

The next theorem allows us to define the gradient degree for a ∇G-admissible pair (f,Ω).
Theorem 3.4 (generic approximation theorem, [8]).
For any ∇G-admissible pair (f,Ω) there exists a generic pair (f1,Ω) such that (f,Ω) and (f1,Ω) are ∇G-homotopic.
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Lemma 3.5 ([8]).
If (f,Ω) is a ∇G-admissible pair then there exists a gradient G-map f1 : V → V such that (i) f1(x) = f(x) for x ∈ V \Ω
and (ii) (f1,Ω) is ∇G-admissible and generic.

Proof of Theorem 3.4. Let (f1,Ω) be a ∇G-admissible and generic pair from Lemma 3.5. Define G-homotopy
h : V × [0, 1]→ V as h(x, t) = (1−t)f(x) + tf1(x). Clearly the pair (h( · , t),Ω) is ∇G-admissible for all t ∈ [0, 1].
Definition 3.6.Let (f,Ω) be a ∇G-admissible pair. The G-equivariant gradient degree of (f,Ω) is an element of the Euler ring U(G)defined as deg∇G(f,Ω) = ∑

(H)∈Φ(G)n(H)uG(H),
where

n(H) = ∑
(Gxi )=(H)σ (Gxi)

and Gxi are the disjoint orbits of type (H) in f−11 (0) ∩Ω. Here (f1,Ω) is any generic pair G-homotopic to (f,Ω).
Theorem 3.7 ([8]).
If two generic pairs (f0,Ω) and (f1,Ω) are G-homotopic, then deg∇G(f0,Ω) = deg∇G (f1,Ω).
Example 3.8.Let Ω = {(x, y) ∈ R2 : 1/2 < x2 + y2 < 3/2} and the action of G = SO(2) on R2 be given by

γθ = [ cosθ − sinθsinθ cosθ ] ∈ SO(2), θ ∈ [0, 2π), (4)
γθ(x, y) = (x cos kθ − y sin kθ, x sin kθ + y cos kθ), k ∈ N.

Hence V is the plane R2 with rotations by the angle kθ. Define φ : V → R by the formula φ(x, y) = −(x2+y2−1)2. Itis easy to check that φ is an SO(2)-invariant function, and the pair (∇φ,Ω) is ∇G-admissible. Each point except theorigin has an orbit type (Zk ), that is V(Zk ) = R2 \ {(0, 0)}. The map f = ∇φ vanishes at the point (x0, y0) = (1, 0), andconsequently the whole orbit G(1, 0) ≈ S1 is the set of zeros of f . The derivative at (1, 0) is a map (u, v) 7→ (−8u, 0)with the kernel kerDf(1, 0) = span([0, 1]) which is exactly the tangent space T(1,0)G(1, 0). The Morse index of G(1, 0)is 1 and hence σ (G(1, 0)) = −1. Directly from the definition one obtains deg∇G(f,Ω) = −uG(Zk ).
4. Equivariant Conley index

With a locally Lipschitz vector field v : Rn → Rn one can associate a local flow by integration of a differential equation.More precisely, through each point x ∈ Rn there passes a maximal integral curve φx : (αx , βx ) → Rn satisfying φ̇x (t) =
v(φx (t)) and φx (0) = x. Setting D = {(t, x) ∈ R×V : t ∈ (αx , βx )} and φ(t, x) = φx (t) we obtain a local flow on V , thatis (i) D ⊂ R×V is an open neighbourhood of {0}×V and φ : D → Rn is continuous; (ii) if (t, x) ∈ D and (s, φ(t, x)) ∈ Dthen (s+ t, x) ∈ D and φ(s, φ(t, x)) = φ(s+ t, x); (iii) φ(0, x) = x.We will be concerned with an equivariant vector field.
Lemma 4.1 (cf. [5]).
Let V be a representation of a compact Lie group G and v : V → V a G-equivariant, locally Lipschiz vector field. Then
the differential equation

ẋ(t) = v(x(t))
defines a local G-flow. That is: (i) the set D ⊂ R×V is a G-set, i.e., if (t, x) ∈ D then (t, gx) ∈ D for all g ∈ G;
(ii) φ(t, gx) = gφ(t, x) for all (t, x) ∈ D and g ∈ G.
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From now on we will consider local flows generated by vector fields at least of class C 1. Without loss of generality, forour purposes, we can assume that the equation ẋ = v(x) generates a flow, i.e., D = R×V .We will give some basic definitions and notions which are necessary for the definition of the Conley index in the presenceof an action of a Lie group G. For the classical notion of the Conley (homotopy) index we refer the reader to [2]. Let φbe a G-flow on V . For a G-set X ⊂ V the maximal invariant subset under the flow φ in X is given by
inv(X ) = {x ∈ X : φt(x) ∈ X for all t ∈ R}.

Since X is G-invariant so is inv(X ). If X is in addition compact and inv(X ) ⊂ intX , then X is called an isolating
neighbourhood and inv(X ) is an isolated invariant set. For an isolated invariant set there exists a G-index pair (N, L),i.e., the pair of compact G-invariant subsets of V such that

(i) the closure of N \ L is an isolating neighbourhood;
(ii) L is positively invariant rel. N; and

(iii) if x ∈ N and φ[0,t](x) 6⊂ N for some t > 0, then φs(x) ∈ L for some s ∈ [0, t].
For the existence of a G-index pair we refer to [6, 8].The G-homotopy type of the quotient N/L does not depend on the particular choice of the index pair. Recall that N/Lis obtained from N by collapsing all points in L to the point [L] which is distinguished in N/L. The action of G on N/Lis induced from the action on N and g[L] = [L] for all g ∈ G.Assume X ⊂ V is an isolated neighbourhood of a flow φ.
Definition 4.2.The G-equivariant Conley index of S = inv(X ), denoted by hG(S) (or sometimes hG(X,φ), to indicate the isolatingneighbourhood and the flow), is defined to be a G-homotopy type of a pointed G-space N/L, where (N, L) is an arbitrary
G-index pair for S. That is, hG(X,φ) = [N/L]G .
In fact, this index is a homotopy type of some finite G-CW-complex, cf. [22]. The equivariant Conley index has the sameproperties as the ordinary one. In particular the continuation property holds. We say that φ : R×V × [0, 1] → V is acontinuous family of G-flows on V if φλ : R×V → V is a G-flow on V for all λ ∈ [0, 1], where φλ(t, x) = φ(t, x, λ).Notice that we do not restrict the class of flows to the gradient one if it is not specified otherwise.
Proposition 4.3.
Suppose that X is a compact G-subset of V and φ is a continuous family of G-flows on V . If X is an isolating
neighbourhood for φλ, λ ∈ [0, 1], then hG(X,φ0) = hG(X,φ1).
Example 4.4.Let G = SO(2) and V be the real plane with the action of G given by rotation, i.e., for

γθ = [ cosθ − sinθsinθ cosθ ] ∈ G, θ ∈ [0, 2π),
γθ(x, y) = (x cos kθ − y sin kθ, x sin kθ + y cos kθ), k ∈ N.

Consider the G-flow on V given by the vector field
v(x, y) = (x (x2+y2−1), y(x2+y2−1)).

The set N = {(x, y) ∈ V : 1/2 ≤ x2+y2 ≤ 3/2} is an isolating G-invariant neighbourhood and inv(N) = {(x, y) ∈ V :
x2+y2 = 1}. The index pair can be chosen to be (N, ∂N), see Figure 1(a). The Conley index is a G-homotopy type ofa G-complex consisting of one 0-cell of orbit type (G) (as a distinguished point with the trivial action) and one 1-cellof orbit type (Zk ). According to formula (2) we have u(hG(N)) = −uG(Zk ). Notice that we do not take into account thedistinguished point.
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Equivariant Morse equation

(a) (b)
Figure 1.

We give another simple example that shows the difference between the classical Conley index and the equivariant one.
Example 4.5.Let G = Z2 = {e, γ} and let V equal R2 with the action given by γ(x, y) = (x,−y). Let φ be a G-flow given by thesystem of two equations

ẋ = sin x, ẏ = −y cos x.
It is easily seen that (kπ, 0), k ∈ Z, are equilibrium points. These are isolated, φ- as well as G-invariant sets of the flowand the equivariant Conley index is well defined. Let M2 = (0, 0) (red dot) and M1 = (π, 0) (green dot). The equilibria(kπ, 0) for k even (resp. odd) are qualitatively the same. The index pairs for M2 and M1 are shown in the Figure 1(b).The indices of M2 and M1 are [SRt ]Z2 and [SRa ]Z2 respectively, where SRt (resp. SRa ) is a compactification of the realline with the trivial (resp. antipodal) action. Since u(SRa ) = u

Z2
Z2 − u

Z2
E and u(SRt ) = −uZ2

Z2 , these indices turns out to bedifferent.
5. Equivariant Morse equation

Now and subsequently let H∗ denote the Alexander–Spanier cohomology with coefficients in some principal idealdomain R . This particular cohomology theory is chosen because it satisfies the following strong excision property:Given two closed pairs (X, A) and (Y ,B) in V and a closed continuous map f : (X, A) → (Y ,B) such that f induces abijection of X \ A onto Y \ B, one has an isomorphism f∗ : Hq(Y ,B;R)→ Hq(X, A;R) for all q ≥ 0. For a more generalstatement of this fact we refer to the book by Spanier [21, Theorem 6.6.5].If E is an R-module then we set rankE = dim(E⊗RQR ), whenever dim(E⊗RQR ) is finite. Otherwise rankE =∞. Here
QR stands for the field of quotients of the ring R . The comparison of the classical Euler characteristic with its equivariantanalogue u(X ) (defined merely for a homotopy type of G-complexes, see Proposition 2.7), being an element of the Eulerring U(G), leads us to the conclusion that the k-th Betti numbers of X ∈ F(G) should be the collection of the numbersrankHk(X (H)/G, X>(H)/G), where (H) ∈ Φ(G). Since we are concerned with the G-index which is determined by anarbitrary G-invariant index pair, the following definition seems to be reasonable.
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M. Styborski

Definition 5.1.Let (X, A) be a compact pair of G-invariant subsets of V . The numbers
βq(H)(X, A) = rankHq(X (H)/G, (X>(H)∪A(H))/G), (H) ∈ Φ(G),

are called the q-th Betti numbers of the pair (X, A).
For an abbreviation we put (XHA) = (X (H)/G, (X>(H)∪A(H))/G). Assuming that the modules Hq(XHA) are of finite rank,we define the formal power series taking values in U(G):

PG(t, X, A) = ∑
(H)∈Φ(G)

( ∞∑
q=0 β

q(H)(X, A)tq) uG(H).

If βq(H)(X, A) = 0 for q sufficiently large and for all (H) ∈ Φ(G), then we call it the Poincaré polynomial of the pair (X, A).Notice that PG( · , X, A) can be viewed as an element of the polynomial ring U(G)[t].
Definition 5.2.Let S be an isolated invariant set of a G-equivariant flow φ. Define the Poincaré polynomial of the G-index of S as
PG(t, hG(S)) = PG(t, N, L), where (N, L) is an arbitrary index pair for S.
Let φt be a flow on X . Recall that the α-limit and the ω-limit sets of a point x ∈ X are defined as follows:

α(x) = ⋂
t≥0 φ

(−∞,−t](x) and ω(x) = ⋂
t≥0 φ

[t,+∞)(x).
Definition 5.3.A Morse decomposition of an isolated invariant set S is a finite collection M(S) = {Mi : 1 ≤ i ≤ l} of subsets Mi ⊂ S,which are disjoint, compact and invariant, and which can be ordered, (M1,M2, . . . ,Ml), so that for every x ∈ S\⋃1≤j≤lMjthere are indices i < j such that ω(x) ⊂ Mi and α(x) ⊂ Mj .
Recall that for compact sets X ⊃ Y ⊃ Z there exists a connecting homomorphism δq : Hq(Y , Z ) → Hq+1(X, Y ), and along exact sequence of the triple (X, Y , Z ):

. . . δq−1
−−−→ Hq(X, Y ) ıq−→ Hq(X, Z ) q−→ Hq(Y , Z ) δq−→ . . . ,

where ıq and q are homomorphisms induced by inclusions ı : (X, Z ) ↪→ (X, Y ) and  : (Y , Z ) ↪→ (X, Z ), respectively.The remainder of this section is devoted to the proof of the Equivariant Morse Equation, Theorem 1.1. In order to overcomedifficulties connected with definition of the Betti numbers, exposition is divided into several lemmas and propositions.
Lemma 5.4.
If N2 ⊃ N1 ⊃ N0 is a triple of compact G-sets, (H) ∈ Φ(G), then

H∗
(
N(H)1 /G, N

>(H)1 ∪ N(H)0
G

)
∼= H∗

(
N>(H)2 ∪ N(H)1

G , N
>(H)2 ∪ N(H)0

G

)
.
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Equivariant Morse equation

Proof. We are going to use the strong excision property of the Alexander–Spanier cohomology. Firstly we checkthat the pairs in question are closed. Indeed, for a closed G-subset N ⊂ V and a closed subgroup H ⊂ G onehas NH = N ∩ VH . Since VH is a linear subspace of V , VH is closed and so is NH . Further N(H) = GNH is closed,because the action of a compact Lie group is a closed map [1, Theorem 1.1.2]. The set of orbit types of a finite dimensionalrepresentation is always finite, hence N>(H) is closed as a finite sum of closed sets. Lastly, the set of orbits N/G endowedwith the quotient topology is closed since the projection N → N/G taking x into its orbit is closed [1, Theorem 1.3.1].Clearly, the inclusion
e : (N(H)1 /G, N

>(H)1 ∪ N(H)0
G

)
↪→
(
N>(H)2 ∪ N(H)1

G , N
>(H)2 ∪ N(H)0

G

)
is continuous and closed. Moreover, for each x ∈ (N(H)1 /G)\((N>(H)1 ∪N(H)0 )

/G
) one has e(x) = x. So the strong excisionproperty applies and the result follows.

Lemma 5.5.
Assume that the bottom row of the diagram

ı∗−−−−−→ H∗(X, Z ) ξ∗∗−−−−−→ H∗(A,B) δ∗η∗−−−−−→ H∗+1(X, Y ) ı∗+1
−−−−−→∥∥∥ ξ∗

x∼= ∥∥∥
ı∗−−−−−→ H∗(X, Z ) ∗−−−−−→ H∗(Y , Z ) δ∗−−−−−→ H∗+1(X, Y ) ı∗+1

−−−−−→

is exact, ξ∗ : H∗(Y , Z )→ H∗(A,B) is an isomorphism and η∗ = (ξ∗)−1. Then the upper row is exact.

Proof. Let a ∈ Im ı∗. Then a ∈ ker ∗ is equivalent to a ∈ ker(ξ∗∗) since ξ∗ is an isomorphism. If b lies in Im(ξ∗∗)then b = ξ∗∗a for some a ∈ H∗(X, Z ) and ∗a = η∗b which means that η∗b ∈ ker δ∗ and b ∈ ker δ∗η∗. This reasoningcan be reverted. And at last, if c = δ∗η∗b for some b, then c ∈ Im δ∗ so c ∈ ker ı∗+1.
The following lemma is a consequence of a well-known theorem from linear algebra. The proof can be found for instancein [18].
Lemma 5.6.
If E f−→ F g−→ G is an exact sequence of homomorphisms of R-modules, then rankF = rank Im f + rank Img.

Proposition 5.7.
If X0 ⊂ X1 ⊂ . . . ⊂ Xm is a filtration of compact G-sets, then there exists QG(t) of the form (1), with all ρq(H) ≥ 0 and
such that

m∑
j=1 PG(t, Xj , Xj−1) = PG(t, Xm, X0) + (1+ t)QG(t).

Proof. Fix (H) ∈ Φ(G). By Lemmas 5.4 and 5.5 we have a long exact sequence
. . .

δq−1(H) ηq−1(H)−−−−−→ Hq(XjHXj−1) ıq(H)−−→ Hq(XjHX0) ξq(H)q(H)−−−−→ Hq(Xj−1HX0) → . . . (5)
Here ı(H) and (H) are suitable inclusions, ξq(H) stands for the isomorphism

Hq(Xj−1HX0) ∼= Hq

(
X>(H)
j ∪ X (H)

j−1
G ,

X>(H)
j ∪ X (H)0

G

)
,
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M. Styborski

and ηq(H) is its inverse. Set ρq(H)(Xj , Xj−1, X0) = rank Im(δq(H)ηq(H)). The exactness of (5) and Lemma 5.6 imply that
βq(H)(Xj−1, X0) = ρq(H)(Xj , Xj−1, X0) + rank Im ξq(H)q(H) = ρq(H)(Xj , Xj−1, X0) + βq(H)(Xj , X0)− rank Im ıq(H)= ρq(H)(Xj , Xj−1, X0) + βq(H)(Xj , X0)− βq(H)(Xj , Xj−1) + ρq−1(H) (Xj , Xj−1, X0).

Consequently, βq(H)(Xj , Xj−1) + βq(H)(Xj−1, X0) = βq(H)(Xj , X0) + ρq(H) + ρq−1(H) . Multiplying this equality by tq and summingover q ≥ 0 and (H) ∈ Φ(G) one has
PG(t, Xj , Xj−1) + PG(t, Xj−1, X0) = PG(t, Xj , X0) + (1+ t) Q̂G(t, Xj , Xj−1, X0), (6)

where
Q̂G(t, Xj , Xj−1, X0) = ∑

(H)∈Φ(G)
( ∞∑

q=0 ρ
q(H)(Xj , Xj−1, X0)tq)uG(H).

Summing (6) over 2 ≤ j ≤ m and setting QG(t) = m∑
j=2 Q̂G(t, Xj , Xj−1, X0) we obtain the desired result.

Definition 5.8.Let X be an isolating neighbourhood of a G-flow on V and (M1, . . . ,Mm) be a G-invariant Morse decompositionof S = inv(X ). A G-invariant index filtration is a sequence N0 ⊂ N1 ⊂ . . . ⊂ Nm of compact G-invariant subsets of Vsuch that (Nk , Nk−1) is a G-index pair for Mk and (Nm, N0) is an index pair for S.
Proposition 5.9.
Every G-invariant Morse decomposition admits a G-invariant index filtration.

Proof. Let us forget for a while that a Morse decomposition has a group symmetry. It is well known that every Morsedecomposition admits an index filtration N0 ⊂ . . . ⊂ Nm, cf. for instance [16]. Averaging a given filtration over group
G we obtain a G-invariant index filtration for a G-invariant Morse decomposition. The compactness of Ni, 0 ≤ i ≤ m,survives since G is assumed to be compact [1, Corollary 1.1.3].
The proof of Morse Equation (Theorem 1.1) is a straightforward consequence of Propositions 5.7 and 5.9.
Example 5.10.Consider again the Hamiltonian flow from Example 4.5. Let S be the set consisting of equilibria M1,M2 and connectingthe orbit between them. The setsM1 andM2 form the Morse decomposition of S. The corresponding Poincaré polynomialsare of the form

PZ2 (t, hZ2 (S)) = tuZ2
E , PZ2 (t, hZ2 (M1)) = u

Z2
Z2 + tuZ2

E , PZ2 (t, hZ2 (M1)) = tuZ2
Z2 ,

and one can see the relation
PZ2 (t, hZ2 (M1)) + PZ2 (t, hZ2 (M2)) = PZ2 (t, hZ2 (S)) + (1+ t)uZ2

Z2 .

5.1. Poincaré polynomial of a critical orbit

Recall that if φ : M → R is a smooth function defined on compact closed Riemannian manifold, then the point p ∈ M iscalled critical if∇φ(p) = 0. We say that p ∈ M is a nondegenerate critical point if the Hessian of φ at p is nonsingular.In this case the index of φ at p, denoted by indφ(p) is the dimension of the maximal subspace of TpM on which theHessian is negative definite. In other words, this is the number of negative eigenvalues of the Hessian, counting with
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Equivariant Morse equation

multiplicity. It is easy to see that {p} is an isolated invariant set of a flow given by ẋ = −∇φ(x) and the Conley indexof {p} is a homotopy type of pointed sphere of dimension indφ(p). In consequence P(t, h({p})) = tindφ (p), cf. [14]. Weexpect a similar result in the equivariant case.In this section we are going to calculate the Poincaré polynomial of a critical orbit of a G-invariant function φ : V → R,see Proposition 5.16. In order to do this, we need to impose some nondegeneracy condition.
Definition 5.11.Let φ : V → R be a smooth G-invariant function.• The orbit Gx is called a critical orbit of φ, if ∇φ(x) = 0 (and consequently, for each y ∈ Gx, ∇φ(y) = 0).• The critical orbit Gx of φ is said to be hyperbolic, if Gx is a regular zero orbit of ∇φ, cf. Definition 3.2.
Proposition 5.12 ([1, p. 4]).
Let G be a compact group and H a closed subgroup of G. Then gHg−1 = H iff gHg−1 ⊂ H.

Corollary 5.13.
Let x ∈ V , H = Gx and Sx be a slice at x. If Q ⊂ Sx ∩ V(H), then each point of Q is stationary under H.

Proof. Let y ∈ Q. By the slice theorem [15, p. 184] we see that Gy ⊂ H. Since Gy and H are conjugate, there exists
g ∈ G such that gHg−1 = Gy ⊂ H. Proposition 5.12 implies that Gy = H.
Lemma 5.14.
Let x ∈ V , H = Gx and Sx be a slice at x. If Q ⊂ Sx ∩ V(H), then (G×HQ)(H) = (G/H)×Q and (G×HQ)>(H) = ∅.
Proof. By the definition G×HQ is a homogenous space of an action of the group H on G×Q defined by
h(g, x) = (gh−1, hx). Since Q ⊂ Sx ∩ V(H) we have h(g, x) = (gh−1, x) so the quotient space is (G/H)×Q. We claimthat (G/H)×Q ⊂ V(H). Indeed, both Q and G/H ≈ Gx are contained in V(H), hence h(Hg, q) = (Hgh−1, hq) = (Hg, q)for h ∈ H, that is (G/H)×Q ⊂ V (H). If there existed K ! H such that k(Hg, q) = (Hg, q) for all k ∈ K , then
Hg, q ∈ V (K ) and it would be a contradiction, since G/H and Q ⊂ V(H). The result follows.
Definition 5.15.We say that a G-invariant subset X0 of a G-set X is a strong G-deformation retract of X if there exists a G-homotopy
r : X × [0, 1]→ X such that the following properties hold true:• r(x, 0) = x for all x ∈ X ;• r(x, t) = x for all (x, t) ∈ X0× [0, 1];• r(x, 1) ∈ X0.
If π : E → M is a G-vector bundle, then M is a strong G-deformation retract of E . Indeed, we identify M with azero section of a bundle π : E → M, that is M = {(x, v) ∈ E : v = 0 ∈ Ex}. The homotopy is given by the formula
r((x, v), t) = (x, (1−t)v).
Proposition 5.16.
Suppose that (f,Ω) is a ∇G-admissible and generic pair. Let φ denotes the flow generated by ẋ = −f(x) and Gx0 is an
isolated zero orbit of f such that Gx0 = invφ(Ω). Then

PG(t, hG(Gx0)) = tdimW−x0 uG(H),
where (H) = (Gx0 ). If Gx0 is a principal regular zero orbit then the assumption about genericity can be removed. Recall
that W−

x0 stands for unstable subspace of −Df(x0).
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M. Styborski

Proof. (a) Suppose that (f,Ω) is a ∇G-admissible and generic. We shall construct an index pair for Gx0 viasuitable choice of the index pair in the fiber of the bundle over an orbit Gx0. Let Ey = (TyGx0)⊥. By the slice theorem[15, p. 184] the projection p : E → Gx0, where E = {(x, v) ∈ Gx0×V : v ∈ Ex}, is a smooth vector bundle isomorphicto π : G×HEx0 → Gx0. Recall that Ex0 is an H-representation space. The subspace Ex0 ⊂ V splits into E+
x0⊕E−x0 , thestable and unstable subspaces corresponding to positive and negative spectrum of Df(x0). Since x0 is a nondegeneratecritical point, there exists an open H-neighbourhood U of zero in Ex0 such that the flow is given in local H-coordinates

ψ : U → Ex0 by the system of equations
ẋ+ = A1x+ + g1(x) and ẋ− = A2x− + g2(x), x = (x+, x−) ∈ E+

x0⊕E−x0 ,

for |x| = max{|x+|, |x−|} ≤ 2 with g1,2 and Dg1,2 vanishing at zero, i.e. |g1,2(x)| = o(|x|) as |x| → 0. Moreover, onecan choose the coordinates so that |g1,2(x)| and ‖Dg1,2(x)‖ are as small as we want, cf. Appendix. The linear parts arechosen so that there exists λ > 0 for which the following estimations hold:
〈A1x+, x+〉 ≤ −λ|x+|2, 〈A2x−, x−〉 ≥ λ|x−|2.

If so, let B = {x ∈ Ex0 : |x| ≤ 1} and B− = {x ∈ B : |x−| = 1}. Then N = ψ−1(B) and L = ψ−1(B−) is anindex pair for the system on Ex0 . Finally, the index pair (X, A) for Gx0 is given by X = G×HN and A = G×H L.We shall use the assumption that (f,Ω) is generic. It implies that the normal direction for V(H) is attracting. Set
B0 = {(x+, x−) ∈ B : |x+| = 0} and B−0 = {(x+, x−) ∈ B− : |x+| = 0} and next N0 = ψ−1(B0) and L0 = ψ−1(B−0 ). There isa strong H-deformation retract of (N, L) onto (N0, L0), hence by the functoriality property of the twisted product the pair
X0 = G×HN0 and A0 = G×H L0 is a strong G-deformation retract of (X, A). The sets N0 and L0 are contained in V(H)and by Lemma 5.14 we have

Hq(XHA) ∼= Hq(X0HA0) ∼= Hq(((G/H)×N0)/G, ((G/H)×L0)/G) ∼= Hq(N0, L0) = {
R for q = k ,0 otherwise,

since the pair (N0, L0) is a homological pointed k-sphere, where k = dimW−
x0 a dimension of a subspace composed bythe repelling directions, that is the number of negative eigenvalues of Df(x0). Hence PG(t, hG(Gx0)) = tkuG(H).

(b) Suppose now that (f,Ω) is not a generic pair, but Gx0 is a regular zero orbit and (H) is a principal orbit type,
H = Gx0 . Then one can find an open G-subset Ω0 ⊂ Ω0 ⊂ Ω such that Gx0 = invφ(Ω0) and Ω0 ⊂ V(H). The resultfollows by using the same arguments as above.
Corollary 5.17.
Let (f,Ω) be a ∇G-admissible and generic pair, φ a flow generated by ẋ = −f(x) and Gx0 an isolated zero orbit of f
such that Gx0 = invφ(Ω). Then

u(hG(Gx0)) = σ (Gx0)uG(H),
where (H) = (Gx0 ). The formula remains valid if (f,Ω) is a ∇G-admissible pair and Gx0 is a principal regular zero orbit.

Proof. By the above proposition, u(hG(Gx0)) = P(−1, X, A) = (−1)dimW−x0 uG(H) = σ (Gx0)uG(H).
Corollary 5.18.
Let (f,Ω) be a ∇G-admissible generic pair, φ a flow generated by ẋ = −f(x), and Gx0 an isolated zero orbit of f such
that Gx0 = invφ(Ω). Then u(hG(Gx0)) = deg∇G(f,Ω). The formula remains valid if (f,Ω) is a ∇G-admissible pair and
Gx0 is a principal regular zero orbit.

The G-index of Conley is additive in the following sense.
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Equivariant Morse equation

Proposition 5.19.
If S is an isolated invariant G-set, and S is a disjoint union S1 ∪ S2 of isolated invariant G-sets, then

PG(t, hG(S)) = PG(t, hG(S1)) + PG(t, hG(S2)).
Proof. Let (X, A) (resp. (Y ,B)) be a G-index pair for S1 (resp. S2). Since S1 and S2 are isolated one can chose thosepair to be disjoint. It is clear that (X ∪ Y , A ∪ B) is a G-index pair for S. Since the pairs in question are disjoint and
G-invariant, one has

Hq((X ∪ Y )H (A ∪ B)) = Hq
(
X (H)/G ∪ Y (H)/G, (X>(H) ∪ A(H))/G ∪ (Y>(H) ∪ B(H))/G).

Therefore, by the fact that pairs (XHA) and (YHB) are disjoint, we conclude that
Hq((X ∪ Y )H (A ∪ B)) ∼= Hq(XHA)⊕Hq(YHB).

The above isomorphism implies that rankHq((X ∪ Y )H (A ∪ B)) = rankHq(XHA) + rankHq(YHB) and the result follows(according to the fact that addition in U(G) is coordinatewise, cf. Proposition 2.7).
5.2. Comparison of the equaivariant gradient degree and the equivariant Conley index

In [8], Gęba shows that the gradient equivariant degree of a ∇G-admissible pair (f,Ω) is equal to the class in U(G)representing the homotopy type of the equivariant Conley index hG(Ω, φf ), where φf stands for the flow generated by
ẋ = −f(x). This result is interesting from a theoretical point of view as well as applications, see [10]. We are going toobtain this equality using the equivariant Morse equation.
Theorem 5.20 (Gęba [8]).
Let (f,Ω) be a ∇G-admissible pair and let Ω be an isolating G-invariant neighbourhood of a flow φf generated by the
equation ẋ = −f(x), S = inv(Ω). Then u(hG(S)) = deg∇G(f,Ω).
Proof. The proof of the theorem is divided into two parts. The first one is almost word for word rewritten from [8].
(a) We will show that S can be continued to an isolated invariant G-set of a flow given by generic function. Bythe compactness of ∂Ω one can choose T > 0 so that for any x ∈ ∂Ω there is t ∈ [−T, T ] and φ(t, x) /∈ Ω. DefineΩ1 = Ω \φ(∂Ω× [−T, T ]). It is clear that (f,Ω1) is ∇G-admissible. By Lemma 3.5 there is a gradient G-map f1 : V → Vsatisfying f1(x) = f(x) for all x ∈ V \Ω1 with the pair (f1,Ω1) being generic. Define the homotopy h : V × [0, 1]→ V bythe formula h(x, λ) = (1−λ)f(x) + λf1(x) and let φλ stand for the flow generated by −h( · , λ). Notice that h(x, λ) = f(x)for all x ∈ V \ Ω1, that is φλ = φ on the set ∂Ω× [−T, T ]. Therefore Ω is an isolating neighbourhood for the flow φλfor λ ∈ [0, 1]. The continuation property of the equivariant Conley index applies and one has hG(S1) = hG(S), where
S1 = invφf1 (Ω).
(b) Since the pair (f1,Ω) is generic, the set S1 is composed of regular zero orbits Gx1, . . . , Gxm of the function f1 andflow lines between them. Moreover, the collection of orbits M = (Gx1, . . . , Gxm) forms a Morse decomposition of S1. Wechoose an ordering of M given by the potential φ1 : Ω→ R, f1 =∇φ1, i.e. we order the critical orbits in such a mannerthat φ1(Gxi) < φ1(Gxj ) whenever i > j . By the equivariant Morse equation,

u(hG(S1)) = PG(−1, hG(S1)) = m∑
k=1 PG(−1, hG(Gxk , φf1 ))

For 1 ≤ k ≤ m take open G-subsets Ωk ⊂ Ω such that Ωi∩Ωj = ∅ and Ωk is an isolating neighbourhood for an isolatedcritical zero orbit Gxk . By Corollary 5.17 one has PG(−1, hG(Gxk , φf1 )) = deg∇G(f1,Ωk ). Hence
u(hG(S)) = u(hG(S1)) = m∑

k=1 deg∇G(f1,Ωk ) = deg∇G(f1,Ω) = deg∇G(f,Ω)
by the additivity property and the homotopy invariance of the gradient equivariant degree, cf. [17, Theorem 3.2].
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M. Styborski

Example 5.21.As an example we compute the gradient equivariant degree of the pair (−id, B), where −id : V → V , V is an orthogonalfinite dimensional representation of G = SO(2) = {γθ : 0 ≤ θ < 2π} (γθ is given by (4)) and B stands for the unit ballin V . The result coincides with the calculation made by Rybicki [20, Lemma 4.1]. Let us introduce the following irreduciblerepresentation of G. The notation is borrowed from [20]. For m ∈ N let R[1, m] = (R2, ρm), where ρm : G → O(2) is givenby
ρm(γθ)(x, y) = (x cosmθ − y sinmθ, x sinmθ + y cosmθ).For k ∈ N set R[k,m] = ⊕k
i=1 R[1, m]. Similarly we define R[k, 0] = ⊕k

i=1 R[1, 0], where R[1, 0] stands for trivialrepresentation on the real line. Each orthogonal finite dimensional representation of G can be represented, up toequivalence, as V =⊕p
i=0 R[ki, mi], where ki, mi ∈ N for 1 ≤ i ≤ p, k0 ∈ N ∪ {0} and 0 = m0 < m1 < . . . < mp.The multiplicative structure of U(G) is well known and can be expressed explicitly, cf. [20]. For convenience we denotethe trivial subgroup of G as Z1. If a = a0uGG +∑∞

j=1 ajuGZj and b = b0uGG +∑∞
j=1 bjuGZj then

ab = a0b0uGG + ∞∑
j=1 (a0bj+ajb0)uGZj . (7)

Notice that B is an isolating G-neighbourhood for the flow defined by the identity vector field and the sphere S = ∂Bis an exit set. Let SV = B/S with the G-action induced from V . Hence, one has to compute u(SV ). According to the
G-homeomorphism SV⊕W ≈ SV ∧ SW and the formula (7),

u(SV ) = u
(
S⊕

p
i=0R[ki,mi ]) = p∏

i=0 u(SR[ki,mi ]) = p∏
i=0 u(SR[1,mi ])ki .

Since SR[1,mi ] is composed of, for instance, one 0-cell of orbit type G and one 1-cell of orbit type Zmi , the equality
u(SR[1,mi ]) = uGG − uGZmi

holds. Also u(SR[1,0]) = −uGG , therefore
u(SV ) = (−1)k0uGG p∏

i=1
(
uGG − uGZmi

)ki = (−1)k0uGG p∏
i=1
(
uGG − kiuGZmi

) = (−1)k0(uGG + p∑
i=1 kiu

G
Zmi

)
.

By Theorem 5.20 we obtain deg∇G(−id, B) = (−1)k0(uGG +∑p
i=1 kiuGZmi ).

6. Multiplicity results

As an application of the equivariant Morse equation we shall prove a simple multiplicity result in the critical pointproblem. Before we proceed to the result’s statement we briefly describe some special action of the cyclic group.Let p be a prime number and k1, . . . , kn integers relatively prime to p. Consider an action of Zp on R2n ∼= Cn generatedby the rotation
ρ(z1, . . . , zn) = (e2πik1/pz1, . . . , e2πikn/pzn). (8)

This action is free. Any nonzero z ∈ Cn has a nonzero coordinate zj and then e2πiskj /pzj 6= zj for 0 < s < p since
kj is relatively prime to p. The group acts via isometries hence the sphere S2n−1 is a Zp-invariant set. The orbit space
S2n−1/Zp is called the lens space, denoted by Lp = Lp(k1, . . . , kn). In particular for p = 2 we have L = RP2n−1. Theabove construction can be performed for an arbitrary integer p > 1. We choose p prime to have a structure of a field inthe set Zp, as a set of coefficients for a cohomology theory. The cohomology groups of L with Zp coefficients are knownand they are [11, Example 3.41, p. 251]

H̃q(Lp;Zp) ∼= {0 for q = 0,
Zp for 1 ≤ q ≤ 2n − 1.
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Equivariant Morse equation

Proposition 6.1.
Assume that V = R2n is a Zp-representation with the action given by (8) and f : V → R is a smooth Zp-invariant
function. Suppose that(i) there exists a Zp-isolating neighbourhood X0 such that 0 ∈ S0 = inv(X0) and PZp

(
t, hZp (S0)) = u

Zp
Zp ;(ii) f(x) = −|x|2/2 + φ∞(x), in a neighbourhood of the infinity and ∇φ∞ is bounded.

If f has only a finite number of critical orbits, say {Zpx0, . . . ,Zpxm}, and all of them are hyperbolic, then there are at
least 2n of them. Moreover, (Zp)xk = E (E stands for the trivial subgroup) for 1 ≤ k ≤ 2n (2np critical points) and each
number in the set {1, . . . , 2n} is the Morse index of some critical point.

Proof. Consider the negative gradient Zp-flow φf of ẋ = −f(x). Let Dρ(V ) (resp. Sρ(V )) stand for the disk (sphere)in V of radius ρ > 0. It follows from (ii) that DR (V ) is a Zp-isolating neighbourhood for sufficiently large R , and(X, A) = (DR (V ), SR (V )) is a Zp-index pair for this flow. Notice that XE /Zp ≈ (Lp× [0, 1])/(Lp×{1}) = CLp is a coneover Lp and (XZp ∪AE )/Zp ≈ (Lp×{0})∪̇(Lp×{1}) = ĈLp is a disjoint union of the bottom and the top of the cone. Onehas
Hq(CLp, ĈLp;Zp) ∼= Hq(S(Lp)∨S1, {pt}; Zp) ∼= {0 for q = 0,

Zp for 1 ≤ q ≤ 2n.
It is easily seen that Hq(XZp/Zp, (X>Zp ∪AZp )/Zp) ∼= Hq(S0, {pt}) ∼= Zp for q = 0 and is zero otherwise. Thus thePoincaré polynomial of the Zp-Conley index of S = inv(X ) is

PZp (t, hZp (S)) = u
Zp
Zp + (t2n + t2n−1 + · · ·+ t

)
u
Zp
E .

Since all equilibria are hyperbolic they form together with S0 a Morse decomposition (S0,M1, . . . ,Mm) of S. All nonzeroorbits are principal, hence by Proposition 5.16, the Poincaré polynomial of hZp (Mi) is tquZpE provided that q is the Morseindex of Mi. Denote by ck the number of critical orbits of index k . By the equation (EME) there are nonnegative integers
a0, a1, . . . such that 2n∑

k=0 ck t
k = 2n∑

k=1 t
k + a0 + 2n∑

k=1 (ak−1+ak )tk .
That is,

c0 + 2n∑
k=1 ck t

k = a0 + 2n∑
k=1 (ak−1+ak+1)tk .

Since a0 might be zero we have no information about c0, but ck ≥ 1 for k = 1, . . . , 2n.
Remark 6.2.The assumption (i) of the above proposition can be achieved by the following: f(x) = |x|2/2 + φ0(x), in a neighbourhoodof zero, |∇φ0(x)| = o(|x|) as x → 0. Indeed, such condition implies that the origin is a critical point of f , and S0 = {0}is an isolated invariant set. The Zp-index pair for S0 is given by (Dr(V ), ∅), where r is sufficiently small. The pair(
DE
r /Zp, D

Zp
r /Zp

) is homotopy equivalent to the pointed one point space and Hq(DZp
r /Zp, ∅

) ∼= Zp only for q = 0. Hence
PZp (t, hZp (S0)) = u

Zp
Zp .

In the next proposition, let G = SO(2).
Proposition 6.3.
Let V ∼= R[n+1, 1] be a G-representation. Assume that f : V → R is a smooth G-invariant function and(i) there exists a G-isolating neighbourhood X0 such that 0 ∈ S0 = inv(X0) and PG(t, hG(S0)) = uGG ;(ii) f(x) = −|x|2/2 + φ∞(x) in a neighbourhood of infinity and ∇φ∞ is bounded.
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If f has only a finite number of critical orbits, say {Gx0, . . . , Gxm}, and all of them are hyperbolic, then there is at least
n+ 1 of them. Moreover, Gxk = E for 1 ≤ k ≤ n+ 1 and each number in the set {2k − 1 : 1 ≤ k ≤ n+ 1} is a Morse
index of some critical orbit.

Proof. As in the preceding proof we take the pair (X, A) = (DR (V ), SR (V )) as a G-index pair for the G flowof −∇f . Here we have XE /G ≈ (CPn× [0, 1])/(CPn×{1}) = CCPn, a cone over the complex projective space CPnand (XG∪AE )/G ≈ (CPn×{0})∪̇(CPn×{1}) = ĈCPn is a disjoint union of the bottom and the top of the cone. Now,we are going to use the cohomology with integer coefficient. Thus
Hq(CCPn, ĈCPn; Z) ∼= Hq(S(CPn)∨S1, {pt}; Z) ∼= {

Z for q ≤ 2n+ 1 odd,0 for q even.
Moreover, Hq(XG/G, (X>G∪AG)/G) ∼= Z for q = 0 and is zero otherwise. Therefore

PG(t, hG(X )) = uGG + (t2n+1 + t2n−1 + · · ·+ t3 + t
)
uGE .

Applying the Morse equation one obtains the equality
c0 + n+1∑

k=1 c2k−1t2k−1 + n+1∑
k=1 c2k t2k = a0 + n+1∑

k=1 (a2k−2+a2k−1+1)t2k−1 + n+1∑
k=1 (a2k−1+a2k )t2k , (9)

where cj is the number of critical orbits of index j and a0, a1, . . . are nonnegative integers. From (9) we read offthat c0 ≥ 0, c2k ≥ 0 and c2k−1 ≥ 1 for 1 ≤ k ≤ n+ 1.
6.1. The general case of Z2-action

We turn now to the case of the most general Z2-representation. Let Rt (resp. Ra) be a one-dimensional Z2-representationwith the trivial (resp. antipodal) action. Let V be an orthogonal representation of a group Z2 isomorphic to R`
t⊕Rk

afor k ≥ 1. Notice that a Z2-equivariant isomorphism A : V → V is of the form At⊕Aa, where At : R` → R` and
Aa : Rk → Rk . Assume that f : V → R is an asymptotically quadratic Z2-invariant smooth function, i.e., there exist twosymmetric linear Z2-maps A0, A∞ : V → V such that
(1f ) f(x) = −〈A0x, x〉/2 + φ0(x), where ∇φ0(x) = o(|x|) as x → 0;(2f ) f(x) = −〈A∞x, x〉/2 + φ∞(x), where ∇φ∞(x) = o(|x|) as x → ∞.

Clearly, if f is asymptotically quadratic, then the map ∇f is asymptotically linear. Moreover, assume that
(3f ) f is nonresonance at zero and infinity, i.e., both maps A0 and A∞ are isomorphisms, and(4f ) f has only a finite number of critical Z2-orbits, {x1, gx1, . . . , xn, gxn}, and all of them are hyperbolic.

Consider a Z2-flow φf generated by −∇f . It follows, from the assumptions above, that the origin is an isolated invariantset for φf and there is another, maximal isolated invariant Z2-set T such that {0} ∈ T . There is a decomposition
V = V+0 ⊕V−0 (resp. V = V+

∞⊕V−∞) corresponding to the positive and negative spectrum of A0 (resp. A∞). Denote by
Dρ(V ) (resp. Sρ(V )) the disk (resp. sphere) in V of radius ρ. It is clear that the pair (Dr(V ), Sr(V+0 )) is a Z2-index pairfor {0} for r sufficiently small. Similarly, the Z2-pair (DR (V ), SR (V+

∞)), for R sufficiently large, is an index pair for T .To proceed further we will calculate the cohomology groups of the pair (D(V )ES(V )) using Z2 coefficients, that is thegroups
Hq(D(V )E/Z2, (D(V )Z2∪S(V )E)/Z2; Z2), q ≥ 0.
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Equivariant Morse equation

In order to visualize the geometry we need the concept of the join of two topological spaces. Since we are dealing withquite friendly spaces, as disks and spheres, the task is much simpler than it might be possible in general. Given twotopological spaces X and Y , the join X ∗ Y is the quotient space X ×Y × [0, 1]/ ∼, where the equivalence ∼ is givenby (x1, y, 0) ∼ (x2, y, 0) for x1, x2 ∈ X and y ∈ Y and (x, y1, 1) ∼ (x, y2, 1) for all x ∈ X and y1, y2 ∈ Y . We shalllist some properties of the join which will be needed later. (i) The join of X and a 0-sphere is homeomorphic to the(unreduced) suspension of X : S0∗X ' SX ; (ii) Sk ∗S` ' Sk+`+1. Since the join is associative it follows by inductionthat Sk ∗X ' Sk+1X , the (k+1)-folded suspension of X . The property (ii) implies in particular that if V and W are twofinite dimensional orthogonal G-representations, and S(V ) denotes the sphere {x ∈ V : |x| = 1}, then
S(V ⊕W ) ' S(V ) ∗ S(W ).

Notice that SV = D(V )/S(V ) ' S(V ⊕Rt), cf. [22, Lemma 4.2]. The disk D(V )E is (k+`)-dimensional and contains the
`-disk D(V )Z2 on which the group acts trivially. After collapsing the sphere S(V ) in D(V ) the `-disk D(V )Z2 becomesan `-sphere contained as a meridian in a sphere SV ' S(V ⊕Rt) = S(R`+1

t ⊕Rk
a) ' S(R`+1

t )∗S(Rk
a). The group acts onthe join S(R`+1

t ) ∗ S(Rk
a) as follows: g(x, y, t) = (gx, gy, t) = (x,−y, t) for all x ∈ S(R`+1

t ), y ∈ S(Rk
a) and t ∈ [0, 1].Factoring out by the action of Z2 we obtain S` ∗RPk−1. Collapsing away the circle S` (coming from the disk D(V )Z2 ) onecan see that the pair (D(V )ES(V )) is equivalent, up to a homotopy type, to the pair (S` ∗RPk−1, S` ). We will examinethe groups Hq(S` ∗RPk−1, S` ; Z2) using the long exact sequence of a pair. One has an exact sequence of reducedcohomology groups

. . . → Hq−1(S` ) → Hq(S` ∗RPk−1, S` ) → Hq(RPk−1∗S` ) → Hq(S` ) → . . .

for q ≥ 0. By the suspension isomorphism one obtains Hq(S` ∗RPk−1) ∼= Z2 for ` + 2 ≤ q ≤ ` + k . Substituting in theabove sequence q = ` + i for i = 2, . . . , k we obtain a short exact sequence
0 → H`+i(S` ∗RPk−1, S` ) ∼=−→ Z2 → 0.

If q = ` + 1, then 0 → Z2 ∼=−→ H`+1(S` ∗RPk−1, S` ) → 0.
Hence, for k ≥ 1 and ` ≥ 0 one has

Hq(D(V )ES(V )) ∼= {
Z2 q = ` + i for i = 1, 2, . . . , k,0 otherwise.

We also are interested in the cohomology of the pair (D(V ⊕U)ES(V )), where V is as above and U is an arbitrary
Z2-representation. By the following lemma one can reduce the task to the previous situation.
Lemma 6.4.
The pair (D(V ⊕U)ES(V )) is homotopy equivalent to the pair (D(V )ES(V )).
Proof. It suffices to show that the pairs (D(V ⊕U), S(V )) and (D(V ), S(V )) are Z2-homotopy equivalent. Identify
D(V ⊕U) with D(V )×D(U) via the natural Z2-homeomorphism. Define

p : (D(V )×D(U), S(V )) → (D(V ), S(V )) and q : (D(V ), S(V )) → (D(V )×D(U), S(V ))
by setting p(x, y) = x and q(x) = (x, 0). Clearly both p and q are Z2-equivariant, pq = id(D(V ),S(V )) and qp is homotopicwith id(D(V )×D(U),S(V )) via Z2-homotopy h(x, y, t) = (x, ty).
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Let us now go back to the computations of the indices of {0} and T . Suppose that V+0 = R`0
t ⊕Rk0

a and V+
∞ = R`∞

t ⊕Rk∞
a .The above considerations show that the Poincaré polynomials of the indices of {0} and T are of the form

PZ2 (t, hZ2 ({0}, φf )) = t`0uZ2
Z2 + (t`0+1 + · · ·+ t`0+k0)uZ2

E ,

PZ2 (t, hZ2 (T , φf )) = t`∞uZ2
Z2 + (t`∞+1 + · · ·+ t`∞+k∞)uZ2

E .

Notice that if x ∈ V is a nondegenerate critical orbit with isotropy group Z2 (i.e., in fact, is a critical point), then
PZ2 (t, hZ2 ({x})) = t`xuZ2

Z2 + (t`x+1 + · · ·+ t`x+kx )uZ2
E ,

where the numbers `x and kx are defined via the equality V+
x = R`x

t ⊕Rkx
a . On the other hand, for a nondegeneratecritical orbit {y, gy} with the isotropy group E one has PZ2 (t, hZ2 ({y, gy})) = tdimV+

y u
Z2
E , cf. Proposition 5.16. Here V+

x(resp. V+
y ) is the unstable subspace of a linear map −∇2f(x) (resp. −∇2f(y)). If (1f )–(4f ) are satisfied, then combiningall these data with the equation (EME) one obtains the following equalities:

t`0 + n∑
i=1 ait

`xi = t`∞ + (1+ t)Q1(t), (10)
k0∑
i=1 t

`0+i + Z(t) = k∞∑
i=1 t

`∞+i + (1+ t)Q2(t),
where Z,Q1,Q2 are some unknown polynomials with nonnegative integer coefficients. The numbers ai for 1 ≤ i ≤ n maybe one or zero. Notice that ai = 1 if xi is a critical orbit of orbit type Z2. It may happen that `xi = `xj for i 6= j .
Proposition 6.5.
Suppose that f : V → R is a smooth Z2-invariant function satisfying conditions (1f )–(4f ). If `∞ 6= `0, then f has at
least two nonzero critical points x, y ∈ V (two orbits of orbit type Z2). Additionally, one has estimations on the Morse
indices: dimV+

x ≥ `∞ and dimV+
y ≥ `0 − 1.

Proof. We will examine the equation (10). The right-hand side of (10) contains the exponent `∞. Therefore thereexists 1 ≤ i ≤ n such that `xi = `∞. On the left-hand side of (10) there is the exponent `0, hence the polynomial(1+ t)Q1 contains two nonzero terms with exponents `0 and `0 + 1 or `0 − 1 and `0. Therefore, there exists 1 ≤ j ≤ n,such that `xj = `0 − 1 or `xj = `0 + 1. Consequently x = xi and y = xj are critical points of f . The inclusions R`∞
t ⊂ V+

xand R`0−1
t ⊂ V+

y give us the estimations on dimension of V+
x and V+

y .
7. Appendix

Let V be an orthogonal finite dimensional representation of a compact Lie group G. Assume that Φ: V → R is a smooth
G-invariant function and the origin is a nondegenerate critical point of Φ. It is a rather standard fact, that near theorigin the G-flow given by an equation ẋ = −∇Φ(x) is equivalent to the G-flow given by

ẋ+ = A1x+ + g1(x) and ẋ− = A2x− + g2(x), x = (x+, x−) ∈ V+⊕V−, (11)
where |g1,2(x)| = o(|x|), the norms |g1,2(x)| < τ and ‖Dg1,2(x)‖ < τ , where τ is arbitrary small. The linear maps
A1,2 : V → V are such that

〈A1x+, x+〉 ≤ −λ|x+|2, 〈A2x−, x−〉 ≥ λ|x−|2, (12)
for some λ > 0. Here V+ (resp. V−) denotes the eigenspace of the Hessian ∇2Φ(0) corresponding to the positive (resp.negative) eigenvalues.
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Equivariant Morse equation

For the sake of completeness we include the proof and next we will show how to find the G-index pair for an isolatedzero.The equivalence above means that there is a G-neighbourhood U 3 0 and a G-homeomorphism h : U → h(U) suchthat h(0) = 0 and h maps orbits in U of the first system onto orbits of the second one preserving the direction intime. In particular, such an equivalence takes place when the second system is obtained by the smooth (diffeomorphic)
G-equivariant change of coordinates y = h(x), i.e., the flows defined by ẋ = f(x) and ẏ = g(y) are equivalent providedthat f(x) = (Dh(x))−1g(h(x)).Let A = ∇2Φ(0). Then ∇Φ(x) = Ax + φ(x), where |φ(x)| = o(|x|) as |x| → 0. Choose a Jordan basis {vi} of V suchthat A with respect to {vi} has a matrix representation

A = (A1 00 A2
)
,

where A1 = A|V+ and A2 = A|V− are diagonal matrices. The inequalities (12) are clear since A1 (resp. A2) has onlynegative (resp. positive) entries on the main diagonal. For an element x = (x+, x−) ∈ V+⊕V− define its norm
|x| = max{|x+|, |x−|}. The linear change of coordinates x 7→ εx gives us an equivariant map Fε(x) = Ax + φε(x), where
φε(x) = φ(εx)/ε.
Lemma 7.1.
For any τ > 0 there exists an ε > 0 such that |φε(x)| < τ and ‖Dφε(x)‖ < τ uniformly for x ∈ B2(0).
Proof. Fix τ > 0. Since |φ(x)| = o(‖x‖) as x tends to 0, there is a δ > 0 such that |φ(εx)|/|εx| ≤ τ/2 providedthat |εx| < δ. Let ε be chosen such that |εx| < δ. Then

|φε(x)| = 1
ε |φ(εx)| = |x| |φ(εx)|

|εx| ≤ 2 τ2 = τ.

The derivative of φε(x) is Dφε(x) = Dφ(εx). Since Dφ(x) is continuous and Dφ(0) = 0, for any τ > 0 one can take
δ1 > 0 such that ‖Dφ(εx)‖ ≤ τ if only |εx| < δ1. Taking ε small enough we are done.
In order to find the index pair for the isolated invariant set {0} for the flow given by (11) we proceed as follows. Let
N be the square {|x| ≤ 1}. It is easily seen that N is a G-set since the action is orthogonal. If |x+| ≥ |x−| then
d/dt |x+|2 = 2〈ẋ+, x+〉 = 2〈A1x+, x+〉 + 2〈g1(x), x+〉 ≤ −λ|x+|2 provided that 2τ ≤ λ. The same argument shows that if
|x+| ≤ |x−| then d/dt |x−|2 ≥ λ|x−|2. Therefore, the flow of (11) leaves the square N via the set N− = {x ∈ N : |x−| = 1}while the entrance set is N+ = {x ∈ N : |x+| = 1}. That is, the pair (N,N−) is a G-index pair for {0}. To see that N−is a G-set suppose, to the contrary, that x ∈ N− and gx ∈ {|x| = 1} \ N− for some g ∈ G (the sphere {|x| = 1} isobviously a G-set). If so, there exists sufficiently small t > 0 such that φ(0,t)(gx) ⊂ N while φ(0,t)(x) 6⊂ N and by the
G-invariance of N one has gφ(0,t)(x) 6⊂ N. But this contradicts the fact that φt is a G-map.
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