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Abstract: Fiber-Reinforced Polymers (FRP) were developed as a new method over the past decades
due to their many beneficial mechanical properties, and they are commonly applied to strengthen
masonry structures. In this paper, the Artificial Neural Network (ANN), K-fold Cross-Validation (KFCV)
technique, Multivariate Adaptive Regression Spline (MARS) method, and M5 Model Tree (M5MT)
method were utilized to predict the ultimate strength of FRP strips applied on masonry substrates.
The results obtained via ANN, KFCV, MARS, and M5MT were compared with the existing models.
The results clearly indicate that the considered approaches have better efficiency and higher precision
compared to the models available in the literature. The correlation coefficient values for the considered
models (i.e., ANN, KFCV, MARS, and M5MT) are promising results, with up to 99% reliability.

Keywords: Fiber-Reinforced Polymers; Artificial Neural Network; K-fold Cross-Validation; Multivariate
Adaptive Regression Spline; M5 Model Tree

1. Introduction

Fiber-Reinforced Polymers (FRPs) are commonly used for strengthening concrete struc-
tures (see [1,2]). These materials are also applied to strengthen masonry and steel structures
due to the various benefits of FRP (e.g., outstanding corrosion resistance, high strength-to-
weight ratio, and ability to change behavior under elevated temperatures [3–12]).

It is obvious that historical buildings should be preserved and inherited for future
generations. Therefore, the utilization of innovative materials and technologies is important
and justified for these objects, especially those at seismic risk. FRP is one of the most
common new materials used to improve the seismic performance of historical buildings [13],
mainly due to the damping properties of the polymers [14–16]. In connection with this fact,
many studies were conducted on the behavior of FRP sheets in different configurations
in strengthening the structural members, especially in masonry buildings. For example,
in [17], the anchorage performance of FRP in solid clay bricks was studied. The bond–
slip relationship of FRP sheets to the brick elements was also investigated in [18], being
subjected to dynamic loading.

Recent investigations also showed that FRP sheets can increase the in- and out-of-
plane lateral resistance of masonry structures [19]. A few research results can be mentioned
at this point. The FRP sheets were used to improve the shear and flexural behavior of
masonry wallets [20]. The glass fiber-reinforced polymer (GFRP) sheets were used to
improve the out-of-plane resistance of masonry walls [21]. There are also results related
to the strengthening of masonry elements using FRP bars and sheets [22,23]. It was also
shown that the FRP sheets enhance the out-of-plane load capacity of the strengthened
structures [24,25]. In the meantime, some experimental studies focused on the masonry
structures strengthened with FRP sheets subjected to monotonic and cyclic loading [26,27].
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Moreover, researchers investigated the effect of different bonded lengths of FRP sheets
on the calcarenite stone behavior [28]. In other studies [29–31], experimental tests were
applied to present mathematically based models to define the behavior of strengthened
materials with FRP sheets. Grande et al., considered the micro-mechanical and macroscopic
models used to study the behavior of FRP-reinforced and unreinforced masonry structures.
The proposed models utilized different yielding criteria and constitutive laws [29]. There
are arch and curved masonry structures that need to be retrofitted using FRP strips. Yuan
and Milani [32] utilized the FRP sheets to enhance the capability to transform the tensile
stress between the arch masonry and FRP sheets. Finally, they proposed a closed-form
model. Castellano et al. [33] proposed a numerical model to study the responses of curved
masonry structures retrofitted using fiber-reinforced cementitious matrix. They concluded
that the numerical model needs fewer mechanical properties and computational costs and
has high accuracy [33]. Jing et al. [34] performed experimental tests that retrofitted masonry
walls using carbon fiber-reinforced polymer embedded in the mortar joint. They concluded
that the combined structure failed on the shear mode via a diagonal configuration [34].

Recently, a model has been proposed in [35] which may reasonably predict the joint
sliding for the masonry buildings retrofitted using pultruded FRP. Cecchi et al. [35] found
that FRP-transfer length significantly affects the maximum monotonic load capacity of
strengthened masonry panels. They also showed that the optimal transfer length depends
on the average tensile strength of support and FRP stiffness per width. In [36], it was
shown that a similar pattern for the transfer mechanism occurs in the masonry members
strengthened with FRP sheets compared to the concrete members. They also proved that the
strain path along the FRP sheets obeys different laws based on the magnitude of the applied
load. A new method was also proposed to solve or delay the inopportune debonding of FRP
sheets from the masonry wall surface [37]. Emami et al. [37] applied different strengthening
methods (i.e., nailing, surface preparation, grooving, plaster, and boring) to mount the
CFRP and GFRP sheets to the wall surfaces, and showed a 110% increase in the ductility
index of reinforced walls. Furthermore, the ductility of reinforced walls improved by
26% and 53% for the surface preparation and boring methods, in combination with the
nailing method, respectively [37]. In addition, the results showed that the ductility of the
reinforced wall increased by 30% when the groove dimensions were 4 mm and 7 mm in
width and depth, respectively. Finally, the cement plaster had no tangible effects in terms
of improving the ductility of the wall. Mazzuca et al. [10] examined the effect of elevated
temperature on the mechanical properties of glass fiber-reinforced polymer. They showed
a mass reduction in the shear modulus and compressive strength due to the impact of
the elevated temperature (i.e., 200 ◦C). In addition, Carvelli et al. [11] studied the effect
of localized elevated temperatures on the static behavior of concrete members retrofitted
with glass fiber-reinforced polymer. They showed that the value of reduction in the loading
capacity depends on reinforcing geometry, especially in the overlapping area.

The use of novel, innovative technologies and materials, e.g., FRP, involves the obliga-
tion to perform a lot of research and testing to confirm its effectiveness. It is also possible to
use soft techniques in addition to research and tests. Nowadays, soft computing techniques
were widely accepted to predict the behavior of engineering problems [38,39]. For a unique
issue, the accuracy of the results depends on the method selected for solving the problem.
There are different well-known soft computing techniques. For example, [38] utilized the
neuro-fuzzy and neural network techniques to forecast debonding behavior of FRP sheets
in masonry elements. They concluded that an optimal adaptive neuro-fuzzy inference
system predicted the bond strength of FRP-to-masonry elements by 39% and 23% in the
form of root mean square errors and mean absolute errors, respectively, compared to the
optimal multiple non-linear regression models. The genetic programming (GP) method
was applied to assess the bond strength of the FRP-to-concrete composite joint [40]. Finally,
an empirical formula based on the GP model was proposed by Abdellahi et al. [40], which
showed an appropriate agreement with the experimental results.
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Researchers utilized different soft computing techniques to discover the existing
behavior between the parameters in an engineering problem. For example, the parallel
hyper-cubic gene expression programming method was used to measure slump flow [41].
Soft computing methods (i.e., stepwise regression, neural network, neuro-fuzzy, and GP)
were adopted to estimate the strength improvement of concrete cylinders confined using
FRP [42]. The neuro-fuzzy method, regression, and analytical models were also applied
to offer a model for predicting the curvature and bending ductility factors for the high-
performance concrete beams strengthened with CFRP sheets [43,44]. The gene expression
programming technique was adopted in [45] to estimate the thermal behavior of evacuated
tube solar collectors. The Multiple-Kernel Support Vector Regression algorithm was used to
estimate the water quality parameter [46]. Other authors applied the Mars Model to predict
the water quality index [47]. The analytical models only use a specific dataset; therefore,
they can predict engineering problems with lower accuracy [48]. Kumar et al. [48] proposed
new models to predict the fiber-reinforced cementitious matrix to concrete bond utilizing
robust soft models (i.e., curve-fitting, Gaussian Process Regression, and the Adaptive Neuro-
Fuzzy Inference System). They also performed a sensitivity analysis to find the critical
parameter in predicting the fiber-reinforced cementitious matrix to concrete bond [48].

Based on the published scientific background, it can be concluded that soft techniques
may be a good solution to predict the existing relationship between the parameters in an
engineering problem. Therefore, this paper utilizes four robust techniques (i.e., ANN, KFCV,
Mars, and M5 model tree techniques) to forecast the ultimate strength of FRP-to-masonry
bond. In fact, this paper uses four robust techniques to develop new formulae with higher
precision than the existing examples. In this regard, we tried to decrease the computational
cost by introducing new parameters to reduce the number of input parameters. It should
be noted that soft computing techniques can provide a simple and accurate preliminary
design process for engineers that is acceptable based on ACI 440-7R-10 [49] and CNR-DT
200 [50] codes. These results can also be used in the design process, although the design
reliability coefficients should be calibrated in separate studies.

2. Research Objectives

In the scientific community, there are models that can predict the ultimate strength of
FRP-to-masonry bonded joints. An overview of these models (see Section 2.1) shows that
an even better model with more efficiency can be present, since the existing models have
two defects: some of them have no high precision (see Section 4 and Table 1, e.g., Khalifa
model, De Lorenzis model, Maeda et al., model), and the others have more parameters
(some of which require initial computing, after which the ultimate strength of a FRP strips-
to-masonry substrates bond can be computed (see Table 1), e.g., Neubauer and Rostasy
model, Iso model, Willis et al., model, etc.). These models will lead to some formula being
hard to integrate with them. Therefore, the main objective of the paper is to present new
formulas to compute the ultimate bond strength of FRP and masonry joints with high
precision to overcome those above-mentioned challenges. In the technical literature, the
pull-out test presents the bond strength of FRP-to-masonry joint regarding debonding
failure mechanisms as the most widespread bond test setup. Although there are different
experimental methods for assessing bond capacity, no standard procedures have yet been
presented. Based on [51], the pull-out test in a single shear setup is considered the most
reliable setup to study FRP-to-masonry joint bond members. Therefore, the existing single
shear test (pull-out) results are selected to create the soft computing models and evaluate
the bond strength.

2.1. Overview of Existing Formulas

In order to present the existing formulas for assessing the ultimate bond strength (Pmax)
for members with materials that failed in a brittle manner and were strengthened with FRP
sheets, the overview was executed, and Table 1 is presented. Some of the existing formulae
(i.e., Kashyap et al. [7], Camli and Binici [3], and Willis et al. [52]) were valid for the masonry
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materials. The others were valid for the concrete substrate, which had a similarly brittle
manner; therefore, they could be compared with the considered dataset. There were some
differences between masonry and concrete substrates. Nonetheless, all of these formulas
were studied in previous research to show the viability of the proposed approach [7,19].
The origin of some differences could be found in compressive strength levels, microscopic
behaviors, and the brittle failure surface by considering internal reinforcement (Calmi and
Binici [3]). It was noted that by considering these references, the formulas proposed for the
concrete substrates were utilized by researchers for the masonry substrates [7].

Most of these formulas were obtained via empirical methods that lead to lower ac-
curacy (see Section 4). Therefore, soft computing techniques were used to obtain new
formulas with higher accuracy.

An investigation of the available formulas proved that all of the existing formulas
were functions of the thickness of the FRP strip (tp), the width of the FRP strip (bp), the
elasticity modulus of the FRP strip (Ep), the width of the masonry block (bm), the bonded
length (lb), and the tensile strength of the masonry block (fut), respectively. Figure 1 displays
a schematic of a masonry block strengthened with a FRP strip in the form of a pull-out
test [19]. In [3,7], some configurations of the test setup, measurement protocols, etc., were
experimentally illustrated in more detail. Almost all of the pull-out test in a direct shear
test manner was used to study the bond response of FRP to brittle substrates (e.g., masonry
blocks) [53]. During test procedures, strains and surface displacements were obtained
from optical techniques, such as digital image correlation (DIC) or electromechanical gages,
in the form of strain gages and Linear Variable Deformational Transformers (LVDTs). In
the test setup, the FRP sheets were mounted on the masonry blocks using epoxy, and the
tensile loading was applied to the FRP sheet to pull it out. Consequently, by considering
supports applied perpendicular to the direction along the loaded FRP, the stability of the
setup was satisfied.

Figure 1. A scheme of a masonry block strengthened with a FRP strip.

Table 1. Existing formula for forecasting ultimate bond strength of masonry members strengthened
using FRP sheets (some of formulas presented here are extracted directly from [19]).

Model’s Name References Existing Equations

Khalifa [54] Pmax = 110.2× 10−6 × (
f ′cm
42 )

( 2
3 ) × Ep × tp × le × bp

le = e6.134−0.58×ln(Ep×tp)unit of Ep is GPa
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Table 1. Cont.

Model’s Name References Existing Equations

De Lorenzis [55]
Pmax = bp ×

√
2× Ep × tp × Gc

Gc = 1.43 ( N.mm
mm2 )

Tanaka [5] Pmax = lbbp(6.13− ln lb)

Maeda et al. [6]
Pmax = 110.2× 10−6 × Ep × tp × le × bp

le = e6.134−0.58×ln(Ep×tp)unit of Ep is GPa

Dai [56]
Pmax = (bp + 7.4)×

√
2× Ep × tp × Gc

Gc = 0.514× f ′0.236
cm

Accardi [28] Pmax = bp ×
√

12× Ep × tp ×
√

f ′cm

Sato et al. [57,58]
Pmax = 2.68× 10−5 × ( f ′cm)

0.2 × Ep × tp × le × (bp + 7.4)

le = 1.89× (Ep × tp)
0.4 if lb ≥ le

Iso [57]
Pmax = 0.93× ( f ′cm)

0.44 × bp × le

le = 0.125× (Ep × tp)
0.57 if lb ≥ le

Yang et al. [57,59]
Pmax = (0.5 + 0.08×

√
0.01×Ep×tp

fut
)× Le×bp× fut

2

le = 100 (mm)

Willis et al. [52]

Pmax = 1.45× φ0.263
f × f 0.6

ut ×
√

lper × Ep × tp × lb

φ f =
1

2+bp
for EB case

lper = 2 + bp

Kashyap et al. [5]

Pmax = 13.69× φ0.84
f × f 0.9

ut ×
√

lper × Ep × tp × lb

φ f =
1

2+bp
for EB case

lper = 2 + bp

Neubauer
and Rostàsy [60,61]

Pmax =

{
0.64× kp × bp ×

√
fut × Ep × tp if lb ≥ le

0.64× kp × bp ×
√

fut × Ep × tp × α if lb < le

le =
√

Ep×tp
2× fut

α = ( lb
le
)(2− lb

le
)

kp =

√
1.125× 2− bp

bm

1+
bp
400

Van Gemert [60,62] Pmax = 0.5× lb × bp × fut

Mansouri et al. [19]

Pmax = [ f 1.5
ut × Lb − Lb × tp × c1] + [ f 3

ut × bm − b2
p × tp]

+[L1.5
b + c2 +

tp
c0
× (Lb + Ep)]

c1 = 9.941346 c2= 9.58728 c0= 9.351684

Camli and Binici [3]

Pmax =
√

τf × δu ×
√

Ep × tp × bp × tanh
(

θ×lp
le

)
θ =

√
τf

δu×
√

f ′cm
le =

√
Ep×tp√

f ′cm

τf = ω× f ′cm
0.19

ω is a coefficient that depends on the substrate material
type (see Ref. [3])

δu = f ′cm
α
(

lp
le

)β( bp
bm

)γ

α, β and γ are exponents that can be determined by
nonlinear regression analysis based on Ref. [3]
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Table 1. Cont.

Model’s Name References Existing Equations

Chen and Teng [4]

Pmax = 0.427× βp × βL ×
√

f ′cm × bp × le

le =
√

Ep×tp√
f ′ cm

βp =

√
2− bp

bm

1+
bp
bm

βL =

{
1 if lb ≥ le

sin π×lb
2×le

if lb < le

Wu and Jiang [63]

Pmax = kL × Ep × tp × bp × α
β

kL =
η×
√

1−η2×sinh(
√

1−η2× l
β )

1+η×cos h(
√

1−η2× l
β )

le = 2× Ln( 1+δ
1−δ )× β α

d = 0.094× (
fcm
Ed

)
0.026

kw = λ + (1− λ)× bp
bm

λ = 1 + 0.222× (
fcm
E f

)
0.304

β
d =

0.134×(
E f ×t f
Ed×d )

0.5

kw×( fcm
Ed

)
0.082

η = −3.61e−0.4454 l
β + 4.11e−0.3835 l

β

In Table 1, f ′cm and fut are the compressive and tensile strength of masonry in the MPa
unit and defined as follows:

fut = 0.53×
√

f ′cm (1)

It should be noted that in Table 1, Tanaka and Maeda models were reported from [4].
Moreover, Sato, Iso, and Yang models were extracted from [57]. Finally, Neubauer and Van-
Gemert models were presented here from [60]. It should be noted that equations available in
the literature (see Table 1) referred to specific geometry and materials in most cases.

3. Prediction with New Models

A set of experimental data was gathered from the literature to present a new model for
determining the Pmax value [3,8,9,52,64–69]. The number of collected literature-based data
values was 134 (see Appendix A), which were extracted from [5,19]. A set of re-grouping
parameters (a, b, c, d, and F) were introduced from the collected data, and these parameters
were classified into the input/output parameters (see Table 2). According to Table 1, it can
be understood that some existing models needed more input parameters to compute the
Pmax value with a better prediction (i.e., in some existing models, such as that of Tanaka [4],
only two parameters were needed to define the model). Although their formula was easy to
work, they haf a large error [19]. In this regard, based on [19], the existing models had little
accuracy based on R2 and root mean-squared error (RMSE) criteria. Finally, for simplicity,
only [19] was considered here as a new work with better accuracy to show the ability
of the proposed formulas. Therefore, basic geometric and engineering parameters were
defined here, where a, b, c, and d show the axial stiffness of the FRP per width, the width
ratio for FRP with respect to masonry block, the bonded length of FRP, and the ultimate
tensile strength of the masonry block, respectively. In fact, these considered parameters
were defined here based on Table 1 through means of practical engineering issues and to
decrease the number of input parameters previously used in the existing formulas (see
Table 1). More discussions are presented in Section 4.

Table 3 presents these data’s statistical properties (i.e., maximum, minimum, coefficient
of variation, mean, and standard deviation).

The following sections present four robust techniques (i.e., ANN, KFCV, Mars, and
M5 model tree techniques). They were applied to predict the ultimate strength of the
FRP-to-masonry bond. These techniques were selected as they are the most popular and
well-known techniques used in input–output fitting problems.
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Table 2. Newly proposed parameters.

Type Parameters

Input

a = tp × Ep(kN/mm)

b = bp/bm (mm/mm)

c = lb(mm)

d = fut(MPa)

Output F = Pmax/bp (kN/mm)

Table 3. Statistical properties of experimental data.

Quantity tp(mm) Ep(kN/mm2) bp(mm) lb(mm) bm(mm) fut(MPa) Pmax(kN)

Mean 0.877 120.719 32.781 170.440 347.127 2.232 15.630

Minimum 0.12 22.3 6.35 50 200 0.780739 2.13

Maximum 6.35 230 50 420 740 3.57 84.5

Standard deviation 1.058 83.490 13.842 105.624 197.375 0.965 20.013

Coefficient of variation 1.202 0.689 0.421 0.617 0.566 0.431 1.276

3.1. The ANN Model

Artificial Neural Networks are a good predictive tool used for engineering prob-
lems [70,71]. Their operation is based on the principle of the prosperity of the nervous
system. The data are divided into three sets: training, validation, and testing. ANN is
composed of layers, neurons, and weights. The main task of the network is to find a pattern
of connections and relationships between inputs and outputs [71]. There are many types
of networks [71,72]. A feed-forward neural network involves three types of layers: input,
hidden, and output layers (see Figure 2).
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Figure 2. A schematic model of a three-layer neural network: input signals (a–d) and output signal F.

Here, the log-sigmoid transfer function was utilized in the ANN model. Furthermore,
one hidden layer was used in this model. At first, all collected data were normalized using
the below equation [2]. Next, the normalized data were accepted for three stages, including
training, validating, and testing. Since ANN uses the log-sigmoid transfer function to avoid
the saturation problem, collapse on the border values, and, consequently, a low training
rate, the mapping function converted the real input values to corresponding values in the
range of 0.1–0.9. It should be noted that this range w usual in the pre-processing of datasets
in engineering applications [71].

gscaled = (0.9− 0.1)
(

g−gmin
gmax−gmin

)
+ 0.1

0.1 ≤ gscaled ≤ 0.9
(2)
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where g, gmin, gmax, and gscaled are the selected data, the minimum value of data, the
maximum value of data, and the scaled value for the data, respectively. This study adopted
the Levenberg–Marquardt algorithm for training, validating, and testing datasets. Firstly,
various sets were examined to find the optimum distribution of the dataset (training,
validating, and testing sets are 70%, 15%, and 15% of all datasets, respectively). A 4:n:1
network was chosen. This network had four inputs, n hidden neurons, and one output
(see Figure 2). A criterion should be supposed to check and stop the training step of the
network. The mean-squared error (MSE) was selected as the criterion. Moreover, a better
performance was expected for the desired network when the minimum value of MSE was
computed. This study measures the correlation between the targets and outputs using
the regression values (R-values). The criteria mentioned above were utilized to identify
a network with a better performance. The regression values of the different networks for
various numbers of neurons in the hidden layers are presented in Figure 3. The maximum
error values for each network are depicted in Figure 4. Figures 3 and 4 represent the finding
that a network with ten hidden neurons performs most effectively.
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Figures 5–7 show the results for the training of the selected network (4-10-1). More-
over, Figure 5 exhibits the excellent performance of the selected network. Furthermore,
in Figure 7, the training state parameters, such as performance gradient, mu (i.e., the
momentum constant), and validation failing (i.e., val fail) epoch, are illustrated based on
the Levenberg–Marquardt algorithm [71].
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3.2. The ANN Model with K-Fold Cross-Validation (KFCV)

This section used the Feed-Forward Back Propagation Neural Network (FFBPNN) to
forecast the ultimate strength of FRP strips applied on masonry elements [2,72,73]. Firstly, all
data should be arranged randomly into K folds. The K-1 folds were utilized in the training
step from the data, and the last fold was maintained for the neural network test. Different
values for the K parameter were examined (e.g., K = 2, 3, 4, 5) to obtain the best values. Finally,
the performance of each neural network was analyzed using the percentage of corrected
prediction for K folds. Finally, the correct classification factor (CCF) and the percentage of
area under the CCF (AUCCF) for different ANN structures were utilized to determine the
optimal epoch. For this problem, a neural network with three layers was chosen.

Furthermore, the AUCCF was measured until the optimal epoch was reached to
optimize the neurons in the hidden layer. Therefore, the number of neurons changes from
2 to 13 in the hidden layers. Finally, by drawing the AUCCF, the structure with the best
efficiency could be obtained. The AUCCF curve is displayed in Figure 8. It could be inferred
that the 4-6-1 structure had the best performance (99.4%) in estimating the ultimate bond
strength of FRP-to-masonry joints. Furthermore, Figure 9 confirmed that the optimal epoch
for the 4-6-1 structure was 3.
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The R2 values for the optimized structure (4-6-1) are presented in Figure 10 to show
the performance of the ANN neural network with six hidden layers. This figure reveals
that the correlation coefficient of the ANN neural network with six hidden layers is 0.9871.
It depicts the high efficiency of the ANN structure with pattern (4-6-1).
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3.3. Multivariate Adaptive Regression Spline (MARS)

The MARS technique is an advanced regression model proposed in [74] using three
main components: a linear regression model, non-parametric statistical analysis, and spline
mathematical formulation [75]. In a general form, the MARS output can be defined based
on a combination of the basic functions as follows:

Pmax

bp
(tp × Ep, bp/bm, lb, fut) = ρ0 +

s

∑
i=1

ρi × BFi(tp × Ep, bp/bm, lb, fut) (3)

where ρ0, ρi, BFi, i, and s show the weighting coefficients, the basis function, the counter,
and the number of basic functions, respectively. The Least Squares method computes
the basic functions [75]. Moreover, the MARS technique uses the trial-and-adjustment
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approach to provide a good relationship using the basic functions extracted based on
Adaptive Piecewise Linear Regression (APLR) [74]. Generally, the MARS model can find
an approximate function between the input variables and the output target. Therefore,
this model will lead to a mathematical function. For the collected data [3,8,9,52,65–69], the
following equation can be obtained using the MARS model:

Pmax
bp

= 0.42521 + 0.015824× BF1 − 0.11179× BF2

−194.2× BF3 − 0.13415× BF4 − 4.1329× 10−5 × BF5
(4)

where
BF1 = max (0, (tp × Ep)− 45.26)

BF2 = BF1 ×max (0, bp
bm
− 0.089286)

BF3 = max (0, fut−3 .55)

BF4 = max (0, 3 .55− fut)

BF5 = BF1 ×max (0, lb−328)

(5)

3.4. M5 Model Tree (M5MT)

The model tree was introduced in 1992 in [76] and later modified in 1996 in [77]. The
M5MT model can convert the non-linear behavior between the input and output variables
into a linear form using multivariate linear regression. The M5MT model can change a
complex problem to different linear models by dividing the search space into different
sub-spaces. Next, a linear model is computed for each sub-space. Finally, combining linear
models in each sub-space will lead to the overall output model. The implementation of the
M5MT can be performed using Weka 3.9 software. Detailed information for this model can
be studied from [76,77].

In this paper, the proposed equation for the studied problem using the M5MT model
can be stated as follows:

Pmax

bp
(tp × Ep, bp/bm, lb, fut) = C0 + C1 × (tp × Ep) + C2 ×

bp

bm
+ C3 × lb + C4 × fut (6)

where Ci and i show the constant coefficients and the counter, respectively. For the collected
data, the following equation can be obtained using the M5MT model:

Pmax
bp

= 0.0015× (tp × Ep)− 1.4048× bp
bm

+ 0.0002× lb + 0.1674× fut − 0.0283 for lb ≤ 225.5

Pmax
bp

= 0.0049× (tp × Ep)− 11.8451× bp
bm

+ 0.0006× lb + 0.178× fut+1.7105 for lb > 225.5
(7)

4. Results

Here, the efficiency and performance of the proposed model are investigated by
comparing them with the existing models (see Table 1). Table 4 presents the values of R2

and RMSE for various models.

Table 4. Values of R2 and RMSE for different studied models.

Model’s Name References R2 RMSE

Khalifa [54] 0.2833 * 1.103

De Lorenzis [55] 0.2168 * 1.087

Tanaka [5] 0.1088 * 1.319

Maeda et al. [6] 0.1624 * 1.159

Dai [56] 0.3837 * 0.953

Sato [57,58] 0.6723 * 4.040

Iso [57] 0.1179 * 1.714
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Table 4. Cont.

Model’s Name References R2 RMSE

Yang et al. [57,59] 0.2124 * 1.148

Willis et al. [52] 0.4898 * 0.987

Kashyap et al. [5] 0.8841 * 0.475

Neubauer and Rostàsy [60,61] 0.3190 * 1.027

Van Gemert [60,62] 0.1204 * 1.226

Mansouri et al. [19] 0.9646 0.240

Camli and Binici [3] 0.5425 1.869

Chen and Teng [4] 0.478 0.96

Wu and Jiang [63] 0.62 0.87

Present study

ANN - 0.9877 0.157

ANN-KFCV - 0.9871 0.159

MARS - 0.9839 0.176

M5MT - 0.9802 0.193
* shows that these data are extracted from [19].

Based on Table 4, the R2 values for the considered models (i.e., ANN, KFCV, MARS,
and M5MT) are 0.9877, 0.9871, 0.9839, and 0.9802, respectively. The best value for this
parameter is 0.9646 in the other existing models (i.e., model from [19]). Based on Table 4,
the proposed models have fewer RMSE values than other empirical models. As described
in Section 3, the mentioned configuration for the input/output parameters also utilized the
well-known soft computing techniques, leading to high accuracy, low computational cost,
and more feasibility for practical engineering applications.

Moreover, the RMSE (root mean-squared error), MAE (mean absolute error), MAPE
(mean absolute percentage error), and correlation coefficient values for the considered
models (i.e., KFCV, MARS, and M5MT) in comparison to the best existing model are
proposed in Table 5. The best values for these parameters are shown in bold form. These
results mean that the simulated results were consistent with the experimental results. It
also shows that the considered models accurately forecast the ultimate strength of FRP
strips applied on masonry substrates. Based on Table 4, the model suggested in [19] has
more precision than the models available in the literature. Therefore, this model is chosen
to compare with the considered models. Figure 11 shows the comparison between these
models. From Figure 11 and Table 5, it can be inferred that the considered model (i.e., the
KFCV technique) has more accuracy than the model presented in [19]. It should be noted
that percentage values in Figure 11 show the underestimated and overestimated bounds as
error zones.

Table 5. A comparison between the considered models and best existing model.

Method Error ANN-KFCV MARS M5MT Mansouri et al. [19]

MAPE (%) 19.08 21.02 27.10 19.31

RMSE 0.159 0.176 0.193 0.24

AAE 0.0778 0.0917 0.1036 0.1144

Correlation coefficient 0.9935 0.9919 0.9900 0.9853
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5. Summary

This paper presents the ANN, ANN-KFCV, MARS, and M5MT techniques to estimate
the ultimate strength of FRP strips applied on masonry substrates. Firstly, knowledge and
possible solutions were reviewed. In the next stage, a set of experimental data (134 cases)
was gathered and normalized. Finally, ANN, KFCV, MARS, and M5MT techniques were
applied to offer new models predicting the ultimate bond strength of FRP strips to masonry
joints. The R2 values in the ANN method amount to 0.99293, 0.99896, 0.99572, and 0.99382
for training, validation, testing, and all data, respectively. Furthermore, this value is
0.9935, 0.9919, and 0.9901 for the KFCV, MARS, and M5MT methods. The results prove
that the established techniques have an excellent coincident with the experimental values.
This finding confirms the accuracy of the proposed formulas in forecasting the ultimate
strength of FRP strips applied to masonry elements. In this regard, we tried to decrease
the computational cost by introducing new parameters to reduce the number of input
parameters. It should be noted that the proposed formulas are valid for externally bonded
FRP-to-masonry members. The results show that the presented formulas are more precise
than the existing formulas.
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Appendix A

The database categorized based on the literature review of existing experimental bond
tests for FRP-to-masonry joints is presented as follows:
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Table A1. The properties of the dataset based on experimental samples collected from existing literature.

No. tp (mm) Ep (GPa) bp (mm) lb (mm) bm (mm) fut (MPa) Pmax (kN) Ref. No.
(Year)

1 6.35 40.8 6.35 254 230 1.93 19.17
[64] (2003)

2 6.35 40.8 6.35 381 230 1.93 18.55

3 1 22.3 25 50 400 2.05 4.88

[65] (2005)

4 1 22.3 25 50 400 2.05 5.63

5 1 22.3 25 50 400 2.05 4.25

6 1 22.3 25 50 400 2.05 3.75

7 1 22.3 25 50 400 2.05 5.13

8 1 22.3 25 75 400 2.05 5.81

9 1 22.3 25 75 400 2.05 5.44

10 1 22.3 25 75 400 2.05 6.38

11 1 22.3 25 75 400 2.05 3.94

12 1 22.3 25 75 400 2.05 7.13

13 1 22.3 25 100 400 2.05 4.75

[65] (2005)

14 1 22.3 25 100 400 2.05 5

15 1 22.3 25 100 400 2.05 6.5

16 1 22.3 25 100 400 2.05 7.25

17 1 22.3 25 100 400 2.05 7.25

18 1 22.3 25 100 400 2.05 8.5

19 1 22.3 25 50 200 2.73 9.25

20 1 22.3 25 50 200 2.73 7.38

21 1 22.3 25 50 200 2.73 8.63

22 1 22.3 25 50 200 2.73 6.88

23 1 22.3 25 75 200 2.73 10.69

24 1 22.3 25 75 200 2.73 8.44

25 1 22.3 25 75 200 2.73 9.38

26 1 22.3 25 75 200 2.73 9.56

27 1 22.3 25 75 200 2.73 8.25

28 1 22.3 25 100 200 2.73 8.5

29 1 22.3 25 100 200 2.73 10

30 1 22.3 25 100 200 2.73 10

31 1 22.3 25 100 200 2.73 9

32 1 22.3 25 100 200 2.73 10

33 1 22.3 25 100 400 2.05 5.58

34 1 22.3 25 100 200 2.73 9.4

35 1 61 25 125 280 1.3 4.06

[3] (2007)36 1 61 50 100 280 1.3 5.9

37 1 61 50 125 280 1.3 5.14

38 1.2 165 50 210 230 2.75 25.25
[66] (2006)

39 1.2 165 50 280 230 2.75 28.4

40 2.8 207 15 355 230 3.57 61.6

[8] (2009)
41 2.8 207 15 355 230 3.57 65.24

42 2.8 207 15 355 230 3.57 63.53

43 2.8 207 15 355 230 3.57 66.52
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Table A1. Cont.

No. tp (mm) Ep (GPa) bp (mm) lb (mm) bm (mm) fut (MPa) Pmax (kN) Ref. No.
(Year)

44 0.17 230 50 200 250 3.35 15.94

[67] (2009)

45 0.17 230 50 200 250 3.35 17.12

46 0.17 230 50 200 250 3.35 17.66

47 0.17 230 50 200 250 3.35 19.61

48 0.17 230 50 200 250 3.35 20.15

49 0.23 65 50 200 250 3.35 11.69

50 0.23 65 50 200 250 3.35 13.97

51 0.23 65 50 200 250 3.35 13.65

52 0.23 65 50 200 250 3.35 13.2

53 0.23 65 50 200 250 3.35 14.18

54 2.8 207 15 336 230 3.57 83.45

[68] (2009)55 2.8 207 15 336 230 3.57 71.09

56 2.8 207 15 336 230 3.57 81.48

57 2.8 207 15 336 230 3.57 70.36

[68] (2009)

58 2.8 207 15 336 230 3.57 59.41

59 2.8 207 15 336 230 3.57 63.88

60 2.8 207 15 336 230 3.57 69.41

61 2.8 207 15 336 230 3.57 84.5

62 1.2 162 15 241 230 3.55 46.8

[52] (2009)

63 1.2 162 15 328 230 3.55 44

64 1.2 162 15 328 230 3.55 38.3

65 1.2 162 15 334 230 3.55 46.7

66 1.2 162 20 328 230 3.55 50

67 1.2 162 20 328 230 3.55 51.2

68 2 65 50 420 230 3.55 22.1

69 2 65 50 395 230 3.55 21.5

70 2 65 50 419 230 3.55 21.9

71 2 65 50 396 230 3.55 18.1

72 2 65 50 394 230 3.55 24.7

73 2 65 50 393 230 3.55 24.3

74 0.62 73 50 386 230 3.55 19.9

75 0.62 73 50 386 230 3.55 18.6

76 1.2 162 50 140 230 3.55 26.8

77 1.2 162 50 210 230 3.55 24.9

78 1.2 162 50 280 230 3.55 28.4

79 0.15 80.2 25 150 235 1.57 3.48
[52] (2009)

80 0.15 80.2 25 150 235 1.57 4.81
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Table A1. Cont.

No. tp (mm) Ep (GPa) bp (mm) lb (mm) bm (mm) fut (MPa) Pmax (kN) Ref. No.
(Year)

81 0.15 80.2 25 150 235 1.57 4.69

[9] (2011)

82 0.15 80.2 25 150 235 1.57 4.64

83 0.15 80.2 25 100 235 1.57 3.66

84 0.15 80.2 25 100 235 1.57 3.17

85 0.15 80.2 25 100 235 1.57 2.85

86 0.15 80.2 25 100 235 1.57 3.68

87 0.15 80.2 25 100 235 1.57 3.79

88 0.15 80.2 25 200 235 1.57 4.48

89 0.15 80.2 25 200 235 1.57 5.06

90 0.15 80.2 25 150 235 1.57 5.27

91 0.15 80.2 25 150 235 1.57 4.2

92 0.15 80.2 25 150 235 1.57 4.89

93 0.15 80.2 25 150 235 1.57 5.6

94 0.15 80.2 25 150 235 1.57 4.34

95 0.15 80.2 25 150 235 1.57 5.49

96 0.15 80.2 25 150 235 1.57 3.52

97 0.15 80.2 25 150 235 1.57 4.83

98 0.15 80.2 25 150 235 1.57 4.53

99 0.15 80.2 25 150 235 1.57 5.46

100 0.15 80.2 25 150 235 1.57 4.55

101 0.15 80.2 25 150 235 1.57 3.73

[9] (2011)

102 0.15 80.2 25 150 235 1.57 3.82

103 0.15 80.2 25 150 235 1.57 4.54

104 0.15 80.2 25 150 235 1.57 4.06

105 0.12 216 25 150 235 1.57 4.78

106 0.12 216 25 150 235 1.57 4.29

107 0.12 216 25 150 235 1.57 4.02

108 0.12 216 25 150 235 1.57 4.33

109 0.12 216 25 150 235 1.57 4.26

110 0.13 230 50 150 740 1.0236 5.04

[69] (2009)

111 0.13 230 50 150 740 0.80901 3.92

112 0.13 230 50 150 740 0.780739 4.66

113 0.13 230 50 150 740 0.897877 4.28

114 0.13 230 50 150 740 1.077087 4.73

115 0.13 230 50 150 740 1.107941 4.83

116 0.13 230 50 150 740 0.991539 3.89

117 0.13 230 50 150 740 0.99578 4.01

118 0.13 230 50 150 740 0.905664 4.2

119 0.13 230 50 100 740 1.091337 4.93

120 0.13 230 50 100 740 0.901 4.25

121 0.13 230 50 100 740 0.981574 4.43

122 0.13 230 50 100 740 1.03723 4.61

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Appl. Sci. 2023, 13, 6955 18 of 21

Table A1. Cont.

No. tp (mm) Ep (GPa) bp (mm) lb (mm) bm (mm) fut (MPa) Pmax (kN) Ref. No.
(Year)

123 0.13 230 50 100 740 0.943638 4.07

[69] (2009)

124 0.13 230 50 100 740 1.002807 3.28

125 0.13 230 50 100 740 1.012564 4.65

126 0.13 230 50 100 740 0.96425 3.35

127 0.13 230 50 50 740 0.921042 2.28

128 0.13 230 50 50 740 1.048007 2.31

129 0.13 230 50 50 740 1.353317 4.73

130 0.13 230 50 50 740 0.914922 2.22

131 0.13 230 50 50 740 0.954 2.33

132 0.13 230 50 50 740 0.970059 2.2

133 0.13 230 50 50 740 1.079692 2.13

134 0.13 230 50 50 740 0.890021 3.51
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