
Estimation of time-frequency complex phase-based
speech attributes using narrow band filter banks

Karol Abratkiewicz∗, Krzysztof Czarnecki†, Dominique Fourer§, François Auger‡

∗Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics
G.Narutowicza 11/12, 80-980 Gdansk, Poland, Email: karol.abratkiewicz@gmail.com

†Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics
G.Narutowicza 11/12, 80-980 Gdansk, Poland, Email: czarnecki.krzysiek@gmail.com

§UMR STMS (IRCAM - CNRS - UPMC), Paris, France, Email: dominique@fourer.fr

‡LUNAM University, IREENA, Saint-Nazaire, France, Email: francois.auger@univ-nantes.fr
Abstract—In this paper, we present nonlinear estimators of

nonstationary and multicomponent signal attributes (parame-
ters, properties) which are instantaneous frequency, spectral
(or group) delay, and chirp-rate (also known as instantaneous
frequency slope). We estimate all of these distributions in the
time-frequency domain using both finite and infinite impulse
response (FIR and IIR) narrow band filers for speech analysis.
Then, we present few examples including a novel type of imaging
joining energy and phase acceleration in a single picture. Finally,
we provide an open-source project – ccROJ – Time-Frequency
C++ Framework of which we are authors and that is used for
computing the presented figures.

Index Terms—ccROJ, time-frequency reassignment and syn-
chrosqueezing, STFT, instantaneous frequency, group delay,
chirp-rate, FIR and IIR filters.

I. INTRODUCTION

The time-frequency approach is mainly dedicated to the
analysis of multicomponent and nonstationary signals [1], [2],
[3], [4], [5], [6]. The human’s speech is a representative
example of them and many authors work in this area [7],
[8], [9], [10], [11]. In the paper, we are also focused on
this kind of signals. In general, the time-frequency analysis
allows to separate signal components. Unfortunately, this
separation has some limitations, which are well defined by
the Heisenberg-Gabor uncertainty principle [12]. The time-
frequency resolution can be controlled by the effective duration
of impulse response of used filters (or analyzing windows if
the Fourier transformation is applied). In both cases, the short-
time Fourier transform (STFT) is obtained as a result of fil-
tering or transforming. Then, the time-frequency distributions
such as instantaneous frequency (IF), group delay (GD) [2],
[3], instantaneous bandwidth (IB) [13], and chirp-rate (CR;
also known as instantaneous frequency slope) can be estimated
based on derivatives of the STFT complex phase [17], as it is
shown in the next section of this paper.

In [1], we proposed several new estimators designated
to operate in the time-frequency domain for digital signal
analysis using a special recursive filtering. The main purpose

of these tools is the estimation of IF and CR. Here, we extend
this approach using both FIR and IIR filter banks for speech
analysis, as well as we investigate other distributions such as
GD [2], [3]. The FIR filters are implemented using Fast Fourier
Transform (FFT). Then, the IIR filters are realized in the same
way as in [1] based on a recursive implementation. Our other
motivation is to demonstrate the use of an open-source project
– ccROJ, that is a time-frequency C++ framework of which
we are authors. Therefore, a short description of the project
and a simple code listing are introduced further in this paper.

In the next section, definitions and interpretations of the
considered signal properties are introduced. In Section III,
many illustrative examples are presented. In Section IV, we
introduce a brief description and an example of code listing
of ccROJ project which contains the implementation of the
presented methods in C++ programming language [14].

II. PHASE-BASED ATTRIBUTES

The STFT of speech signal x(t) can be defined as the
convolution product of this signal with an analyzing narrow
band filter g(t, ω) at center angular frequency ω:

ygx(t, ω) = (x ? g)(t, ω) = Agx(t, ω)ejφ
g
x(t,ω) =

=

∫
R
x(τ)g(t− τ, ω) dτ

(1)

where j is the imaginary unit; j2 = −1; Agx(t, ω) and φgx(t, ω)
denote, respectively, the amplitude and the phase. g(t, ω)
represents both FIR and IIR filters, and can be defined as
their modulated envelope (or an analysing window):

g(t, ω) = h(t) exp(jωt), (2)

where h(t) is the envelope (or the window; for example
Blackman-Harris window). According to [17], the complex
phase of this transform can be defined by:

Φgx(t, ω) = ln
(
ygx(t, ω)

)
= Λgx(t, ω) + jφgx(t, ω), (3)
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where Λgx(t, ω) = ln
(
Agx(t, ω)

)
is its level. This time-

frequency signal representation can be used to estimate many
physical signal parameters. Firstly, GD in the time-frequency
domain can be defined as the partial derivative of the STFT
phase with respect to frequency [2]:

Dg
x(t, ω) = −∂=Φgx(t, ω)

∂ω
= −∂φ

g
x(t, ω)

∂ω
. (4)

Then, IF can be defined in similar manner [2]:

Ωgx(t, ω) =
∂=Φgx(t, ω)

∂t
=
∂φgx(t, ω)

∂t
(5)

as the partial derivative with respect to time. There is no neces-
sity to use the Hilbert transformation as it is presented in [15],
[16] as long as we consider IF in a narrow frequency band.
Both, GD and IF are used for time-frequency reassignment
in order to relocate the energy in the time-frequency plane
as follows [2]:

Σgx(t, ω) =

∫∫
R2

Egx(τ, υ)δ
(
t−Γgx(τ, υ)

)
δ
(
ω−Ωgx(τ, υ)

)
dτdυ,

(6)
where Γgx(t, ω) is the reassigned time defined as [5]:

Γgx(t, ω) = t+Dg
x(t, ω), (7)

the spectral energy is given by:

Egx(t, ω) =
(
Agx(t, ω)

)2
= |ygx(t, ω)|2, (8)

and δ(·) denotes the Dirac distribution. As the result, the new
concentrated energy distribution Σgx(t, ω) is estimated. This
time-frequency estimate is characterized by comparatively
high concentration of energy near attractors (ridges, partials).

Alternatively, the IF estimate (5) can be used in time-
frequency synchrosqueezing [18], [19], [20], which can be
defined for the STFT by [6]:

Y gx (t, ω) =

∫
R
ygx(t, ρ)e−jρt0δ(ω − Ωgx(t, ρ)) dρ (9)

It corresponds to the signal reconstruction formula [6]:

x(t− t0) =
1

h(t0)

∫
R
ygx(t, ω)e−jωt0

dω

2π
. (10)

Therefore, the synchrosqueezed STFT can be used to signal
recovery as its simple integration [6]:

x̂(t− t0) =
1

h(t0)

∫


Y gx (t, ω)

dω

2π
, (11)

where the integration area 
 can be restricted to the frequency
support of the signal (or of its component) and h(t0) 6= 0.

The level of STFT Λgx(t, ω) can also be used for a local CR
estimation. In [4], the following estimator of this parameter
is proposed:

Rgx(t, ω) = −∂Λgx(t, ω)

∂t

/∂Λgx(t, ω)

∂ω
. (12)

In [13], IB is defined as the absolute value of the instanta-
neous signal level derivative with respect to time, therefore
∂Λgx(t, ω)

/
∂t in Eq. (12) can be, more or less, interpreted

in similar manner. Then, dually, ∂Λgx(t, ω)
/
∂ω should have

a dimension of time duration, therefore it can be referred
to as ”group duration”. This approach is consistent with the
definition of the CR of any LFM chirp, which is the ratio of
the bandwidth to the time duration of this chirp.

In [1], the estimator (12) is effectively extended to an infinite
number of estimators. We consider here only two of them,
which, however, are very representative, namely:

R̀gx(t, ω) = −∂
2Λgx(t, ω)

∂t2

/∂2Λgx(t, ω)

∂ω∂t
(13)

as well as

Ŕgx(t, ω) = −∂
2Λgx(t, ω)

∂ω∂t

/∂2Λgx(t, ω)

∂ω2
. (14)

The estimators defined by Eqs. (13) and (14) are not sensitive
to any slow amplitude modulation. Then, the time-frequency
IF estimator can be improved using new CR estimators. For
example, a new unbiased IF estimator for Eq. (12) can be
obtained as follows:

Ω̂gx(t, ω) =Ωgx(t, ω) +Dg
x(t, ω)Rgx(t, ω) =

=
∂φgx(t, ω)

∂t
+
∂φgx(t, ω)

∂ω

∂Λgx(t, ω)

∂t

/∂Λgx(t, ω)

∂ω
,

(15)
what is also proposed in [1]. Finally, the synchrosqueezing (9)
can be improved by replacing Ωgx(t, ω) with Ω̂gx(t, ω). This
allows to obtain more precise results.

III. NUMERICAL EXAMPLES

In this section, we present results of the analysis of 2 speech
signals. The first one being considered is a recording sampled
at the rate equal to 22050 Sa/s in which an adult human female
pronounces the sentence: ”You’ve got mail”. This signal is
analyzed using the windowed FFT with the Blackman-Harris
window, whose width is equal to 22.05 ms. In the second
one, which is sampled at the rate equal to 11025 Sa/s, an
adult human male pronounces ”Sacre Bleu!”. This recording
is clearly distorted and is analyzed using the recursive ODE
filters, whose time spread and order are equal to, respectively,
5 ms and 5. Both are represented with a 16 bits of precision
using floating point numbers.

In Fig. 1, the speech signals are presented in the time
domain. Next figures depict the distributions in the time-
frequency domain. In Figs. 2 and 3, respectively, the classical
and the reassigned energy distributions are shown. The reas-
signed energy is mapped close to the attractors associated with
each component [5]. It results in a high energy concentration.
In Fig. 4, CR estimates obtained using Eqs. (13) and (14)
are presented. The color corresponds to estimated values
according to the associated color boxes. Some improvements
of this imaging are the combination of both CR and energy
level in a single picture. In this approach the color denotes the
CR while the saturation corresponds to the energy level. The
results are presented in Fig. 5.
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(a) first signal (b) second signal

Fig. 1. Signals in the time domain.

(a) first signal (b) second signal

Fig. 2. Classical spectrograms.

(a) first signal (b) second signal

Fig. 3. Time-frequency reassigned spectrograms.
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(a) first signal (b) second signal

Fig. 4. Phase accelerograms in the time-frequency domain.

(a) first signal (b) second signal

Fig. 5. Compositions of the spectrogram and phase accelerogram.

IV. CCROJ PROJECT

The all estimators presented in this paper are implemented
as a part of the open source ccROJ project [14], of which we
are authors. This project provides efficient algorithms written
in C++ and dedicated to GNU/Linux operating system for FIR
as well IIR filter analyzing banks. Overall, this framework
provides the following functionalities.

• Signal time-frequency decomposition using filter banks
and FFT including the chirplet transform [21], [22].

• Estimators of time-frequency distributions (including
spectral energy, IF, GD, and CR).

• Reassignment functions operating in various domains.
• Fast signal reconstruction based on its STFT including

the improved time-frequency synchrosqueezing.
• Pulses, noise, filter, and window generators.

• Signal, image, and array data objects including configu-
ration structures. They contain many useful methods for
data manipulating, transforming, saving, etc. as well as
operator overloading.

• Fourier, Hilbert, and time-frequency Hough transform.
• median filtering in the time-frequency domain including

an efficient implementation.
• Signal processing procedures in the time domain includ-

ing convolution and correlation.
• Test programs for tutoring and scripts for result drawing.

A. Sample program

Let us consider a simple demonstrative program in C++
language which uses the ccROJ framework in version 0-40
(Listing. 1). At the beginning, an LFM chirp signal lasts
1 second is generated (Listing. 2). Then, an ODE analyzer
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which consists of 5 IIR filter banks is defined (Listing. 3).
Finally, the classical spectrogram and the phase accelerogram
are estimated and saved to files (Listing. 5). The resultant data
can be plotted using attached Gnuplot scripts. Comments are
highlighted in green, elements of ccROJ, strings, and C++
keywords are colored, respectively, in red, magenta, and blue.

1 print_roj_info (); /* print ccROJ header */
2

3 /* check ccROJ version */
4 require_roj_version (0, 40);

Listing 1. The version checking.

1 /* roj_signal_config is a structure dedicated to
define basic signal parameters: */

2 roj_signal_config sig_conf;
3 sig_conf.rate = 1000.0; /* sampling rate */
4 sig_conf.length = 1000; /* number of samples */
5 sig_conf.start = -0.5; /* initial instant */
6

7 /* new empty signal */
8 roj_complex_signal* signal_ptr = new

roj_complex_signal (sig_conf);
9

10 /* signal generation */
11 double crate = 1000.0; /* chirp-rate */
12 for(int n=0; n<sig_conf.length; n++){
13

14 /* time instant */
15 double t = sig_conf.start
16 + (double)n/sig_conf.rate;
17

18 /* M_PI and pow() are elements of math.h */
19 double arg = M_PI * pow(t, 2.0) * crate;
20

21 /* field m_waveform gives access to signal
samples; cexp and 1I are from complex.h */

22 signal_ptr->m_waveform[n] = cexp(1I * arg);
23 } /* now signal is ready to use */

Listing 2. LFM signal generation.

1 /* universal filter generator creation */
2 roj_filter_generator *filter_gen = new

roj_filter_generator (sig_conf.rate);
3

4 /* filter generator configuration */
5 filter_gen->set_type(ROJ_ODE_FILTER); /* code */
6 filter_gen->set_spread(0.01); /* time spread */
7 filter_gen->set_order(5); /* filter order */
8

9 /* parameters for setting filter distribution
10 along frequency axis (evenly) */
11 roj_array_config arr_conf;
12 arr_conf.min = -500.0; /* minimal frequency */
13 arr_conf.max = 500.0; /* maximal frequency */
14 arr_conf.length = 1000; /* number of filters */
15

16 /* create TF filter analyzer, frequency axis
configuration and pointer to filter generator
are given as its constructor arguments */

17 roj_ode_analyzer *analyzer_ptr = new
roj_ode_analyzer(arr_conf, filter_gen);

18

19 /* signal setting to ODE analyzer */
20 int hopsize = 5; /* hopsize in samples */
21 analyzer_ptr->set_signal(signal_ptr, hopsize);
22 /* now the analyzer is ready to work */

Listing 3. ODE analyzer definition.

1/* estimation of spectral energy and storing
2them in roj_real_matrix object */
3roj_real_matrix *se_ptr =
4analyzer_ptr->get_spectral_energy();
5

6/* save estimate to text file */
7se_ptr->save("spectral-energy.txt");
8

9/* estimation of chirp-rate and storing
10them in roj_real_matrix object */
11roj_real_matrix *cr_ptr =
12analyzer_ptr->get_chirp_rate(CR_D_ESTIMATOR);
13

14/* get matrix configuration as roj_image_config*/
15roj_image_config img_conf = cr_ptr->get_config();
16

17for(int n=0; n<img_conf.time.length; n++){
18/* get time of n-th instant */
19double t = cr_ptr->get_time_by_index(n);
20

21for(int k=0; k<img_conf.frequency.length; k++){
22/* get center frequency of k-th channel */
23double f = cr_ptr->get_frequency_by_index(n);
24

25/* get estimated values and print to stdout */
26double cr = cr_ptr->m_data[n][k];
27printf("%g\t%g\t%g\n", t, f, cr);
28}
29}

Listing 4. Energy and chirp-rate estimation, saving, and printing.

1 /* the memory should be cleaned
2 if the program does not end */
3 delete analyzer_ptr;
4

5 /* these objects can be removed after analyzer
6 initiation and signal introduction */
7 delete signal_ptr, filter_gen;
8

9 /* the resultant objects can
10 also be removed in this way: */
11 delete se_ptr, cr_ptr;

Listing 5. The memory cleaning.

V. CONCLUSION

In this paper, we have presented many estimators of signal
attributes such as: IF, GD, and CR, which are obtained using
narow band filter banks and based on STFT complex phase.
We have investigated them in the context of the analysis of
human’s speech which is an example of nonstationary and
multicomponent signal. Moreover, we have shown how these
estimates can be used for time-frequency reassignment and
synchrosqueezing.

Then, we have introduced the open source ccROJ project
[14], whose we are authors. This project contains the C++
implementation of all algorithms presented in this paper.
We have presented a simple sample program. We have also
introduced a novel type of imaging joining energy level and
phase acceleration in a single picture. This method is also
attached as a Gnuplot script to ccROJ project. Our future plans
in this field cover the use of the presented estimators for an
adaptive analysis in the time-frequency domain as well as the
continuation of ccROJ project maintenance and development.
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