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ABSTRACT:
The approach proposed in this study includes methods specifically dedicated to the detection of allophonic variation

in English. This study aims to find an efficient method for automatic evaluation of aspiration in the case of Polish

second-language (L2) English speakers’ pronunciation when whole words are analyzed instead of particular

allophones extracted from words. Sample words including aspirated and unaspirated allophones were prepared by

experts in English phonetics and phonology. The datasets created include recordings of words pronounced by nine

native English speakers of standard southern British accent and 20 Polish L2 English users. Complete unedited

words are treated as input data for feature extraction and classification algorithms such as k-nearest neighbors, naive

Bayes method, long-short term memory, and convolutional neural network (CNN). Various signal representations,

including low-level audio features, the so-called mid-term and feature trajectory, and spectrograms, are tested in the

context of their usability for the detection of aspiration. The results obtained show high potential for an automated

evaluation of pronunciation focused on a particular phonological feature (aspiration) when classifiers analyze whole

words. Additionally, CNN returns satisfying results for the automated classification of words containing aspirated

and unaspirated allophones produced by Polish L2 speakers. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

The analysis of allophones, representing very short

fragments of speech, which are defined as variants of pho-

nemes, is a field of speech analysis that still poses many

challenges (Mitterer et al., 2018; Recasens, 2012). Such a

“microscopic” approach to speech analysis opens new per-

spectives in numerous areas, e.g., pre-lexical processing in

spoken-word recognition, allophonic and phonemic identity

in speech recognition (Rabha et al., 2019), automatic evalu-

ation of pronunciation (Shahin and Ahmed, 2019), differ-

ences between speakers’ native regional accents (Aubanel

and Nguyen, 2010), or the evaluation of speech articulatory

disorders (Jiao et al., 2017) as it allows a more in-depth

speech analysis.

Recent studies on the quality of automatic allophone

evaluation utilize speech recognition technology, i.e.,

creating speech databases, feature extraction, machine learn-

ing (Almpanidis and Kotropoulos, 2007; Czy _zewski et al.,
2017a; Czy _zewski et al., 2017b; Dalka et al., 2014; Ge

et al., 2011; Korvel et al., 2021; Ge et al., 2011; Wei et al.,
2009), and to a lesser extent they concentrate on the mecha-

nism of the phenomenon (Korvel and Kostek, 2017; Korvel

and Kostek, 2018; Mitterer et al., 2018). Since articulation

is a much-debated topic (Dromey and Black, 2017; Illa and

Ghosh, 2020; Pandey and Shah, 2009; Shahin and Ahmed,

2019; Yu et al., 2019), the approach proposed in this study

includes methods specifically dedicated to allophonic var-

iants. The potential consequence of the lack of aspiration of

/p, t, k/ in the appropriate context is that they may be mis-

perceived by native English speakers as voiced /b, d, g/,

which can change the meaning of the word and lead to

miscommunication.

The aim of this study is to find an efficient approach for

the automatic detection of aspiration and its evaluation in

the speech of Polish second-language (L2) users of English

based on the analysis of whole words instead of extracted

allophones only. It should be noted that the phenomenon of

aspiration was selected as a focal point of this study since it
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c)ORCID: 0000-0002-1931-6852.
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is particularly difficult for Polish learners of English, both

perceptually and articulatorily. The basis of this study is pre-

vious research works performed by the authors (Czy _zewski

et al., 2017a; Piotrowska et al., 2018a; Piotrowska et al.,
2018b; Korvel et al., 2019). These works provided some of

the recordings and approaches to allophone parametrization.

In the study by Piotrowska et al. (2018b), a list of words

pronounced by native and non-native English speakers was

recorded, then edited and analyzed. Aspirated and unaspi-

rated allophones of voiceless plosive consonants were then

extracted from the recordings of English native speakers.

Automatic classification of aspirated and unaspirated /p, t, k/

allophones returned promising results. However, the experi-

ments pertained to the classification of allophones separated

from words by manual editing. In the present study, the

authors focus on the automatic recognition of aspiration

without extracting relevant allophones from the signal.

The process of segmentation of allophones is extremely

arduous. It also requires the phonology experts’ involve-

ment, which is a major difficulty for creating a sufficiently

large dataset for an automatic system that could provide pro-

nunciation evaluation feedback for the speaker. Few studies

address the issue of automatic allophone segmentation

(Almpanidis and Kotropoulos, 2007; Rafałko, 2016).

However, the proposed solutions cannot be efficiently

implemented. Aspiration is a time-based phenomenon, and

inaccuracies in segmentation may cause additional bias.

That is why the main goal of our work is to use whole words

as the input to the classification algorithms employing the

allophonic analysis of speech.

In the present work, k-nearest neighbors (kNN) and

naive Bayes methods are included for comparison with the

previous research (Piotrowska et al., 2018b). Since both these

learning algorithms belong to baseline classification methods,

in the current paper, the main emphasis falls on using more

state-of-the-art methods, such as long-short term memory

(LSTM), a type of recurrent neural network that deals with

sequential data (Salehinejad et al., 2018; Illa and Ghosh,

2020), and convolutional neural network (CNN) (Shahin and

Ahmed, 2019; Tsipas et al., 2020; Vrysis et al., 2020).

Moreover, different representations of audio signals, as

well as various algorithm configurations, were employed in

the course of the study to find the best combination of

signal/algorithm representation. The proposed speech signal

features were determined in three ways, i.e., first, low-level

signal descriptors were calculated according to their defini-

tions, then the mid-term and feature trajectories were built

upon these descriptors. Finally, a two-dimensional (2D) sig-

nal representation based on spectrograms was used. More

detailed information concerning signal representation is

included in Sec. III.

Two datasets employed in the experiments were based

on a list of English words compiled by three phonology

experts, whose task was to evaluate the correctness of aspi-

ration in the recordings auditorily. Nine native English

speakers with a standard southern British accent were first

recorded while reading the list of target words. Then, the

recordings of 2 Polish L2 English speakers were produced.

The L2 recordings were made in different conditions than

the ones containing the renditions by English native speak-

ers. The recordings are accessible online (Czy _zewski et al.,
2017b; Piotrowska et al., 2021).

There were two experiment phases, namely, experiment

I and experiment II. The first one concerns classifier training

and it included speech recordings of native English speak-

ers. The configuration algorithm settings, which returned the

best results on this dataset during experiment I, were then

utilized on the dataset containing Polish L2 English speakers

(experiment II).

The remainder of the paper is organized as follows:

Section II briefly introduces the concept of the phonetic/

phonological aspects of aspiration. The description of the

material used is contained in Sec. III, while the proposed

methodology of automatic assessment of aspiration (fea-

ture extraction and classification) is discussed in Sec. IV.

Section V evaluates the performance of the proposed

methods through the analysis of experimental results per-

taining to two different datasets. Concluding remarks are

presented in Sec. VI.

II. ASPIRATION

Aspiration has been traditionally defined in phonetic lit-

erature as an extra “puff of air” or breath following the

release of voiceless plosives /p, t, k/, e.g., Heffner (1950) or

Jones (1956). A slightly different approach is represented in

definitions referring to the so-called voicing lag, i.e., the

duration of voiceless period accompanied by glottal friction

between the stop release and the onset of F0 of the following

vowel, i.e., periodicity that reflects laryngeal vibration

(Lisker and Abramson, 1964). Aspiration in English, unlike

in, e.g., Hindi (Jensen, 2004; Islam, 2019), is allophonic.

The categorical (phonemic) distinction between /ph/ as ///

should, however, be maintained due to the presence of burst

energy in /ph/, which is absent in ///. Presumably, if a lan-

guage (e.g., Hindi) has a three-way stop contrast [p] vs [ph]

vs [b] misperception does not occur.

The English aspiration rule can be formulated as fol-

lows: voiceless stops are aspirated if: (a) a vowel follows,

(b) they are not preceded by /s/, (c) they are in the onset

position of a stressed syllable. Thus, the /p/ in pit is strongly

aspirated, whereas it is unaspirated in *spit, *play, and

*cap. An acoustic parameter representing pre-voicing, voic-

ing, and aspiration of stops is voiced onset time (VOT),

which can be negative, zero, or positive, respectively. It has

been established that the duration of the positive VOT in

English ranges from approximately 60 to 100 ms (Cho and

Ladefoged, 1999), and its extent depends on the immediate

phonetic environment and the place of articulation of the

plosive. This means that VOT is shorter after bilabials than

velars, which suggests that F1 transitions are important clues

for voicing perception (Benki, 2001). Polish and English

differ in their VOT implementation in cueing the contrast

between /b, d, g/ and /p, t, k/. Polish uses pre-voicing, or
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negative VOT values, for voiced /b, d, g/ and short-lag VOT

values for voiceless /p, t, k/ (Miko�s et al., 1978; Keating

et al., 1981). On the other hand, English contrasts short-lag

VOTs for voiced /b, d, g/ and long-lag VOTs for voiceless

/p, t, k/ (Lisker and Abramson, 1964; Keating et al., 1983).

Polish L2 English learners/speakers transfer pronunciation

habits from their native language, and they do not produce

sufficiently long VOT in English /p, t, k/ (Rojczyk, 2010;

Waniek-Klimczak, 2005). The consequence is that their

/p, t, k/ in English have short-lag VOTs and, as a result, are

perceived as voiced /b, d, g/ by native speakers of English.

Figure 1 shows the Polish word tak (English yes) and the

English word tack. Polish /t/ has 15 ms VOT, whereas the

English /t/ has 145 ms VOT.

Previous research has shown that Polish speakers can

imitate English long VOT in immediate imitation after the

model (Rojczyk, 2012). However, when the imitation was

distracted by asking participants to read random numbers

before imitating the model, the produced VOT was reset to

native Polish short-lag values. As already mentioned, aspira-

tion is particularly difficult for Polish learners of English, so

that is why the study is motivated by this aspect. It should

also be noted that Polish speakers were familiar with the

words they were reading, as knowing a word in L2 is impor-

tant in phonological analysis context (Woore, 2018).

III. MATERIAL

We tested the performance of various feature/

algorithms configurations using a set of recordings prepared

specifically for the purpose of this research. As already men-

tioned, two datasets were created. The first one included the

recordings of nine native (L1 mother tongue) English speak-

ers and was used for the training stage (experiment I). The

second dataset consisted of the recordings of native Polish

speakers of English. It was utilized only for testing (experi-

ment II) according to this study goal, whose aim is to arrive

at reliable methods of an automatic detection and evaluation

of aspirated allophones based on whole words.

A. Dataset I

The recording setup consisted of a shotgun microphone

and an audio recorder (Zoom H4). The audio files were

recorded with 44 100 S/s/16-bit resolution. The dataset

includes the speech of nine native English speakers of

Standard Southern British English. The set of target words

created by a phonology expert consisted of 30 words (15

aspirated and 15 unaspirated) is listed in Table I.

B. Dataset II

The second dataset consisted of 240 examples collected

in various conditions. All recordings were executed with

44 100 S/s/, 16-bit resolution. English speech (six words,

repeated twice) of 20 Polish speakers was captured.

FIG. 1. (Color online) Polish word tak (English yes) and English word tack. Polish /t/ has 15 ms VOT, and English /t/ has 145 ms VOT.

TABLE I. List of words used in experiment I (training) containing aspirated

and unaspirated variants of allophones.

Unaspirated Aspirated

speed peep

spit pit

spam pe.g.,

spark pack

sport park

steal team

still tick

step tent

stack tap

start task

ski keep

skin kid

sketch court

scan cat

scar cart
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The vocabulary set contained only words with aspiration, as

listed in Table II. L2 English speakers were familiar with all

target words. All renditions were auditorily rated by a pho-

nology expert, whose evaluation notes were treated as a ref-

erence in the other experiment. The best networks found

with the use of grid search were used for the classification of

these examples.

IV. PROPOSED METHODOLOGY

As already mentioned, recent studies on the quality of

automatic phoneme evaluation utilize speech recognition

technology, i.e., creating speech databases, extracting fea-

tures, applying machine learning (Almpanidis and

Kotropoulos, 2007; Adams et al., 2018; Czy _zewski et al.,
2017a; Czy _zewski et al., 2017b; Korvel et al., 2021;

Ge et al., 2011; Wei et al., 2009). The approach proposed

in this study includes methods dedicated explicitly to allo-

phonic variants, i.e., aspirated and non-aspirated ones.

A. Feature extraction and signal representation

In this section, we elaborate on the extraction of the

speech signal representations and features utilized in the

present research. Since we deal here with temporal signal

characteristics, it is worth to refer to other approaches to

feature extraction of temporal characteristics present in

the literature. Vrysis et al. (2020) point out that useful

structural information is usually hidden within frame-

based feature vector sequences, the so-called texture win-

dows. Incorporating and using this information into the

feature extraction process is called temporal feature inte-

gration (TFI). There exist other similar strategies, such as

enhanced temporal or statistical temporal integration

(Tsipas et al., 2015; Vrysis et al., 2020). Tsipas et al.
(2020) extracted a sequence of feature vectors (FVs) using

a time window when dealing with semi-supervised audio-

driven diarization. Subsequently, they aggregated these

FVs to form successive sequences of N aggregated vectors

(Tsipas et al., 2020).

In this study, low-level signal descriptors, two variants

of time-related parameters built upon these low-level signal

features, namely, mid-term statistics and trajectories of

acoustic features, and also a 2D (two-dimensional) speech

signal representation, i.e., spectrograms, are employed.

These approaches bring a different perspective in terms of

averaging information included in the speech signal over

time.

Our previous investigations of phonological pro-

cesses show that in order to determine the aspiration of

voiceless stop consonants, features, including energy

measures of temporal distribution, should be used

(Piotrowska et al., 2018a). The description of features

selected in the context of the present research is included

in the summary below. The corresponding low-level fea-

tures are given in Table III; they refer to the low-level

signal descriptors.

Most of the parameters presented in Table III are

extensively used as speech signal descriptors; several are

the features derived from the music information retrieval

(MIR) domain (Kim et al., 2005; Plewa and Kostek, 2015;

Rosner and Kostek, 2018). The choice of all these parame-

ters is justified because using speech features and music

descriptors provides a more effective phoneme and allo-

phone recognition than using them alone (Korvel and

Kostek, 2018; Korvel et al., 2019; Piotrowska et al.,
2018a). The first parameter in Table III refers to the num-

ber of samples included in the allophone. Temporal cen-

troid (TC) is the time average over the signal energy

envelope (Kim et al., 2005). Zero-crossing rate (ZCR)

reflects the number of times the signal crosses the time

axis. Root mean square (RMS) energy gives mean energy

in the analyzed signal frame. The parameters Nos. 5–28

are dedicated descriptors proposed by Kostek and her col-

laborators (Kostek et al., 2011). The first group of dedi-

cated parameters consists of the numbers of samples

exceeding levels r1, r2, and r3, where r1, r2, and r3 are

equal to RMS, 2RMS, 3RMS, respectively. These parame-

ters were calculated in two different ways: for the entire

short-time segment and ten sub-segments. Parameters

14–16 are the peak to RMS ratio calculated for the entire

short-time segment and ten sub-segments. The last group

of dedicated parameters is related to observing the thresh-

old crossing rate (TCR). The calculation procedure con-

sists in computing the number of signal crossings related

to zero, r1, r2, and r3 values.

As reported in Sec. II, aspiration of voiceless stops

occurs immediately before a vowel in the absolute onset of a

stressed syllable. Therefore, obtaining information pertain-

ing to energy distribution within the allophone is crucial.

Mid-term statistics cover general changes in features over

time and they are commonly used in speech analysis

(Giannakopoulos and Pikrakis, 2014; Smailis et al., 2016).

However, it should be noted that the analyzed phenomenon

of aspiration is associated with very short time segments

(about tens of ms). Hence, trajectories of signal features

related to a higher time resolution are also utilized. These

trajectories are a sequence of numbers containing informa-

tion on the occurrence or absence of aspiration in the speech

signal analyzed. Accordingly, we calculated these two var-

iants of parameters in terms of averaging them in the

TABLE II. List of words used in experiment II containing aspirated

allophones.

Aspirated

peck

park

turn

tent

court

cup

care
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TABLE III. List of low-level signal features used for the automatic evaluation of aspiration.

No. Feature Formula

1 Number of samples Indicates the number of samples included in the allophone

2 Temporal centroid (TC)

TC ¼

XM

k¼1

k xi kð Þð Þ2

XM

k¼1

xi kð Þð Þ2

where xi kð Þ are the samples of the ith speech segment, M is the segment length

3 Zero-crossing rate (ZCR)

ZCR ¼

XM

k¼2

s kð Þ � s k � 1ð Þ
�� ��

M � 1

where

s kð Þ ¼ 1 if xi kð Þ > 0

0 if xi kð Þ � 0;

�

where xi kð Þ are the samples of the ith speech segment, M – the segment length

4 Root mean square (rms) energy

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

k¼1

xi kð Þð Þ2

M

vuuuut
where xi kð Þ are the samples of the ith speech segment, M is the segment length

5� 7 Number of samples exceeding r1, r2,

and r3 threshold
pn ¼

countðsamplesexceedingrnÞ
length xi kð Þð Þ

where n ¼ 1; …; 3 and xi kð Þ represents the analyzed signal segment

8� 13 The mean (qn) and variance (vn) of

samples exceeding r1, r2, and r3

threshold averaged for 10 sub-

segments
qn ¼

X10

k¼1

pk
n

10

vn ¼

X10

k¼1

ðpk
n � qnÞ

9

where pk
n is a number of samples exceeding the level rn calculated in the k th sub-

segment, n ¼ 1; …; 3

14 PEAK TO RMS

PRMS ¼ maxf ðxi 1ð Þ ; jxi 2ð Þ
�� ��; …; jxi Mð Þ

�� ��g
RMS

where xi kð Þ are the samples of the ith speech segment, M is the segment length

15� 16 The mean (q) and variance (v) of

PEAK TO RMS averaged for 10

sub-segments

q ¼

X10

k¼1

PRMSk

10
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time domain. They are built upon the low-level features con-

tained in Table III.

In this research, we are focusing on automatic recogni-

tion of aspiration. Therefore, mid-term statistics are applied

to the whole word, without extracting allophones from the

speech signal. Let the vector x represent samples of the ana-

lyzed speech signal:

x ¼ x 1ð Þ; x 2ð Þ; …; x Nð Þ
� �

; (1)

where N is the sample number. The mid-term statistics

extraction process consists of three steps:

Step 1. Signal dividing into segments.

Step 2. Extraction of short-term features.

Step 3. Statistics calculation.

The feature calculation process starts with the division

of speech signals into short-time segments. The segment

length is 1024 samples, and the overlap between contiguous

segments is equal to 50%. The samples of the analyzed seg-

ment can be described as follows:

xi ¼ xi 1ð Þ; xi 2ð Þ; …; xi Mð Þ
� �

; (2)

where i is the frame number and M is the segment length.

The input signal was divided into short-term segments

with the length of, and the low-level features given in

Table III were calculated. Based on them the mid-term sta-

tistics, the feature trajectories are then calculated. The

length of the speech signal after the zero-padding procedure

equals 81 022 samples. It should be observed that zero-

padding is a technical requirement imposed in an indirect

manner by many deep learning frameworks. It is a standard

practice used if one has to ensure that all the data fit into a

tensor of a strictly defined shape which has to be the same

for all examples from the dataset. This step is also required

for CNNs because they, by definition, can only process data

frames of a fixed size. Zero-padding may potentially influ-

ence the internal state of recurrent neural networks if pad-

ding takes a significant portion of the word. Some studies

suggest such a phenomenon, especially if zero-padding hap-

pens at the end of an example (Dwarampudi and Reddy,

2019). This potential problem can be further addressed with

the addition of an attention mechanism to the recurrent neu-

ral network or a masking mechanism, but such modification

further complicates the neural networks, especially in com-

parison with plain CNNs.

Then the vector of low-level features is extracted from

each segment. As a result, we obtained 27 feature sequen-

ces. In the last step, the signal is divided into mid-term seg-

ments, and for each of them, the feature statistics are

calculated. The following pseudo-code presents the proce-

dure of dividing short-term feature vector into mid-term

segments:

TABLE III. (Continued)

No. Feature Formula

v ¼

X10

k¼1

ðPRMSk � qÞ

9

where PRMSk is peak to RMS ratio calculated in the k th sub-segment

17� 20 Number of signal crossings in rela-

tion to zero, r1, r2, and r3
c1 ¼

countðsamplescrossingzeroÞ
length xi kð Þð Þ

cn ¼
countðsamplescrossingrn�1Þ

length xi kð Þð Þ

where n ¼ 2; …; 4 and xi kð Þ represents the analyzed signal segment

21� 28 The mean (qn) and variance (vn) of

signal crossings in relation to zero,

r1, r2, and r3 averaged for 10 sub-

segments
qn ¼

X10

k¼1

ck
n

10

vn ¼

X10

k¼1

ðck
n � cnÞ

9

where ck
n is a number of signal crossings in relation to zero, r1, r2, and r3 calcu-

lated in the k th sub-segment, n ¼ 1; …; 4
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INPUT:

L1 – the number of short-term segments

L2 – the number of mid-term segments

PROCEDURE:

1 step bL1=L2c
2 n  1

3 segm  step� 2

4 WHILE ðn � L2Þ
5 PstartðnÞ  ðn � 1Þ � stepþ 1

6 PendðnÞ  ðn � 1Þ � stepþ segm

7 IF PendðnÞ > L1 THEN

8 PendðnÞ ¼ L1

9 END IF

10 n  nþ 1

11 END WHILE

OUTPUT:

Pstartð1Þ; …; PstartðL2Þ are the start edges of the mid-term segments,

Pendð1Þ; …; PendðL2Þ are the end edges.

The comment on the algorithm: symbol b�c denotes the floor function.

The number of mid-term segments is equal to 6. The follow-

ing mid-term statistics are employed: the mean value and

the standard deviation. As a result, the mid-term statistics

are a matrix, which is related to time-series features. The

matrix is converted into a single-column vector before these

statistics are submitted to the classifier. For this purpose, all

rows are transposed and concatenated to produce a single

column vector.

In order to obtain trajectories of low-level features, first

of all, a zero-padding technique is used. This technique con-

sists in padding the N signal samples by zeros:

y ¼ x 1ð Þ; …; x Nð Þ; 0; …; 0|fflfflffl{zfflfflffl}
Nmax�N

 !
; (3)

where Nmax is a sample number of the longest speech signal

used in the experiment.

After padding the signal by zeros (each up to 96 000

samples to cover the duration of the longest word in the

database), it is divided into short-time segments, and then

the acoustic features are extracted with frame 1024 samples

(approximately 20 ms) and overlap 256 samples (approxi-

mately 5 ms). This time resolution was chosen with regard

to the duration of the aspirated period, which may be as long

as 150 ms, while the duration of unaspirated stops may be as

short as 20 ms or less. In this setup, 27 features contained in

Table III were calculated. It is possible for the algorithms to

recognize patterns due to the duration of the word instead of

recognizing information characteristic for particular pho-

nemes since the zero-padding may emphasize such type of

temporal information. However, one has to stress that the

duration of a phoneme may be considered as one of the dis-

tinctive features useful for phoneme recognition (Hamooni

et al., 2016; Kazanina et al., 2018; Nahar et al., 2012).

Especially in Hamooni et al. (2016) and Nahar et al. (2012),

one can find that statistically, in terms of mean length, some

phonemes can be separated from others, and thus the length

of a phoneme becomes a viable parameter that can be

employed in a machine learning system for phoneme recog-

nition. This is as good source of information as any other

parameter such as spectral centroid or skewness. In combi-

nation with all other obtainable metrics, the length of the

phoneme may be one of the premises used to infer the type

of a phoneme.

Some classification algorithms may need a two-

dimensional representation of acoustic signals. An example

of such classifiers is a two-dimensional CNN (Brocki and

Marasek, 2015; Korvel et al., 2018; Korvel et al., 2019;

Saleem et al., 2019; Salehinejad et al., 2018; Vrysis et al.,
2020).

Therefore, speech recordings were also transformed

into a 2D domain by calculating the spectrograms. Since

input fed into a neural network has to be of uniform shape,

all audio recordings were padded with zeros to the length of

the longest recording. Additional zeros were appended to

the end of the audio signal. The sampling rate of recordings

is 48 kHz/s.

Various types of framing employed in spectrogram cal-

culation were checked for the purpose of hyperparameter

selection. Frames of lengths equal to 128, 256, 512, 1024,

and 2048 were tested. Similarly, the overlap factors of 0.05,

0.5, and 0.75 were also checked for their impact on perfor-

mance models.

The amplitudes obtained from the fast Fourier trans-

form were transformed to the logarithmic domain according

to the following formula:

spdB ¼ 20 log10 max spj j; spminð Þ; (4)

where spdB denotes a spectrogram in the logarithmic

domain, sp denotes the values of the spectrogram in the lin-

ear domain, and spmin determines the lowest possible value

of spdB. With the use of the last parameter, it is possible to

cut off the low-amplitude noises present in the recording

and force machine learning algorithms to focus on the com-

ponents of signals with greater amplitudes. In the case of

our research spmin is equal to

spmin ¼ max spj jð Þ=20e3: (5)

The last step was the scaling of spdB values to range

from 0 to 1 performed according to the following formula:

spdB ¼ spdB �min spdBð Þ
� 	

=max spdBð Þ: (6)

The spectrogram with normalized values is denoted as

spdB .

B. Classification methods

The machine learning methods used for the evaluation

of extracted features are described in this section. In the

experiment, we use two baseline algorithms, namely the

naive Bayes classification method and kNN, to assign the
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class of the unknown test object to the known object belong-

ing to the training class. These two methods were imple-

mented due to very promising results, which were obtained

at the previous stage of the research (Piotrowska et al.,
2018b). In the present study, we also employed state-of-the-

art methods using feature-based and convolutional neural

networks, including LSTM and CNN (Brocki and Marasek,

2015; Illa and Ghosh, 2020; Korvel et al., 2018; Korvel

et al., 2021; Saleem et al., 2019; Tsipas et al., 2020; Vryzas

et al., 2018; Vrysis et al., 2020). It is evident that CNNs

may be successfully exploited to learn and model high-

dimensional hierarchical signal/2D data representations as

well as 1D feature vectors (Deng et al., 2020; Vrysis et al.,
2020). CNN-based systems are also capable of modeling

temporal dependencies, which makes it possible to use them

in such tasks as synthesis of emotional speech (Choi et al.,
2019) or voice cloning (Partila et al., 2020). Especially the

latter CNN use example is important and should be thor-

oughly examined as in the future it may pose a potential

threat to biometric access control systems based on voice

recognition. There are examples of systems performing the

aforementioned sample tasks based only or mainly on CNNs.

Both of them rely heavily on capturing and processing the

temporal evolution of generated or processed audio signals.

Moreover, LSTM capability to learn acoustic-articulatory

mappings through a single acoustic-to-articulatory inversion

model, rather than building a separate speaker-specific model

(Illa and Ghosh, 2020), is advantageous when dealing with

real-life recordings of multi speakers. Tsipas et al. (2020)

proved that applying LSTM networks to several sequence-

to-sequence and sequence-to-vector classification scenarios

can provide a mechanism to incorporate temporal character-

istics into the diarization process successfully. Thus, based

on the proven advantages of these algorithms, we assumed

that CNN and LSTM might significantly enhance an auto-

mated evaluation of pronunciation focused on a particular

phonological feature (aspiration) when classifiers analyze

whole words.

1. Baseline classifiers

The naive Bayes classification method is based on the

Bayes theory (Ghosh et al., 2007). The test object is

assigned to the class with the maximum class probability.

The probability that a speech with the parameter vector z
belongs to a class ck (k ¼ 1…K, where K is the number of

classes) can be stated as follows:

P ckjzð Þ ¼
P zjckð ÞP ckð Þ

P zð Þ
: (7)

Gaussian kernel density is used to estimate the class

condition probability

P yjckð Þ ¼
Yd

j¼1

1

Lh

XL

i¼1

1ffiffiffiffiffiffi
2p
p e�1=2 yj�xijð Þ=hð Þ

 !
; (8)

where h is the bandwidth for the control of the smoothness

of the density curve (Chiu, 1991) and L is the number of

objects in the class ck. According to the k-Nearest

Neighbors (kNN) classification algorithm, the test set

objects are classified by calculating the nearest training

object distance. In this paper, the Euclidean metric is used.

The optimum number of nearest neighbors is established by

performing a series of preliminary tests.

2. Neural networks

The classification using neural networks was performed

with two types of neural networks, i.e., LSTM (Illa and

Ghosh, 2020; Tsipas et al., 2020) and CNN (Buduma and

Locascio, 2017; Vrysis et al., 2020). The recurrent LSTM

neural network was used in the classification employing

trajectory-based parameters, as such the network architec-

ture is suitable for the analysis of temporal data. CNN was

employed for the analysis of spectrograms (2D speech

representation). The topology of both networks is shown in

Fig. 2. Some hyperparameters related to those topologies

were changed in the course of a grid search to find the opti-

mal values for each of them.

Each network consists of four layers of neurons.

Additionally, CNN also contains two pooling layers after

each convolutional layer. The Kernel size of convolutional

layers was set to (3,3). The number of neurons and hyper-

parameters of the learning process was found by grid search.

Therefore, the number of neurons in Fig. 2 is denoted as nl1,

nl2, and nl3 for three consecutive layers placed before the

output layer consisting of two neurons. The output from the

network is encoded in one hot manner. One output corre-

sponds to one of two classes to which the input examples

are assigned: aspirated or unaspirated. To prevent overfit-

ting, the influence of the L1 and L2 regularization techni-

ques was also investigated to find out if it can be used to

enhance the performance of the model. The strength of

FIG. 2. Topologies of two types of neural networks employed for the classi-

fication of allophones. The number of neurons in the first three layers is

denoted as nl1, nl2, and nl3.
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regularization is determined separately by the regularization

coefficient for each type of regularization. More details

associated with investigated types of activation functions

and employed types of regularization may be found in the

literature (Buduma and Locascio, 2017; Geron, 2017). The

grid search was used to find the following hyperparameters:

• the numbers of neurons in each layer: nl1, nl2, and nl3,
• the activation function of neurons in neural networks: rec-

tified linear unit (ReLU) or exponential linear unit (ELU),
• the type of regularization: no regularization, L1 or L2 reg-

ularization with regularization coefficient set to 0.01, or

with both L1 and L2 regularization with the coefficient

set also to 0.01 for both types of regularization,
• the length of frame used for calculation of spectrogram

(only for CNN),
• the overlapping factor used for calculation of spectrogram

(only for CNN).

The tested architecture of the network was trained for

100 epochs. ADAM optimizer was employed as the learning

rate optimizer algorithm (Kingma and Ba, 2014). Each test

produced values of the accuracy of the network associated

with training, validation, and test sets. The accuracy of the

validation set was used to find the best performing architec-

ture of the neural network. The calculations were performed

with the use of TensorFlow and Keras machine learning

libraries in PYTHON programming language (Abadi, 2019;

Chollet, 2019).

V. EXPERIMENTS

As already mentioned, the presented study consists of

two experiments (experiments I and II), whose schema are

shown in Figs. 3 and 4. In experiment I, the recordings of

nine native English speakers were used in order to find the

proper setting configuration of the tested classifiers. The

dataset I was used for training, validation, and test in propor-

tions 7:2:1. A random split of data into training and testing

sets was used. In experiment II, dataset II, which consists of

the recordings of 20 Polish speakers of English was utilized,

and only the testing part with no training was executed.

Evaluation of aspiration is conducted at the level of isolated

words. The details of the entire process are described in the

following.

A. Experiment I—Training and classifier performance

In the first experiment (see Fig. 3), the feature extrac-

tion procedure proposed in Sec. IV A was performed. The

obtained mid-term statistics and trajectories of low-level

features are normalized to the range [0,1], and then divided

into two segments: the first one employed to train the model

and the other one to test this model. In order to verify the

statistical significance of the results of our calculation, the

cross-validation technique was used (Refaeilzadeh et al.,
2014).

1. Naive Bayes and kNN performance

The naive Bayes and kNN algorithms are employed as

they were used in our earlier studies on allophone classifica-

tion (Piotrowska et al., 2018b). The performance of these

learning algorithms is shown in Tables IV and V, where

FIG. 3. Schema of experiment I, in which the recordings of nine native

English speakers were used for training.

FIG. 4. Block-diagram of experiment II, where the recordings of 20 non-

native speakers were used for testing.

TABLE IV. Accuracy (Acc.) of classification of aspirated and non-

aspirated allophones for the mid-term parameters.

Allophone

Naive Bayes Acc. [%] kNN Acc. [%]

Mean STD Mean STD

/p/ 93.33 8.660 95.56 7.265

/t/ 88.89 10.541 97.78 4.410

/k/ 86.67 12.247 93.33 8.660

All 89.26 5.720 93.33 5.271

TABLE V. Accuracy (Acc.) of classification of aspirated and non-aspirated

allophones based on trajectories of low-level features.

Allophone

Naive Bayes Acc. [%] kNN Acc. [%]

Mean STD Mean STD

/p/ 47.78 14.814 53.33 15.811

/t/ 45.56 25.056 64.44 17.401

/k/ 46.67 25.981 70.00 17.321

All 45.56 13.744 66.30 11.954
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average results of allophone classification with regard to the

aspiration of a particular allophone and allophone group are

presented separately.

It is interesting to observe that much higher accuracies

were obtained for both naive Bayes and kNN when the mid-

term parameters were employed. Contrarily, the outcome in

terms of accuracies for the trajectories built upon low-level

features is relatively low. This means that these time-related

features may not be suitable for the naive Bayes and kNN

algorithms.

2. CNN and LSTM performance

It should be recalled that speech spectrograms were fed

to the CNN input, while LSTM employed trajectory-based

parameters.

Overall, the input dataset consisted of 384 examples.

The input dataset was split into three subsets: training, vali-

dation, and test set with proportions of 7:2:1, which gave the

training set of 268 examples, the validation set of 77 exam-

ples, and the test set consisting of 39 examples. During the

grid search, 256 combinations of parameters were tested.

The purpose of the validation set was to assess the perfor-

mance of the models, plus the fine-tuning of the hyperpara-

meters, which were used for the final evaluation of the

trained model.

The results obtained for the selected best combinations of

network parameters are shown in Tables VI and VII. Maximal

accuracies for the validation, training, and test sets are pro-

vided, ttrn denotes the time of training (in seconds), nl1, nl2,

nl3 refer to the number of neurons in layers shown in Fig. 2;

TABLE VI. Examples of the best sets of the topology parameters found through the grid-search with the use of a CNN. The best performing network is

shown in the first position.

ID

Max accuracy [%]

ttrn nl1 nl2 nl3 Act. func.

Learning rate
Regularization

lframeTraining Validation Test L1 L2

1 1.00 0.94 0.90 84.63 128 64 32 ReLU 0.001 0.01 0 512

2 1.00 0.92 0.90 46.47 32 16 8 ReLU 0.001 0.01 0 512

3 1.00 0.92 0.87 85.63 128 64 32 ReLU 0.0001 0.01 0 512

4 1.00 0.92 0.90 83.05 128 64 32 ReLU 0.001 0 0 512

5 1.00 0.92 0.87 85.66 128 64 32 ReLU 0.0001 0.01 0.01 512

6 1.00 0.92 0.90 56.79 64 32 16 ReLU 0.001 0 0.01 512

7 1.00 0.92 0.82 49.85 64 32 16 ReLU 0.001 0 0.01 256

8 1.00 0.92 0.85 76.23 128 64 32 ReLU 0.001 0 0 256

9 1.00 0.92 0.90 85.00 128 64 32 ReLU 0.0001 0 0.01 512

10 0.99 0.92 0.79 38.74 32 16 8 ReLU 0.001 0 0.01 256

11 0.97 0.92 0.90 83.60 128 64 32 ReLU 0.0001 0 0 512

12 0.93 0.92 0.85 47.71 32 16 8 ReLU 0.0001 0.01 0.01 512

TABLE VII. Examples of the best sets of the topology parameters found through the grid-search using an LSTM. The best performing network is shown in

the first position.

ID

Max accuracy [%]

ttrn nl1 nl2 nl3 Act. func.

Learning rate
Regularization

Training Validation Test Val. Trn. Test

1 1.00 0.92 0.87 71.65 64 32 16 ELU 0.001 0 0.01

2 0.98 0.90 0.82 80.94 64 32 16 ReLU 0.001 0 0.01

3 0.97 0.90 0.85 81.37 128 64 32 ReLU 0.001 0 0.01

4 0.96 0.90 0.85 79.08 16 8 4 ReLU 0.001 0 0

5 1.00 0.88 0.87 81.18 64 32 16 ReLU 0.001 0 0

6 0.99 0.88 0.82 76.89 16 8 4 ELU 0.001 0 0.01

7 0.98 0.88 0.87 75.01 16 8 4 ELU 0.001 0 0

8 0.97 0.88 0.72 89.19 128 64 32 ReLU 0.0001 0 0.01

9 0.96 0.88 0.85 82.83 16 8 4 ReLU 0.001 0 0.01

10 1.00 0.87 0.90 73.38 64 32 16 ELU 0.001 0 0

11 1.00 0.87 0.82 80.21 128 64 32 ReLU 0.001 0 0

12 1.00 0.87 0.87 71.38 32 16 8 ELU 0.001 0 0.01

13 0.99 0.87 0.85 70.58 128 64 32 ELU 0.001 0 0.01

14 0.99 0.87 0.87 29.53 64 32 16 ReLU 0.001 0.01 0.01

15 0.99 0.87 0.77 86.00 128 64 32 ReLU 0.0001 0 0

16 0.99 0.87 0.85 82.24 32 16 8 ReLU 0.001 0 0.01

17 0.98 0.87 0.85 82.80 32 16 8 ReLU 0.001 0 0

18 0.98 0.87 0.92 14.64 16 8 4 ELU 0.001 0 0
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the remaining columns contain the type of the utilized

activation function (act. func.), the learning rate, and the

values specified for L1 and L2 regularization parameters.

The length of the spectrogram frame is denoted as lframe

and the overlap factor was 0. For the CNN-based neural

networks, the activation function was a rectified linear

unit (ReLU) for all setups, while for the LSTM-based clas-

sifier two options were tested: ReLU and exponential lin-

ear unit (ELU).

B. Experiment II

In experiment II the best networks found with the use of

grid search in experiment I were used to classify aspirated

allophones in the case of Polish speakers (English L2 pro-

nunciation). Thus, only testing with no training was exe-

cuted. The block diagram of experiment II (test) is shown in

Fig. 4.

Dataset II consisted of 240 examples collected in differ-

ent conditions (different room, microphone, etc.) from

Polish speakers. All words were supposed to contain aspira-

tion. The auditory evaluation performed by a phonology

expert was used for reference in this task. Since in experi-

ment I, the highest scores were obtained for mid-term

parameters, thus only these descriptors were used in tests

employing kNN and naive Bayes.

The best accuracy with the expert’s evaluation obtained

for CNN was 74% and 65% for LSTM (all results are pre-

sented in Table VIII). This seems a reasonable level of gen-

eralization between datasets, which differ in time, size, and

acquisition conditions. The winning signal representation/

classifier combination is CNN with spectrograms fed at its

input. It also seems that LSTM should be exploited in fur-

ther analysis as the results are promising.

The one-way analysis of variance (ANOVA) test is

used to determine whether the differences between the clas-

sification accuracies obtained by different algorithms are

statistically significant. The test significance level equals

0.05. The ANOVA test results are given in Table IX, where

the significant differences are highlighted in bold font.

From the results given in Table IX, we may see that all

differences between the classification accuracies—except

those between naive Bayes and LSTM—are statistically

significant.

VI. CONCLUSIONS

The analysis presented in this paper shows the potential

for an automated evaluation of pronunciation focused on a

particular phonological feature (aspiration) for non-native

speakers based on whole words. The results obtained in

experiment I return satisfying results for automated classifi-

cation of words containing aspirated and unaspirated allo-

phones. The audio features selected for the detection of

aspiration in whole words seem appropriate because both

approaches, mid-term features and trajectories, can be used

for particular methods. The results of experiment II are

mostly compatible with the phonology experts’ ratings. The

best results were achieved for the CNN setup, while the

kNN method was not appropriate for this generalization

level. Since aspiration is a phenomenon specifically difficult

for Polish speakers (Miko�s et al., 1978; Keating et al.,
1981), the results may be treated as promising.

Contrarily, as the dataset of recordings contains only

Polish L2 speakers’ speech, it is not possible to conclude

how well the proposed method will perform for groups

with different mother tongues. However, this aspect will

be pursued in a future study, and recordings of aspirated

allophones of L2 English speakers will be made and then

tested.

Even though the datasets are relatively small, the list of

words was carefully compiled by phonology experts. Thus,

the approach proposed in the present study may be treated

as a kind of benchmark, especially focusing on CNN and

LSTM methods that could be utilized in automated support

in the pronunciation learning process. However, the applica-

tion of this task would require building a much larger corpus

of recordings made in various acoustic conditions in order

to guarantee the robustness of the evaluation systems and

the reliability of results.

It should also be noted that the overall performance of

both deep learning-based models was satisfactory, and the

LSTM-based scores did not differ in a drastic manner from

the performance of a CNN-based neural network, either.

However, examining the possible influence of zero-padding

is a very promising direction for future research, as there are

only a few papers related to this topic.

Moreover, in the future approach, we will follow the

work of Palaz et al. (2019) and search for relevant features

automatically employing convolutional neural networks

TABLE VIII. Classification accuracy [%] obtained in experiment II.

Method/Acc. [%] Naive Bayes kNN CNN LSTM

Mean 61.67 29.17 74.17 65

STD 48.72 45.55 43.86 47.8

TABLE IX. The result of the ANOVA test.

Methods/Acc. [%] Naive Bayes /kNN Naive Bayes /CNN Naive Bayes /LSTM kNN/CNN kNN/LSTM CNN/LSTM

F-value 56.99 8.73 0.57 121.54 70.69 4.79

F-value <0.00001 0.0033 0.4497 < 0.00001 < 0.00001 0.02908
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(CNNs) and reveal them as HMM states class conditional

probabilities at the CNN output.
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