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ABSTRACT The Lombard effect is one of the most well-known effects of noise on speech production.
Speech with the Lombard effect is more easily recognizable in noisy environments than normal natural
speech. Our previous investigations showed that speech synthesis models might retain Lombard-effect
characteristics. In this study, we investigate several speech models, such as harmonic, source-filter, and
sinusoidal, applied to Lombard speech in the context of speech enhancement. For this purpose, 100 utterances
of natural speech, and 100with the Lombard effect induced are used. The goal of this study is to check towhat
extent speech utterances based on these models are recognizable and at what SNR (Signal-to-Noise Ratio)
level threshold a particular model stops working. For this purpose, the synthesized models and Lombard
speech are mixed with babble speech and street noise recordings with different SNRs. The quality of these
models is measured, employing objective indicators as well as subjective tests. Since there is no standardized
measure to apply to enhanced speech, an objective measure of assessing the speech quality of a model
synthesizing Lombard speech characteristics, based on a feature vector, is proposed. Our approach is then
comparedwith the standardizedmetric used in telecommunications as well as with subjective test results. The
experimental investigations show the superiority of the source-filter models applied to synthesize Lombard
speech over other models utilized. Also, the measure proposed correlates more closely with the results of
the subjective evaluation than the outcomes from the ITU-T P.563 recommendation. This was checked with
a ANOVA statistical analysis.

INDEX TERMS Lombard speech, quality of experience, speech modeling techniques.

I. INTRODUCTION
When it comes to speech quality evaluation prediction, typi-
cally, two techniques are employed: objective measures and
subjective test results. The International Telecommunication
Union (ITU) brings several methods for speech quality eval-
uation. In some areas of telecommunications, objective mea-
sures are well-established [1], and they are compared against
subjective tests, which are also standardized (e.g., MUSHRA
test [2]). However, in some applications, there are no existing
objectivemeasures that are well-adapted to the given field [3].
The area of Lombard speech is one such an example [4].
Therefore, the primary focus of this study is to propose an
objective measure that correlates with subjective test results,
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which are superior over the final decision as to the quality of
speech.

One way to create an objective measure is by separately
checking the altered acoustic properties of a signal. An exam-
ple of using acoustic descriptors is presented in work by
Valentini-Botinhao et al. [4], where they determined which
modifications have a significant impact on the intelligibil-
ity of synthetic speech in noise. In this research, we use
a feature vector containing acoustic parameters to evaluate
the Lombard effect suggested in our previous studies [5].
We compared the performance of this measure with a stan-
dardized objective indicator as well as subjective test results.

The Lombard effect is admittedly a long-known phe-
nomenon, discovered in 1911 [6], and from that time on,
intensively researched and applied in many areas [7]–[10].
One of the shortest definitions of this effect refers to an
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involuntary increase of vocal response to the presence of
background noise. It should, however, be remembered that
the Lombard effect modifies not only the volume of the
uttered speech, but some other changes also occur such as a
fundamental frequency rise, formant frequency rise, spectral
tilt, duration of utterances (both elongation and shortening),
prosody alteration, etc. [11]–[13]. Moreover, it was also
reported that this effect, even though involuntary, may be
inhibited and trained in the presence of noise [14]–[16]. The
discussion between the spontaneous and inhibited Lombard
effect is still ongoing [13], [15]. Since the discovery was
related to the audiology domain, it is not surprising that the
first applications were related to speech-in-noise audiome-
try [15]. Interest in employing the Lombard effect in the
medical domain also led to improving low voice intensity in
Parkinson’s disease patients [17], [18], even though applying
elevated noise levels in humans for everyday communication
seems a challenging concept to be fully approved. Most of
both research and application areas are, however, related
to human (and human-computer) communication, telecom-
munications, etc. [9], [19], [20]. Especially important are
strategies for improving speech comprehensibility in noisy
conditions based on various techniques, including speech
modeling. It should be noted that the topic of this article
may also contribute to the Quality of Experience, a key factor
within telecommunications, Internet speech codec telephony,
and speech quality measurement [21], [22].

As mentioned earlier, several features of Lombard speech
have been identified in numerous studies, including raising
the fundamental frequency or shifting energy from lower
frequency bands tomedium and higher frequencies. Our work
focuses primarily on employing speech models to apply them
to Lombard speech without changing the parameters. Our
previous investigations have shown that the Lombard speech
model, based on dividing the speech signal into harmonics
and modeling them as the output of a SISO (Single-Input
and Single-Output) system whose transfer function poles are
multiple and inputs vary in time, retains Lombard effect
characteristics [5].We explore several speechmodels, such as
sinusoidal, and source-filter applied to modify the speech sig-
nal to be compared with our approach. In this study, we also
investigate whether the modeled speech is recognizable in
unfavorable noise conditions.

Representing a speech signal by a sinusoid with
time-varying amplitude and time-varying frequency is a
prevalent method in speechmodeling. A variety of techniques
for synthesis in sinusoidal speech modeling have been pro-
posed by researchers [23], [24]. The broad applicability of
the sinusoidal approach is the main reason that this modeling
technique is included in our research. In speech recognition
studies, the short-phase spectrum is still rather infrequently
taken into account. However, some scientists believe that the
phase-based representation contributes to speech intelligibil-
ity just as much as the corresponding power spectrum [25],
[26]. Moreover, Deng et al. pointed out that speech emotion
recognition and speech enhancement areas may benefit from

modifying the short-phase spectrum [26]. That is why, in our
work, sinusoidal models without phase preserving, and those
with phase preserving are created to compare their efficiency
in terms of speech quality measured in noisy conditions.
An alternative to the sinusoidal paradigm is the source-filter
model. The source-filter model is widely used in synthe-
sizing human speech, as well as musical instrument sounds
[27], [28]. We use this model for the research presented
here because it is capable of high-quality speech synthesis.
Also, the source-filter model is implemented in the most
popular vocoders which perform statistical parametric speech
synthesis [29]–[33]. However, it should be remembered that
the aim of this article is not to compare the implementation
effectiveness of vocoders, but to employ speech models
for synthesizing Lombard speech in the context of noisy
conditions.

The paper is organized as follows; first, the speech mod-
eling techniques are briefly described. Their presentation
includes three groups of models, i.e., the harmonic model,
source-filter model, and a model based on sinusoids. Then,
the overview of the experiments is shown with a block
diagram depicting all steps of the analysis performed. Fol-
lowing that, the methods employed for the quality evalu-
ation of the models implemented are shown. They consist
of applying objective and subjective measures. To that end,
the ITU-T P.563 recommendation and a method proposed
by the authors, based on acoustic parameters derived from
the speech signal, are applied and compared to modified
MUSHRA subjective test results. The ANOVA statistical
analysis is then utilized to check the correlation between the
objective and subjective test results. In Section 5, the data
analyzed are described, and the results of both objective and
subjective speech quality evaluations are presented. Then,
their statistical consistency is compared. Finally, conclusions
are drawn, and the continuation of these studies in the future
is outlined.

II. BACKGROUND ON SPEECH MODELING TECHNIQUES
In this study, the harmonic, source-filter, and sinusoidal mod-
els of Lombard speech are investigated. A description of each
model is given in this Section.

A. HARMONIC MODEL
For harmonic modeling, a generator system proposed by
Korvel and colleagues [5], [34] is used in this article. The
model is based on dividing the speech signal into harmon-
ics and modeling them as the output of a SISO system.
The impulse response hk (n) of the system is the 4th order
quasipolynomial, and is described by the following formula:

hk (n) = e−λkn1t
4∑

m=1

akm(n1t)m−1sin(2πkfkn1t + ϕkm)

(1)

where n is the discrete-time, 1t is the sampling period, k =
1, . . . , K (K refers to the number of harmonics), λk is the
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damping factor, fk is the frequency, and akm and ϕkm are the
amplitudes and phases respectively (m = 1, . . . , 4).
The inputs of the k th harmonic system can be described as

follows:

uk = [uk,1, uk,2, . . ., uk,L] (2)

where uk,i is the ith input value of the k th harmonic and is
calculated as the maximum amplitude of the ith period of the
k th harmonic, L is the period number of generated speech
signal. The detailed procedure of determining the inputs and
the distances between them is presented in a paper by Pyž et
al. [35].

B. SOURCE-FILTER MODEL
Based on the source-filter theory, the speech signal is pro-
duced by an excitation, which is then filtered by a vocal
tract shape. The vocal tract filter can be described as a linear
time-invariant system. The mathematical expression of the
speech signal model, denoted by y(t), which is an output
signal of such a system, is the following:

y (t) = h(t) ∗ x(t) (3)

where symbol ∗ refers to the convolution operation,

h (t) ∗ x (t) =
∫
∞

−∞

x (τ ) h (t − τ) dτ (4)

and h(t) is the impulse response of the system, and x(t) is the
input signal.

In this research, to achieve a high-quality speech model,
two models based on different architectures are constructed.
In both of them, the input signal is a pulse train with a
fundamental period.

1) SOURCE-FILTER MODEL WITH APERIODICITY PARAMETER
In the source-filter model, the excitation depends on a funda-
mental frequency (f 0); therefore, first, the f 0 contour is esti-
mated. For this purpose, a method based on both time interval
and frequency cues is used [36]. This method provides fun-
damental frequency and periodicity information within each
frequency band. The aperiodicity information is estimated
from the residuals between harmonic components and is
used to synthesize both the periodic and aperiodic signals.
Although in the source-filter theory, the source signal and the
vocal-tract filter are separated, under real conditions, there
is interaction between them. Therefore, the f 0 parameter
is included in the spectral envelope estimation algorithm.
The basic principles of this algorithm can be found in a
paper by Kawahara [37]. The algorithm extracts a smoothed
time-frequency representation. The reconstructed spectro-
gram is commonly known as a STRAIGHT spectrogram.

The estimated parameters (STRAIGHT spectrogram, ape-
riodicity, and f 0 parameter) are employed for model creation.
An overlap-add synthesis using minimum-phase impulse
response with group delay manipulations is used for this
purpose.

2) SOURCE-FILTER MODEL WITH WAVEFORM-BASED
PARAMETER
It is well-known that the human voice is not perfectly peri-
odic. This is why in speech synthesis, a mixed excitation sig-
nal containing an aperiodic signal should be applied. Accord-
ing to Morise [38], when a periodic signal is calculated as
the minimum-phase response, the model cannot represent the
phase of the input voice as the vocal tract response gener-
ally includes not only a minimum-phase response but also
a maximum-phase response. The author pointed out that to
accurately synthesize a voice, it is essential to extract the
phase of the input signal.

In this model, an instant of aperiodicity information,
waveform-based parameter is used. The model is realized
using a high-quality speech analysis, modification, and syn-
thesis system developed by Morise et al. [30]. It consists
of three analysis algorithms for obtaining speech parame-
ters and one synthesis algorithm that takes these parame-
ters as inputs. In the process of analysis, first of all, the
f 0 parameter and spectral envelope are estimated. As in
the case of the source-filter model described above (see
Subsection II.B.1), the f 0 information is also used in the spec-
tral envelope estimation process. The fundamental frequency,
spectral envelope information, and the signal waveform, are
used for estimation of the excitation signal. During the mod-
eling process, these estimations are incorporated. The details
of the algorithm implemented are presented in earlier works
by these authors [38]–[40].

C. SINUSOIDAL MODEL
According to the sinusoidal speech modeling technique, the
signal is represented as a sum of sinusoids whose frequencies
and amplitudes vary in time. In this research, the parameters
of the sinusoids are determined by tracking the spectral peaks,
as per the example given in Ellis [41].

1) SINUSOIDAL MODEL WITHOUT PHASE PRESERVING
The construction of the model begins with the construction
of the sinusoidal representation of the speech signal. For this
purpose, the Short-Time Fourier Transform (STFT) spectro-
gram, which is a visual representation of the signal spectrum
that varies with time, is used.

Let:

x = [x(1), x(2), . . . , x(N )]T (5)

be a sequence of samples of the analyzed speech signal, where
N is the number of samples per signal and [.]T represents the
matrix transpose operation.

Signal x (see Eq. (5)) is divided into short-time segments
with overlaps between adjacent segments equal to 50%, and
each segment is windowed with a Hamming window. The
length of a segment is equal to 512 points. The magnitude
spectrum of the l-th short-time segment (denoted by xl) is
obtained by the following formula:

|Xl (k)| =
1

MFT

√
(Xl (k) )2re + (Xl (k) )2im (6)
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where Xl (k) is the Fourier transform of the short-time seg-
ment xl , k = 1, . . .,MFT (MFT refers to the number of Fourier
transform coefficients), l = 1, . . .,L (L refers to the number
of short-time segments).

Based on the spectrogram, a speech analysis is performed,
which determines the stationary and deterministic parts of the
speech signal. For this purpose, frequencies and amplitudes
corresponding to local peaks in the spectrum are detected.
The other task is to determine which peaks belong to the
spoken signal. To achieve this, the list of detected peaks is
fed into a tracking procedure. According to this procedure,
for each frequency ωki in frame k we are looking for the
frequency ωk+1j in frame k + 1 is sought, which is closest
to such a frequency and whose absolute distance is less than
the threshold 1, i.e.:

|ωki − ω
k+1
j | < |ω

k
i − ω

k+1
p | < 1 (7)

where the |.| symbol refers to the absolute value ormagnitude,
i = 1, . . . ,Lk , (Lk – the total number of peaks in frame k),
j = 1, . . . ,Lk+1, (Lk+1 – the total number of peaks in frame
k + 1, and (p = 1, . . . ,Lk+1) ∩ (p 6= j).

If nomatch between frequencies is found, they arematched
to themselves, and their magnitudes are set to zero. As a
result, we obtain an interpolated peak magnitude for each
track point.

In the last step, speech signal resynthesis is performed. For
reconstruction, a sine wave oscillator bank developed by Ellis
is used [41].

2) SINUSOIDAL MODEL WITH PHASE PRESERVING
Most speech processing applications are based on the
short-time spectrum, while relatively little attention is paid to
the short-range phase spectrum. According to Abe and col-
leagues, the Instantaneous Frequency (IF) spectrogram more
clearly shows the harmonic structure of quasi-periodic signals
such as speech than STFT spectrograms [42]. The advantages
of including phase-related information in the speech vocoder
are listed in these works [43], [44].

In this model, instead of the STFT spectrogram, which
discards phase information, the IF spectrogram is used. The
harmonic frequencies based on the IF of a speech signal
are obtained by the technique proposed in work by Abe and
colleagues [45].

Resynthesizing consists of reading the series of frequency,
magnitude, and phase samples for a particular track. For this
purpose, the Matlab code developed by Ellis [41] is utilized.

III. EXPERIMENTAL SETUP
The main goal of the experiment was two-fold: first, to check
the level of recognizability of the speech models with the
applied Lombard effect, and to determine at what noise
threshold a particular model stops working. To that end,
a quality measure was introduced, based on a feature vector
derived from the signal analyzed, and then compared with the
standardized metric (as described in Section IV) as well as
with the MUSHRA test results. For this purpose, the models

given in Section II were created utilizing all recorded speech
utterances with the Lombard effect. The block diagram of the
experimental setup is presented in Fig. 1.

We use the following denotations of the speech models:
M1 – harmonic model,
M2 – source-filter model with an aperiodicity parameter,
M3 – source-filter model with a waveform-based parame-

ter,
M4 – sinusoidal model without phase preserving,
M5 – sinusoidal model with phase preserving.
Respectively, the denotations for the real speech signals are

the follows:
LS – utterance with the Lombard effect,
NS – original, natural speech utterance (non-Lombard).
The experiment consisted of two parts. In the first part,

an objective evaluation of the models was performed. The
models, as well as the real speech signals, were mixed
with babble speech and street noise recordings. Samples of
noise were taken from the YouTube platform. The following
signal-to-noise ratios (SNRs) were tested: −20 dB, −15 dB,
−10 dB, −5 dB, 0 dB, 5 dB, 10 dB, 15 dB, 20 dB.

IV. QUALITY EVALUATION TECHNIQUES APPLIED
The quality of the models created was measured, employing
both objective and subjective measures. In this research, two
objective indicators, being P.563, defined by ITU-T recom-
mendation [1], and a method based on acoustic parameters,
proposed by the authors, are employed. The subjective quality
evaluation is obtained by the method described in the ITU-R
BS. 1534-1 standard [2], known as MUSHRA (MUltiple
Stimulus with Hidden Reference and Anchors).

We decided to use P.563 metrics to calculate the speech
quality. It should, however, be remembered that P.563 is a
single-ended measure that does not require the source (orig-
inal) signal to compare. In contrast, double-ended measures
are based on the comparison of the original and the degraded
signal. In the case of our study, we have the original signal,
so double-endedmeasures – such as PESQ (Perceptual Evalu-
ation of Speech Quality) [46]–[48] – could have been be used.
However, the applicability of double-ended measures is lim-
ited in the context of our investigations as they will not return
accurate value metrics. Assuming that for one type of noise
and one type of speechmodification, there are four recordings
to be evaluated (i.e., without noise and modification, without
noise and with modification, with noise and without modifi-
cation, with noise and with modification), then there are two
possible ways of performing PESQ comparisons:

1) The first case refers to the situation in which there
is the original signal, without noise or modification,
and the degraded signal, which contains noise, and the
modification is applied – the PESQ algorithm will treat
the modification of the speech signal as degradation,
which does not suit the aim of our work.

2) The second case includes the original signal with or
withoutmodification, and the degraded signal is with or
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FIGURE 1. Block diagram of the experimental setup.

without modification, respectively, still, also with noise
applied. Under such conditions, speech modification is
not treated as degradation. The metric will show only
what the impact of the noise on the speech quality is.
But we will not get information on how the modifica-
tion potentially impacts the speech quality – which is
the factor that we would like to measure.

The above consideration shows why double-ended measures
cannot be applied to calculate the impact of modifications on
the speech quality measured in noisy conditions.

A. OBJECTIVE QUALITY LEVEL INDICATORS
1) ITU-T RECOMMENDATION P.563
One of the frequently used non-intrusive speech quality mea-
sures is defined by the ITU-T P.563 standard [1]. This mea-
sure is most often applied in telecommunications because
it performs a single-ended verification of the channel qual-
ity. This often enables quick and reliable system adaptation,
taking the channel quality into consideration. As an output,
P.563 measurements return aMean Opinion Score - Listening
Quality Objective (MOS-LQO), which shows quite a high
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FIGURE 2. The basic block scheme of the P.563 algorithm [1].

correlation with the Mean Opinion Score- Listening Quality
Subjective (MOS-LQS) values returned from the subjective
tests.

Each signal subjected to MOS measurement using P.563
must be pre-processed by using the model of the listening
device. In the next stage, a speech detector (VAD – Voice
Activity Detector) is used to mark the speech-related signal
fragments. Further on, the speech signal is subjected to a
series of analyses and assigned to a given class of distur-
bances. Parameterization of the signal in P.563 can be divided
into three basic functional blocks (ITU-T Recommendation
P.563 [1]) that correspond to the main classes of distortion:
• analysis of the vocal tract and speech unnaturalness;
in this case, it is possible to discern speech defects
separately for female and male voices and also identify
the so-called ‘‘robot’’ effect,

• analysis of strong additional noise; in this case, it is vital
to detect the static background noise floor, and noise
associated with the signal envelope,

• analysis of interruptions, mutes, time clipping, and cuts.
The basic block scheme of the P.563 algorithm [1] is shown

in Fig. 2.
In single-sided measurements, the MOS value is estimated

exclusively on the basis of the interference signal. In the case
of the P.563 standard, the use of a real expert listening to the
conversation on a test device should be simulated. This device
can be any receiver, e.g., a mobile phone. Since, in this case,
the degraded signal is not compared to the original signal, the
speech quality indicator depends on the listening device. It is,

therefore, an important element of the P.563 standard (ITU-T
Recommendation P.563 [1]).

The test signal must alsomeet the requirements specified in
the standard, so that it is possible to detect the speech quality
using the P.563 algorithm, including:
• the sampling frequency must be greater than or equal
to 8 kHz,

• the digital signal resolution must be 16-bit,
• the signal cannot be longer than 20 seconds, and the
speech content in the signal cannot be shorter than 3 sec-
onds.

Some research studies show a high correlation between the
MOS-LQS andMOS-LQO obtained with the P.563 algorithm
[49], [50], but different speech characteristics can be evalu-
ated here, for instance, speech naturalness or intelligibility.
P.563 measurement correlations with subjective tests also
depend on the speech sampling frequency – comparisons
show that a 16 kHz sampling frequency provides better cor-
relation in terms of naturalness and intelligibility [50]. This is
why the authors of this article used speech recordings resam-
pled to 16 kHz as an input of the objective measurements.

2) SPEECH QUALITY INDICATOR BASED ON ACOUSTIC
PARAMETERS
In our previous research related to Lombard speech models,
we suggested a set of parameters that let us evaluate the
Lombard effect in speech [5]. In this research, we propose
a measure of model quality, depending on these parameters.
The list of the signal descriptors is given in Table 1.
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TABLE 1. Acoustic parameters for evaluation of the Lombard effect in
models [5].

The parameters (see Table 1) include time and frequency
domain features. The frequency-domain parameters are cal-
culated from the Fourier spectrum. The speech signal is
divided into short-time segments with a 50% overlap, and
each segment is windowed with the Hamming window before
the parameters are calculated. A more precise description
of the parameters listed in Table 1 is given in the authors’
publications [51]–[53].

The measure of model quality is based on the normal-
ized distances between the parameters. The distances are
described by the following formula:

Dist =
N∑
i=1

| SDi (Lomb)− SDi(model) |
Max_par i

(8)

where N is the number (i.e., N = 106) of parameters,
SDi (lomb) is the standard deviation of the ith Lombard
speech feature vector calculated on short-time segments, and
SDi(model), the standard deviation of the ith feature vector of
the model derived from short-time segments, is calculated as
follows:

SDi =

√∑M
j=1 (rij − ri)

2

M − 1
(9)

where M is the number of short-time segments, rij – the jth

value of the ith feature vector, ri – the mean value of the ith

feature vector.
The Max_par i parameter is calculated as the maximum

value of the ith feature vector of the natural speech, i.e.:

Max_par i = max{rij (Lomb)} (10)

In the last step of measure construction, the distances (see
Eq. (8)) are normalized to the interval [1, 5], which corre-
sponds to the MOS-LQS scale.

B. SUBJECTIVE QUALITY EVALUATION
When it comes to speech models, a subjective test is an
essential element of the evaluation process, which allows
the quality of the obtained sounds to be assessed. There-
fore, a subjective evaluation of the speech models is also
included in this article. This evaluation is based on a modified
MUSHRA listening test. The modification applied will be
explained later on.

MUSHRA stands for MUlti Stimulus test with Hidden
Reference and Anchor. It is a test that performs a subjec-
tive comparison of multiple audio signals, and it is suitable
for intermediate audio quality [2]. MUSHRA is described
in ITU recommendation BS.1534-1 [2] and updated in
BS.1534-2 [54].

There are some requirements that describe the MUSHRA
test, for instance:

1) The sequence should not exceed 20 seconds to prevent
the listeners’ fatigue and to reduce the total duration of
the listening test;

2) In total, a session should not last for more than 20 min-
utes to avoid fatigue in judgments;

3) The set of signals should contain one reference signal
(full quality) and one low-pass filtered signal version
(the so-called anchor, typically with 3.5 kHz band-
width); additional anchors might be used optionally.

Despite the usability of MUSHRA, one should be aware of
potential biases that may occur when preparing test signals
and constructing the whole set to be evaluated [52]. In the
designed experiments, Zieliński showed systematic discrep-
ancies in the results in the MUSHRA test [55]. They refer to
stimulus spacing bias, centering bias, range equalizing bias,
contraction bias, and bias due to nonlinear properties of an
assessment scale. The possible biases that may occur in the
tests performed will be discussed in the Conclusion Section.

The authors of this work created the MUSHRA test using
the web interface and the Audiolabs’ MUSHRA application
[56]. It was installed on a web server and configured using
the following assumption: every page in the MUSHRA test
contains a single sentence of a single person with different
types of modifications with the same level and type of noise.

The test is available online. It was, however, modified to
it adapt to the quality of the presented signals. Test users
in the pre-test session reported that the clean (reference)
signal and the low-pass filtered anchors disturbed the overall
listening experience during the test, thus not allowing for the
correct quality assignment. The authors, therefore, removed
the reference signal and the anchor. That is why, in this work,
the test is referred to as a ‘‘modified MUSHRA test’’.

For the statistical analysis of the data obtained through the
MUSHRA method, the ANOVA (Analysis of Variance) test,
which is supported by the recommendation, was used [2].
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FIGURE 3. Estimated averaged MOS-LQO values for babble speech distortions (calculated for recordings
containing sentences). Denotations are as follows: speech models: M1 – harmonic model, M2 – source-filter
model with aperiodicity parameter, M3 – source-filter model with a waveform-based parameter, M4 – sinusoidal
model without phase preserving, M5 – sinusoidal model with phase preserving; real speech signals: LS – utterance
with the Lombard effect, NS – original, natural speech utterance.

V. EXPERIMENT RESULTS
A. DATA ANALYZED
The experiments are performed on recordings of four speak-
ers (two males and two females). The speakers were asked
to read 25 statements, which included 15 sentences in Polish
with different prosody (indicative, imperative, and question-
ing utterances) and 10 separate words. The sentences and
words used in the experiment are listed in the Appendix.
These statements were recorded in.wav audio files with the
following parameters: 48 kHz; 16 bit; mono. The recording
of utterances was carried out in a room with an acousti-
cally treated interior which suppresses reverberation. The
recording procedure was repeated twice: without additional
noise as well as with noise interference. To simulate noise
conditions, closed headphones were used. As a result, two
types of recordings: 100 statements of natural, normal speech,
i.e., non-Lombard speech and 100 with the Lombard effect,
were obtained.

B. RESULT ANALYSIS
The objective evaluation of the recordings was performed
separately for words and sentences. The obtained results
for the sentences are given in Tables 2-3. Scores rated the
same or higher in comparison with Lombard speech (LS) are
highlighted in bold font.

A graphical representation of the results given in Tables 2-3
for babble speech noise is presented in Figs. 3-4. A graphical
representation of the results given in Tables 2-3 for street
noise is presented in Figs. 5-6.

When referring to the speech-in-noise conditions, typi-
cally, speech utterances are analyzed in the context of the
occurrence of the Lombard effect. However, in this work,
separated words were also tested to see if the Lombard effect
could be applied to a single word, and if it could have an
impact on speech quality. The obtained results for record-
ings containing words are given in Tables 4-5, where the
scores rated the same or higher in comparison with Lombard
speech (LS) are highlighted in bold font.

TABLE 2. Estimated averaged MOS-LQO values for babble speech and
street noise distortions (recordings containing only sentences, not words
were used in the evaluation process).

TABLE 3. Estimated averaged quality scores for babble speech and street
noise distortions obtained by the method based on acoustic parameters
derived from speech (recordings containing only sentences, not words
were used in the evaluation process).

Since the results obtained for words are partly similar to the
results obtained for sentences, we do not show their graphical
representations.
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FIGURE 4. Estimated averaged quality scores for babble speech distortions obtained by the method based on
acoustic parameters (calculated for recordings containing sentences); denotations as shown in Fig. 3.

FIGURE 5. Estimated averaged MOS-LQO values for street noise distortions (calculated for recordings containing
sentences); denotations as shown in Fig. 3.

FIGURE 6. Estimated averaged quality scores for street noise distortions obtained by the method based on
acoustic parameters (calculated for recordings containing sentences); denotations as shown in Fig. 3.

According to the grading scale, the quality of sounds
which achieved an approximated score equal to 3, which
refers to ‘‘fair’’ quality, may be considered as slightly annoy-
ing. Based on this result, the answer may be given as
to at what SNR level threshold a particular model stops
working. The results indicate that this threshold is −5 dB
in the case of babble speech noise for both objective
quality evaluation techniques. For street noise distortions,
thresholds are 5 dB and 0 dB with respect to the P.563
indicator and the method based on acoustic parameters,
respectively.

Based on the objective results of the word model evalu-
ation (see Tables 4-5), the same SNR level thresholds were
established as in the case of the sentence model assessment

(i.e., −5 dB in the case of babble speech noise, in addition
to 5 dB and 0 dB for street noise distortions).

It is worth noting that with the addition of babble noise
of a very high volume, the MOS values at SNRs at −20 dB,
−15 dB, and −10 dB indicate that the sound quality is good
enough (see Tables 2, 4). However, these results are not
reliable because the estimated LS values are lower than the
NS values. In fact, the opposite is true, i.e., the LS values
at high noise levels should be higher than those of the NS.
This may be caused by the fact that the added babble noise
contains speech, and the quality ratings obtained refer to the
noise rather than to the signal.

The objective measures show that in most cases, the best
scores are achieved with both source-filter models and the
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TABLE 4. Estimated averaged MOS-LQO values for babble speech and
street noise distortions (recordings containing only words were used in
this part of the evaluation process).

TABLE 5. Estimated averaged quality scores for babble speech and street
noise distortions obtained by the method based on acoustic parameters
(recordings containing only words were used in this part of the
evaluation process).

model based on the sinusoids with phase preserving. In con-
trast, the measure based on parameterization shows a smaller
difference between the models than in the case of the P.563
indicator values. A listening test should be performed to
check whether the proposed measure overestimates the qual-
ity of the models, or the MOS-LQO underestimates it.

When comparing the obtained results to the state-of-the-
art, one can see that such a comparison in practice is not
straightforward. For example, Michelsanti et al. [57] reported
averaged scores of PESQ and ESTOI (Extended Short-Time
Objective Intelligibility) [58] measures for a deep-learning-
based system of audio-visual speech enhancement with the
Lombard effect applied. To elicit the Lombard effect, Speech
Shaped Noise (SSN) at 80 dB Sound Pressure Level (SPL)
was presented to the speakers while they were reading the
sentences [57]. It is worth noting that ESTOI scores, which
estimate speech intelligibility, range from 0 to 1, where high
values correspond to high speech intelligibility. When trained
on a narrow SNR range, for the audio-only case with the
Lombard effect (AO-L), the PESQ measurement returned a
value of 1.283, and the ESTOI was equal to 0.448. Contrarily,

TABLE 6. Subjective quality scores for babble speech and street noise
distortions; denotations are as follows: real speech signals: LS – utterance
with the Lombard effect, speech models: M0 s – source-filter model with
aperiodicity parameter, M3 – source-filter model with a waveform-based
parameter, M5 – sinusoidal model with phase preserving.

when the system was trained on a wide SNR range, the
averaged values were ranged between 1.346 (for−20 to 5 dB)
to 3.127 (for 10 to −30 dB) for the AO-L case. The ESTOI
values changed dramatically from 0.442 for−20 dB to−5 dB
SNR, up to 0.927 for a SNR range between 10 and 30 dB. So,
the relative performance of the systems at SNR ≤ 5 dB is
similar to that observed for the systems trained on a narrow
SNR range [57].

As seen from this discussion, not only the experimental
setup was different compared to our approach, but the analy-
sis also differs from that performed by us; thus a direct com-
parison is not possible. Even the observation of what SNR
value the model does not work at seems to be uncommon;
in the case of our research, the models stop working at a
threshold of −5 dB, in the work of Michelsanti et al. [57],
it refers to 5 dB.

C. SUBJECTIVE TEST RESULTS
An informal listening test showed that the quality of Lom-
bard speech models can be directly compared to the original
sound. Therefore, in the second part of the experiment, the
subjective quality evaluation was carried out. In the listening
experiment, the participants compared the performance of
different models to the natural utterances of Lombard speech
in noise. To ensure that the test session did not take more
than 20 minutes, four Lombard speech utterances consisting
of sentences uttered by four speakers were used. Also, only
the three models, which showed the best results in the first
part of the experiment (M2, M3, and M5) and Lombard
speech utterances, were evaluated. Because of the time con-
straint, only two types of noise recordings (babble speech and
street noise) were mixed with the speech models. In addition
to the above, the following SNRs were considered: −5 dB,
0 dB, and 5 dB. As a result, six test conditions corresponding
to combinations of noise types and SNRs were used in the
listening test. The average duration of the MUSHRA test
session was approx. 20 minutes. Twelve speech processing
experts from the Vilnius University Institute of Data Sci-
ence and Digital Technologies, and the Gdansk University
of Technology, Faculty of Electronics, Telecommunications
and Informatics took part in this test. The obtained results are
given in Table 6.

The subjective test results show (see Table 6) that original
recordings of Lombard speech are more intelligible in under
noise conditions than their models (except for one example,
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FIGURE 7. Subjective quality scores for babble speech noise; denotations as shown in Table 6.

FIGURE 8. Subjective quality scores for street noise; denotations as shown in Table 6.

which is highlighted in bold font). A visualization of the
subjective test results is given in Figs. 7-8.

In line with the results shown earlier (see Figs. 7–8), one
can observe that the SNR level threshold at which a particular
model stops working is 0 dB in the case of street noise.
In contrast, for babble speech noise, it is not possible to
determine such a threshold based on the experiment carried
out.

Results obtained by Michelsanti et al. [57] refer to two
types of subjective tests, namely the MUSHRA and speech
intelligibility tests. For an AO-L at−5 dB SNR, the result was
approx. 25 points, whereas for 5 dB SNR, results returned
approx. 50 points. Obviously, the intelligibility test also
depends on the SNR.Moreover, it was tested for several types
of words, i.e., color, letter, and digit. The mean intelligibility
scores are within the range of approx. 35% for a −20 dB
SNR to approx. 85% for a 5 dB SNR. Again, all analysis
conditions differ from those used by us, thus a straightforward
comparison is not possible. However, the MUSHRA scores
for street noise are low for a −5 dB SNR, and they are at the
same level as in work by Michelsanti et al. [57]. In contrast,
they are higher for a SNR equal to 5 dB for both street noise
and babble speech conditions.

Seshadri et al. [10] reported MUSHRA-based scores when
applying the Lombard effect to several vocoders. In order
to induce Lombard speech, background noise in the form
of nonstationary pub noise, with an A-weighted SPL of
approximately 80 dB, was presented to the speakers’ ears

with headphones while they were being recorded [10]. Scores
were shown for parametric vocoders (VOCs) for feature
extraction andMachine LearningModels (MLMs) for speech
modifications. The MUSHRA test aimed at evaluating the
Lombardness of the utterances from different VOC andMLM
combinations of a single sentence (same speaker and lin-
guistic content). All results were conditioned by the various
vocoders employed. The scores ranged between approx. 40
to 60 points of the mean Lombardness. Moreover, the CMOS
(ComparisonMeanOpinion Score) quality test was applied as
well as the so-called instrumental intelligibility test, given in
bits/s. Also, in this case, it is not possible to directly compare
the results reported by Seshadri et al. and the results obtained
in our study.

Lopez et al. [59] conducted two subjective tests on a glottal
vocoder and the STRAIGHT vocoder compared to natural
Lombard speech. The first listening session consisted in eval-
uating to what extent the vocoder speech samples resembled
natural Lombard speech on a continuous scale from 1 (none)
to 5 (very much). A pairwise comparison test, aimed at
evaluating the naturalness of the converted vocoder Lombard
speech samples, was used in the second subjective session.
The listeners were asked to indicate which of the vocoder
Lombard speech samples sounded more natural [59]. In the
results, the authors reported that glottal speech samples were
evaluated as better ones, however, with a larger median rate
in the case of the male speakers. The median was at the level
of 2 and 3 scores, translating into ‘little’ and ‘moderately’
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TABLE 7. Result of the ANOVA test (F -values) for MOS-LQO quality scores.

TABLE 8. Result of the ANOVA test (F -values) for quality scores obtained
by the method proposed.

TABLE 9. Result of the ANOVA test (F -values) for subjective quality
scores.

similar to a natural Lombard speech sample. This occurred as
some outliers in the listeners’ responses. Also, it transpired
that glottal vocoder Lombard speech samples were clearly
preferred in terms of naturalness. Both of the carried out tests
differ from those performed by us, thus a direct comparison is
not possible. It seems, however, that the speech samples may
be more easy to evaluate in the pairwise listening test than
in MUSHRA. Therefore, this type of subjective tests will be
utilized in our future studies [59].

D. STATISTICAL RESULTS
In order to check whether differences between the mea-
surements are statistically significant, a statistical analy-
sis of the results was performed. For this purpose, the
one-way ANOVA test was employed, which we used to mea-
sure the variation between the utterances with the Lombard
effect (LS) and their models. The null hypothesis (H0) states
that the utterance and its model are from populations with the
same means. The decision rule to reject this hypothesis can
be expressed by the following formula:

reject H0 if F > Fcritical(1− α) (11)

where F is the calculated test statistic, and Fcritical is the crit-
ical value taken from the F-distribution table. Details on how
to perform analyses using ANOVA as well as critical values
of F-distribution, are given in the textbook of Tabachnick and
Fidell [60]. The test significance level α equals 0.05 (based
on the ITU-R Recommendation BS.1534-1 [2]).

The test results are given in Tables 7-9. Differences that are
statistically significant are highlighted in bold font.

VI. CONCLUSION AND FURTHER INVESTIGATIONS
Based on the subjective test results, it can be observed that
in most cases, the sinusoidal model with phase preserving,
and both source-filter models hold a leading position when
it comes to mimicking natural Lombard speech features.

However, the ANOVA analysis shows that only the differ-
ences between the source-filter model with waveform-based
parameter and natural Lombard speech are statistically signif-
icant. In contrast, the statistical test shows that the difference
between the source-filter model with the aperiodicity param-
eter and natural speech is not statistically significant. Hence,
the superiority of source-filter models over other models uti-
lized is proved. This model may serve as a basis for Lombard
speech modeling. In a future study, various modifications to
this model will be tested to improve speech quality in adverse
noise conditions.

The results of the objective test defined by the ITU-T P.563
recommendation and the method based on acoustic parame-
ters, proposed by the authors, differ to some extent. Following
this, a listening test should be performed to check whether the
proposed measure overestimates the quality of the models,
or the MOS-LQO underestimates it. Based on the results we
obtained, it may be observed that the proposedmeasure corre-
lates more closely with the results of the subjective evaluation
than the outcomes from the ITU-T P.563 recommendation.
Moreover, when analyzing the results of the subjective test,
it was found that when babble speech was applied, the MOS
values at a SNR of −20 dB, −15 dB, or −10 dB were not
reliable.Meanwhile, our proposedmethodwas stable in terms
of signal quality in the presence of this noise. These facts
support the assumption that the measure proposed is a good
predictor of the Lombard effect, and it can be utilized as an
indicator of speech quality.

The experiment results show that the SNR level threshold
for which a particular model stopped working was −5 dB in
the case of babble speech for both objective quality evalu-
ation techniques. For street noise distortions, the thresholds
were 5 dB and 0 dB, respectively, for the P.563 indicator and
the method based on signal parameters. Meanwhile, in the
case of subjective evaluation, the threshold was 0 dB in the
case of street noise, and for babble speech noise, it was not
possible to determine based on the experiment carried out.
Even though the assumptions and conditions of our study
differ from other research works, we can conclude that the
outcomes of our research in the context of the threshold at
which the model stops working are better compared to the
state-of-the-art. As already said, results obtained by Michel-
santi et al. [57] refer to two types of subjective tests, namely
MUSHRA and speech intelligibility test. For the AO-L at
−5 dB SNR, the result was approx. 25 points, whereas
for 5 dB SNR returned approx. 50 points. Depending on
the distortion type and speech models tested, we have got
approx. 60 points in the MUSHRA test for the babble speech
distortion set to −5 dB, and for the 5 dB SNR case between
approx. 76 and 54 points. For the street noise distortion, the
results were, however, much lower, i.e., approx. 30 points for
−5 dB, and 60 points for 5 dB SNR.

With regard to subjective test scores, the results
are comparable to some extent to those achieved by
Michelsanti et al. [57]. Estimated averaged MOS-LQO val-
ues for babble speech and street noise distortions at 5 dB
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SNR (a case when recordings containing only sentences were
used in the evaluation process), depends to some extent on
the speech model used. So, for the source-filter model with
the aperiodicity parameter (M2) at the−20 dB SNR we have
got approx. 2.4 and for 5 dB approx. 3.4. This is an average
of the results obtained for all speech models in the case
of speech babble distortion. However, for the source-filter
model with a waveform-based parameter (M3) and babble
speech distortion, the highest value we have got was 4.06.
On the other hand, estimated averaged quality scores for
babble speech and street noise distortions obtained by the
method based on acoustical parameters derived from speech
were even higher, i.e., 4.69 for babble speech distortion and
4.83 for the street distortion. In both cases, this occurred for
the source-filter model with the aperiodicity parameter (M2).
In comparison, Michelsanti et al. [57] reported averaged
scores of PESQ between 1.346 (for −20 to 5 dB) to 3.127
(for 10 to−30 dB) for the audio-only case with the Lombard
effect (AO-L). In contrast, in our case we have got values
higher than 4.5 at 20 dB SNR. An important conclusion may
also be derived from the state-of-the-art; namely, it seems that
the converted speech samplesmay be easier for the subjects to
be evaluated in the pairwise listening test than in MUSHRA.

Overall, even though the processing and synthesis of Lom-
bard speech have made many advances over recent years,
there still exists a need to improve speech synthesis models
to make them more robust in adverse SNR conditions. There
are many areas of applications awaiting such a feature, i.e.,
hearing aid algorithms, speech enhancement, language under-
standing in noisy environments, and automatic conversion in
Text-to-Speech, to name a few. Based on the investigations
performed, two directions of study development are foreseen
by the authors. The first one, already mentioned, is to apply
modifications to the best speech synthesis model in order to
make it more robust over many SNRs, and the second one
concerns proposing a quality measure that is better suited for
speech in noisy environments than the measures contained in
the standard. As ITU-T Recommendation P.563 was initially
created for predicting the subjective quality of telephony
applications, thus this needs to be addressed.

APPENDIX
The list of sentences:

1) Wykonuj polecenia organów Straży Pożarnej i Policji!
2) Kieruj się w stronę wyjścia ewakuacyjnego!
3) Proszę jak najszybciej opuścić budynek!
4) Zakaz korzystania z wind!
5) Proszę wezwać ochronę!
6) Czy wśród nas jest lekarz?
7) Gdzie znajduje się najbliższe wyjście ewakuacyjne?
8) Gdzie znajduje się sprzęt gaśniczy?
9) Czy ktoś potrafi udzielić pierwszej pomocy?

10) Czy została wezwana karetka pogotowia.
11) Nie ma zagrożenia, to nie jest pożar.

12) W prawym skrzydle budynku zostało wyłączone zasi-
lanie.

13) Wszystkie pomieszczenia zostały przeszukane.
14) Winda uległa awarii, proszę poruszać się schodami.
15) Za chwilę nastąpi ewakuacja wszystkich osób z

budynku
The list of words:

1) korytarz
2) alarm
3) gaśnica
4) ewakuacja
5) wypadek
6) ochrona
7) lekarz
8) pojedynczo
9) zatrzymaj się

10) biegnij
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