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a Department of City and Regional Planning, Faculty of Fine Arts and Design, Siirt University, Siirt, Turkiye
b Department of Architecture, Faculty of Architecture, Gazi University, Ankara 06530, Turkiye
c Department of Urban Architecture and Waterside Spaces, Faculty of Architecture, Gdańsk University of Technology, Poland
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A B S T R A C T

In recent years, machine learning has been increasingly applied to achieve energy efficiency in buildings. This 
study analyzes the utilization of machine learning across the building life cycle by reviewing literature on 
building energy efficiency. In this context, a systematic literature search was conducted using the Web of Science 
(WOS) search engine, and 868 publications were found. The publications were analyzed according to their year, 
subject scope, and qualification results, and 84 publications were selected. These publications were discussed 
under five categories: objective function and control variables, programs, simulations, machine learning, and 
optimization algorithms. The relationships between these categories and each phase of the building life cycle 
were examined. The findings suggest that machine learning can effectively optimize factors related to energy 
efficiency and building sustainability throughout the life cycle, and it is anticipated that interdisciplinary studies 
incorporating machine learning will experience exponential growth in the future.

1. Introduction

Today, energy consumption, carbon emission, and climate change 
are rapidly increasing due to reasons such as the increasing use of 
heating and cooling devices in buildings, digitalization with artificial 
intelligence (International Energy Agency, 2024). As a result of 
increasing energy consumption and carbon emissions, the European 
Green Deal developed by the European Union adopted a strategy aiming 
to reduce carbon emissions by 55 % by 2030 and achieve zero carbon 
emissions by 2050 (European Commission, 2019; International Energy 
Agency, 2023). Three main sectors, namely industry, transport, and 
buildings, have a significant share in global energy consumption, and 
efficient energy use in these sectors is important for environmental 
sustainability (Chou and Bui, 2014).

The building sector accounts for 36 % of global energy consumption 
and 39 % of carbon emissions in construction, operation, and mainte-
nance processes (Dahiya and Laishram, 2024). Due to this high rate, the 

development of energy-efficient building strategies has gained impor-
tance. The Energy Performance of Building Directive (EPBD) was pub-
lished to increase energy efficiency in buildings, and a legal framework 
was established (Hashempour, Taherkhani and Mahdikhani, 2020). 
Accordingly, in addition to minimizing energy consumption and carbon 
footprints, buildings should be able to meet building targets such as 
Nearly Zero Energy Building, Net Zero Energy Building (NZEB), and 
Positive Energy Building (PEB), which are self-sufficient in energy 
consumption (Soheil Fathi, Srinivasan, Fenner, and Fathi, 2020; Kaya 
and Beyhan, 2024; Minelli, Ciriello, Minichiello, and D’Agostino, 2024; 
Takva, Çalışkan, and Çakıcı, 2022).

Energy consumption and carbon footprint are significantly reduced 
to achieve all these goals. Energy efficiency can be achieved by 
addressing all processes of the building, including the Life Cycle Stages 
(LCS) from the design phase of the buildings (Genc, Demircan, Beyhan, 
and Kaplan, 2024; X. Yang, Hu, Wu, and Zhao, 2018). In addition, in the 
studies on building LCS, it has been determined that the highest carbon 
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emission (+50 %) and energy consumption (80–85 %) in the LCS of the 
building takes place in the operating process. Alternative improvements 
should be made to reduce energy consumption in this process (Sharma 
et al., 2011). For this reason, in studies on the subject, it is necessary to 
examine the targets and control variables in line with the targets in 
studies involving each process by considering the building of LCSs one 
by one. Studies on building energy efficiency usually involve compre-
hensive optimization processes to improve building energy calculations 
and designs using simulation tools.

With technological advances, optimization studies carried out only 
through simulations are insufficient to ensure energy efficiency in 
buildings. The use of Machine Learning (ML), a subset of Artificial In-
telligence (AI), is becoming increasingly widespread in this field (Li 
et al., 2025; Liu and Chen, 2025; Ahmadi, 2024; Tien et al., 2022; 
Ardabili et al., 2022). Machine learning methods enable a large number 
of parameters to be generated simultaneously with high precision and 
optimum results to be obtained quickly (Chou and Bui, 2014). In this 
context, the study aims to analyze the publications reviewed in the 
literature according to the identified LCSs, focusing on machine learning 
applications for energy efficiency in buildings. It also categorizes and 
classifies the software, machine learning algorithms, optimization al-
gorithms, and objective functions used in each LCS.

Nomenclature and abbreviations

  LSM Least Squares Method
ACO Ant Colony Optimization LRNN Layered Recurrent 

Neural Network
AdaBoost Adaptive Boosting LSSVM Least Squares Support 

Vector Machine
AEL Adaptive Evolution 

Learning
LSTM Long Short Term 

Memory
AI Artificial intelligence MACO Multi-Objective Ant 

Colony Optimization
AIMMS Advanced Interactive 

Multidimensional 
Modeling System

MAPS Multi-Objective Adaptive 
Particle Swarm

ANFIS Adaptive Neuro-Fuzzy 
Inference System

MARS Multivariate Adaptive 
Regression Spline

ANN Artificial Neural Networks MEPSO Multi-Objective 
Evolutionary Particle 
Swarm Optimization

aNSGA-II Adaptive Non-Dominated 
Sorting Genetic Algorithm- 
II

MEVO Multi-Objective 
Evolutionary Algorithm

BP Back Propagation ML Machine Learning
BIPV Building Integrated 

Photovoltaic
MLP Multi-Layer Perceptron

BIM Building information 
modelling

MLR Multi-Linear Regression

CAD Computer Aid Design MOALO Multi-objective Ant Lion 
Optimization

CatBoost Category Boosting MODA Multi-Objective 
Dragonfly Algorithm

CMA-ES Covariance Matrix 
Adaptation Evolution 
Strategy

MOEAD Multi-objective 
evolutionary algorithm

CMVS Construction Management 
and Visualization System

MOGA Multi-objective genetic 
algorithm

CNN Convolutional Neural 
Network

MOO Multi-Objective 
Optimization

CO2 Carbon dioxide MOPSO Multi-objective Particle 
Swarm Optimization

DBN Dynamic Bayesian Network MOSA Multi-Objective 
Simulated Annealing

DCNN Deep Convolutional Neural 
Network

MSOPS-II Multi-Objective Scatter 
Search Optimization

DNN Deep Neural Network NN Neural Networks
DT Decision Trees NSGA-II Non-Dominated Shorting 

Genetic Algorithm-II
EFA- 

ANN
Electromagnetism-based 
Firefly Algorithm- Artificial 
Neural Network

NSPO Non-Dominated Shorting 
Particle Swarm 
Optimization

EPBD Energy Performance of 
Building Directive

NZEB Net Zero Energy Building

(continued on next column)

(continued )

ETR Extra Tree Regression OLR Ordinary Linear 
Regression

FL Fuzzy Logic PEB Positive Energy Building
FNN Feedforward Neural 

Network
PV Photovoltaic

GA Genetic algorithm PSO Particle Swarm 
Optimization

GBDT Gradient Boost Decision 
Tree

Q- 
Learning

Quality Learning

GBR Gradient Boost Regression QSVM Quantum Support Vector 
Machine

GenOpt Generic Optimization 
Program

RBF Radial Basis Function

GIS Geographic Information 
System

RF Random Forest

GLSSVM Generalized Least Squares 
Support Vector Machine

RFR Random Forest 
Regression

GPR Gaussian Process 
Regression

RL Reinforcement 
Regression

GSV Google Street View RNN Recurrent Neural 
Network

GWO Grey Wolf Optimization SHAP SHapley Adaptive 
exPlanations

HVAC Heating, ventilation, and 
air conditioning

SimaPro Simulation of Products

HypE Hypervolume Estimation 
Algorithm

SPEA− 2 Strength Pareto 
Evolutionary 
Algorithm− 2

IES-VE Integrated Software Virtual 
Environment

SVM Support Vector Machines

IDA ICE Indoor Climate and Energy 
Program

SVR Support Vector 
Regression

IDBEA Indicator-Based 
Evolutionary Algorithm

T-APSSA Thermodynamic 
Adaptive Particle Swarm 
Simulated Annealing

KNN K-Nearest Neighbor TGP Three Gaussian Processes
K Value Thermal Conductivity 

Value
TRNSYS Transient System 

Simulation Tool
LCA Life Cycle Assessment U Value Thermal Transmittance 

Value
LCS Life Cycle Stages UBEM Urban Building Energy 

Modelling
LEB Low Energy Buildings VisualSFM Visual Structure from 

Motion
LIDAR Laser Imaging Detection 

and Ranging
WWR Window-to-Wall Ratio

  XGBR Extreme Gradient Boost 
Regression

1.1. Background: machine learning in construction

Over the past 20 years, Life Cycle Assessment (LCA) has emerged as a 
widely adopted methodology for assessing and reducing buildings’ 
environmental impact and energy use. Since no single approach can 
comprehensively address the diverse challenges of the construction 
sector, LCA is employed to meet global emission targets and optimize 
building system energy use (Eleftheriadis, Mumovic, and Greening, 
2017). By evaluating energy consumption, emissions, and the techno-
logical performance of various materials and components, the building 
LCA framework offers significant advantages for enhancing design op-
tions and reducing environmental impacts (Proietti et al., 2013).

Advancements in software and information technologies have 
equipped researchers with powerful optimization tools to improve 
building life cycle performance (Gan et al., 2020). These tools facilitate 
using ML to optimize energy conservation and generation within 
building envelopes, enhancing energy efficiency across life cycle stages. 
While optimization studies using traditional software reduce energy 
consumption, they often face challenges, such as high error rates and 
significant time and resource demands, to achieve satisfactory results 
(Chou and Bui, 2014; Xu et al., 2021). Consequently, interest in 
data-driven building design methods has grown, with substantial 
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progress in their application (Gan et al., 2020).
ML has emerged as a leading data-driven method. ML enables sys-

tems to learn and improve from experience without explicit program-
ming, providing a versatile approach to solving complex problems 
(Hong, Wang, Luo, and Zhang, 2020). ML methods are broadly catego-
rized into three types: Supervised, Unsupervised, and Reinforcement 
Learning (Turner et al., 2020). Supervised learning is particularly 
prominent, involving models trained to predict outcomes based on 
labeled data (Bhamare, Saikia, Rathod, Rakshit, and Banerjee, 2021; 
Reddy and Babu, 2018).

Widely used ML algorithms include Artificial Neural Networks 
(ANN), Fuzzy Logic (FL), Support Vector Machines (SVM), K-Nearest 
Neighbor (KNN), Decision Trees (DT), and Random Forest (RF). These 
algorithms are highly effective for classification and regression tasks, 
with ANN and Random Forest achieving exceptionally reliable results. 
Machine learning approaches generally utilize many methods to reliably 
solve regression or classification problems. Supervised Learning is one of 
the most widely used areas of machine learning (Bhamare et al., 2021; 
Kabilan et al., 2021). This learning technique is a model that effectively 
learns how to predict from training data (Reddy and Babu, 2018). 
Among these, the ANN algorithm is a computational model inspired by 
the biological connections of brain neurons. It addresses multivariate 
correlations of complex problems by processing input-output relation-
ships learned from training data. ANN’s primary advantage over other 
AI techniques is its capability to generate multi-response functions, 
making it especially useful for building energy applications (Y. Lin, 
Zhou, Yang, and Li, 2018; May Tzuc et al., 2021).

1.2. Backgrounds: machine learning in the building envelope life cycle

With its low error rates and ability to handle multiple functions 
simultaneously, ML has proven effective in achieving rapid optimization 
results. It is widely used to enhance energy efficiency in buildings. ML- 
based optimization typically relies on simulation models, where nu-
merical simulations represent building systems, and mathematical 
optimization models identify the most energy-efficient envelope com-
binations (Mousavi, Villarreal-Marroquín, Hajiaghaei-Keshteli, and 
Smith, 2023). While ML algorithms are valuable for designing 
energy-efficient buildings, certain limitations necessitate further 
research to broaden their applicability and guide future optimization 
efforts (Gan et al., 2020).

This study explores life cycle stages defined by ISO 14040, including 
design, construction, operation (maintenance and control), and retro-
fitting, in the context of ML-driven energy efficiency within the building 
envelope. Wong et al. (2010) employed EnergyPlus software to optimize 
daylighting in office buildings in subtropical climates, creating an 
ANN-based model to calculate cooling and heating energy consumption 
(Wong, Wan, and Lam, 2010). Similarly, Chen and Yang (2017)
compared three ML algorithms, SVM, Multi-Linear Regression (MLR), 
and Multivariate Adaptive Regression Spline (MARS), to optimize resi-
dential building designs. The study found that SVM achieved the best 
prediction performance and nearly zero HVAC energy demand in Los 
Angeles (X. Chen and Yang, 2017). Lin and Tsay (2021) used 
Rhino-Grasshopper, Dodo, and Ladybug simulations combined with the 
ANN algorithm to evaluate facade daylight performance, enabling de-
signers to make informed decisions during the early design phase (C. H. 
Lin and Tsay, 2021). In another design-stage optimization study, Him-
metoğlu et al. (2022) used EnergyPlus and DesignBuilder simulations 
alongside ANN and genetic algorithms to reduce energy consumption, 
CO2 emissions, and life cycle costs in hospital buildings (Himmetoğlu, 
Delice, Kızılkaya Aydoğan, and Uzal, 2022).

Addressing both the design and construction stages, Bui et al. (2020)
identified insulation thickness and window-to-wall ratio (WWR) as key 
variables affecting heating and cooling loads using the EFA-ANN model 
for residential buildings (Bui, Nguyen, Ngo, and Nguyen-Xuan, 2020). 
Liu et al. (2021) concluded that parameters such as window and wall 

U-values and WWR significantly influence energy consumption using 
BP-ANN, RF, DT, and SVM algorithms in DesignBuilder and Revit sim-
ulations (Y. Liu, Chen, Zhang, and Feng, 2021).

Paudel et al. (2017) utilized TRNSYS simulations and an SVM algo-
rithm to predict heating loads in Low Energy Buildings (LEB) for the 
operation stage. The study highlighted that using relevant data signifi-
cantly improves prediction accuracy (Paudel et al., 2017). Bhamare 
et al. (2021) employed ANN, XGBR, RFR, ETR, Gradient Boost Regres-
sion (GBR), and CatBoost algorithms to evaluate building thermal per-
formance, identifying ANN as the most effective (Bhamare et al., 2021). 
Kabilan et al. (2021) optimized photovoltaic (PV) power generation 
using ANN and Bayesian optimization, achieving improved prediction 
accuracy through linear regression adjustments (Kabilan et al., 2021).

In studies spanning design, construction, and operation stages, Naji 
et al. (2016) employed genetic programming, ANFIS, ANN, and SVM 
algorithms to calculate residential building energy consumption. Insu-
lation material parameters, particularly U and K values, were critical 
factors in energy performance predictions, with ANFIS showing the 
highest accuracy (Naji et al., 2016).

For retrofitting, Ilbeigi et al. (2020) optimized energy consumption 
and costs in office buildings using ANN-BP and MLP algorithms with 
genetic and Levenberg-Marquardt optimization techniques. The study 
achieved a 35 % reduction in energy consumption by prioritizing user 
ratio and U-values (Ilbeigi, Ghomeishi, and Dehghanbanadaki, 2020). Si 
et al. (2019) combined ANN with optimization algorithms like MOSA 
and NSGA-II to improve energy efficiency and comfort in a tourist center 
(Si et al., 2019). Von Platten et al. (2020) analyzed facade changes in 
514 Swedish residential buildings using SVM and logistic regression to 
identify retrofitting opportunities and enhance building databases (von 
Platten et al., 2020).

Recent literature reviews have explored ML applications in energy 
efficiency. (Shan and Junghans, 2023) examined multi-objective opti-
mization (MOO) for facade design, while Mousavi et al. investigated ML 
tools for NZEB and PEB. (Hong et al., 2020) reviewed ML applications 
across building life cycle stages, and (Chalal, Benachir, White, and 
Shrahily, 2016) focused on ML strategies for retrofit planning. Despite 
this wealth of research, no study has comprehensively linked life cycle 
stages, objective functions, ML algorithms, and control variables.

This study addresses this gap by analyzing the following research 
questions:

(RQ1): Which life cycle stages do the analyzed papers address within 
the scope of ML?

(RQ2): What objective functions and control variables are predom-
inantly used in these life cycle stages?

(RQ3): What is the relationship between objective functions, simu-
lation, ML algorithms, and optimization algorithms in each life cycle 
process within the context of energy efficiency?

The methodology section outlines the systematic analysis process, 
while the results and discussion sections present insights into life cycle 
stages, objective functions, and ML applications. The conclusion syn-
thesizes findings and identifies future research directions for ML in 
building energy efficiency.

2. Research method

The synthesis analysis method was employed to examine publica-
tions that utilized ML and optimization tools across life cycle stages from 
design to retrofitting in the context of energy efficiency in building en-
velopes. The literature review was conducted using the WOS search 
engine, a widely recognized platform for academic publications. The 
final search was performed on April 14, 2024.

Literature Screening Process: 

1. In the initial stage, 868 articles and conference papers were identi-
fied using relevant keywords entered into the WOS database.

2. Publications spanning the period from 2010 to 2023 were selected.
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3. Results were filtered according to WOS categories, including "Energy 
Fuels," "Construction Building Technology," "Computer Science 
Artificial Intelligence," "Green Sustainable Technology," "Automa-
tion Control System," and "Architecture." This refinement reduced 
the total to 323 papers (Table 2).

Keyword Relationship Analysis:
VOSviewer 1.6.19 software was used to analyze keyword relation-

ships within the 323 papers. Co-occurrence networks were created to 
visualize the frequency and connection of keywords. Larger circles in the 
visualization represent more frequently used keywords, and thicker 
lines denote stronger co-occurrence relationships (Fig. 1).

Screening Criteria:
In the fourth stage, the titles, abstracts, and results of the 323 papers 

were reviewed in detail, and the following exclusion criteria were 
applied: 

1. Papers that did not utilize ML or optimization algorithms.
2. Papers unrelated to the building envelope.
3. Papers lacking sufficient information or findings relevant to the 

study’s objectives.

As a result, 84 papers meeting the criteria were identified. Of these, 
82 papers (including 80 articles and two conference proceedings) were 
comprehensively reviewed, and two review articles were analyzed 
separately.

Analysis and classification:
The objective functions of the selected papers were categorized into 

four groups: 

1. Energy
2. Environmental
3. Comfort
4. Cost

Control variables were classified based on the following: 

1. Building design
2. Climatic conditions
3. User factors (Occupancy)
4. Technical systems

The relationships between these factors were analyzed. Each paper’s 

software, simulations, ML algorithms, and optimization algorithms were 
systematically evaluated. In the conclusion section, a Sankey diagram 
visually represents the interconnections among these elements, linking 
objective functions, methodologies, and outcomes.

A comprehensive literature search was conducted using relevant 
keywords to identify publications. Initial results were collected based on 
predefined criteria and subjected to preliminary filtering. The publica-
tions were screened for their temporal relevance and alignment with the 
research subject. The dataset was refined to a manageable subset for a 
more detailed analysis. The articles were thematically categorized into 
subject categories and focus areas. Relationships between the main 
themes were identified, and detailed screening was conducted. Inclusion 
and exclusion criteria were applied to ensure the dataset’s quality and 
relevance. Data analysis involved examining the selected publications 
for patterns, trends, and interconnections. The objectives, variables, and 
methodologies were characterized, visualized, and integrated. Models 
and diagrams were developed to represent the findings, emphasizing the 
relationships between methods, objectives, and results (Fig. 2).

3. Results

This study analyzed the literature by categorizing the studies based 
on life cycle processes in the context of building energy efficiency. Ac-
cording to ISO 14040, life cycle processes are classified into four cate-
gories: design, construction, operation, and retrofit. While ML 
algorithms were employed for design and energy-oriented optimizations 
in the design phase, the operation phase primarily focused on energy- 
related studies. The selected literature was analyzed based on six cate-
gories: objective function and control variable, program, simulation, ML 
algorithm, and optimization algorithm. These five criteria have been 
utilized in various combinations in the literature to address different 
scenarios. Each criterion is examined in detail in this section.

The 82 selected articles examined various building typologies, 
including educational, commercial, hospital, tourism, sports centers, 
and 26 residential and 24 office buildings. Two studies were conducted 
at the urban scale within the ML and building energy analysis scope. 
Additionally, three studies utilized different building typologies to 
compare simulation and algorithmic data (Table 3). Residential and 
office buildings constitute approximately 60 % of all building typologies 
analyzed in the reviewed publications.

According to ISO 14040, life cycle stages are classified into four 
categories: product (A1-A3), construction (A4-A5), use (B1-B7), and 
end-of-life (C1-C4). In the reviewed articles, no studies were found 

Table 1 
Classification of the most widely used machine learning algorithms (Khan, Kim, Shin, Kim, and Youn, 2019; Sarker, 2021).
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addressing the product and end-of-life stages. This study considers the 
life cycle stages in four main phases: the design phase (between product 
and construction), the construction phase, the operation phase (within 
the use stage), and the retrofitting phase. Since 2019, studies have been 
increasing, covering all stages, particularly operation and design 
(Fig. 3a). In this context, as stated in Research Question 1 (RQ1), the 
distribution of studies focusing on different life cycle phases within the 
scope of ML is presented in the graph below.

In 82 studies analyzing the use of ML for energy efficiency in 
buildings within the scope of life cycle processes, the operation phase 
was the most dominant, addressed in 42 articles, followed by the design 
phase in 36 articles, the retrofitting phase in 25 articles, and the con-
struction phase in 8 articles. Notably, no study focused solely on the 
construction phase within the context of land consolidation. However, 
the construction phase was considered in a total of eight studies, in 
combination with the design and operation phases (Fig. 3b).

3.1. Objective Function and Control Variable

As a result of the literature review, objective functions in studies on 
energy efficiency have been classified into four main categories. This 
study identified energy (saving, consumption, and generation), cost, 
carbon, and comfort (daylight, thermal, and others) as the primary 
objective functions of energy efficiency. Fig. 4a presents the sub-
categories of these main objective functions. For the building to be 
energy-efficient, it should minimize energy consumption and maximize 

both renewable energy generation and energy saving within the context 
of the energy parameter (Buratti, Lascaro, Palladino, and Vergoni, 
2014). In terms of comfort, ensuring energy efficiency in the building 
envelope involves considering thermal comfort conditions (Hosamo, 
Tingstveit, Nielsen, Svennevig, and Svidt, 2022), daylight comfort (Y. 
Lin et al., 2021), and other comfort parameters (e.g., acoustics, air 
quality). These are important factors for reducing energy consumption 
and ensuring efficiency (Batres, Dadras, Mostafazadeh, and Kavgic, 
2023; Bi, Liu, Gao, and Zhao, 2023; Chegari et al., 2021; Soheil Fathi and 
Srinivasan, 2019; Hussien et al., 2023; Li and Yao, 2020; Melo, Cóstola, 
Lamberts, and Hensen, 2014; Seo, Yoon, Mun, and Cho, 2019; Tsay, Yeh, 
Chen, Lu, and Lin, 2021). Many studies in the literature simultaneously 
target multiple objective functions. In this context, across all studies on 
life cycle processes, energy consumption (54 %) within the energy 
category (81 %), thermal comfort (41 %) within the comfort category 
(56 %), cost (18 %), and carbon (12 %) account for the majority.

RQ2: What objective functions and control variables are predominantly 
used in these life cycle stages?’, when examining the study, it was found 
that in studies on the design phase, energy consumption (70 %) within 
the energy category (80 %) and daylight comfort (50 %) within the 
comfort category (70 %) were the primary focus. In the construction 
phase, studies predominantly addressed the energy category (87 %) and 
thermal comfort (50 %), while no studies on daylight comfort or carbon 
were identified. In the operation phase, the energy category (60 %) and 
energy savings (24 %) were examined, along with thermal comfort 
(56 %) within the comfort category (60 %); however, no studies on 

Table 2 
Keywords used in the literature review.

Database Keywords Result

All Fields AND Scope AND Topic

WOS “Machine learning” OR 
“Artificial intelligence” OR 
“ANN” OR 
“Artificial neural networks”

 “Envelope” OR 
“Façade”

 “Energy” OR 
“Consumption” OR 
“Generation” OR 
“Optimization”

868

The total year 2010–2023 Screening 
Relevant WOS Categories Abstract Screening 
Total Full-Text Screening

715 
323 
84

Fig. 1. Yearly density analysis of keywords in the papers whose abstracts were analyzed.
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daylight comfort were found. In the renovation phase, studies on energy 
savings (70 %) and carbon (48 %) were conducted within the energy 
category (100 %), while no studies on thermal comfort were identified 
(Table 4).

In ML studies on building energy efficiency, the careful selection and 
structuring of control variables are crucial for achieving accurate 
objective functions. This study identified and categorized four primary 
control variables based on a review of the literature: building design, 
climate, technical systems, and user behavior (Fig. 4b). Each control 
variable was assessed across all studies and analyzed about its applica-
tion during the design, construction, operation, and retrofit phases of the 
building life cycle (Table 5). The findings indicate that building design 

was the most frequently utilized parameter, appearing in 85 % of all 
studies. Additionally, climate conditions were used as a control variable 
in 58 % of the studies. Building design was incorporated in 100 % of the 
studies focusing on the design, construction, and retrofit phases, while 
climate conditions (80 %) emerged as the dominant parameter in studies 
addressing the operation phase.

3.2. ML Algorithm

ML encompasses a range of techniques capable of identifying pat-
terns in data to predict future outcomes and execute various decision- 
making mechanisms under uncertainty. In the literature, 48 distinct 
ML algorithms have been applied within the life cycle processes context 
of building energy efficiency. These algorithms are classified into 13 
subgroups based on their application areas within the broader ML cat-
egories of Supervised Learning, Unsupervised Learning, and Reinforce-
ment Learning. The subgroups include Neural Networks (NN), SVM, DT, 
Bayes-based methods, KNN, Logistic Regression, Linear Regression, 
SVR, Ensemble Regression, Gaussian Processes, Boosting Regression, 
Unsupervised Learning, and Reinforcement Learning (Fig. 5a). Among 
all studies, supervised learning techniques trained with labeled data 
were the most frequently used, with NN (67 %) being the dominant 
approach, followed by DT (19 %), Linear Regression (16 %), and SVM 
(14 %). In contrast, Unsupervised Learning and Reinforcement 

Fig. 2. Methodology flowchart.

Table 3 
Distribution of building typologies in the analyzed publications.

Building Type Number in the 
Literature

Building Type Number in the 
Literature

Count Perc. Count Perc.

Residential 26 31 % Urban scale 2 2 %
Office 24 29 % Tourism 1 1 %
Education 9 11 % Sport center 1 1 %
Commercial 4 5 % Different typology 3 5 %
Hospital 2 2 % Unexplained 10 13 %

Fıg. 3. Distribution of the analyzed publications on the LC stages by years, relationships of the analyzed publications in the context of LC stages.
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Learning, which are typically applied in dynamic optimization prob-
lems, were used in only 2 % of the studies (Fig. 5b).

In the design process of ML algorithm applications for building en-
ergy efficiency, NN ranked first with 65 %, followed by Linear Regres-
sion, SVM, and DT. Unsupervised Learning algorithms were employed 
exclusively in the design phase across all processes. In the construction 
phase, NN (75 %) was the most frequently used algorithm, followed by 
SVM (25 %), DT (25 %), and Linear Regression (25 %). During the 
operation process, NN remained dominant (68 %), followed by DT 
(16 %) and Linear Regression (12 %). In the retrofit process, NN was 
again the most utilized algorithm (70 %), followed by DT (21 %), SVM 
(14 %), and Boosting methods (14 %). No Reinforcement Learning (RL) 
algorithms were identified in the design, construction, or retrofit phases. 
Furthermore, Gaussian Processes and K-Means algorithms were applied 
solely in the design phase and were absent from other phases (Table 6).

3.3. Program

The use of programming languages plays a crucial role in ML studies. 
A literature review revealed five distinct programming languages 
employed across the studies. MATLAB emerged as the most frequently 
used, accounting for 34 % of the studies, followed by Python at 24 %. 
However, 37 % of the publications did not provide details regarding the 
programming language utilized. MATLAB, Python, and Delphi were 
used in studies focused on the design phase, while only MATLAB was 
used in studies addressing the construction phase. No other program-
ming languages were found in this context. In studies related to the 
operation phase, both MATLAB (44 %) and Python (28 %) were utilized. 
Finally, in the retrofit phase, MATLAB (35 %) and Python (28 %) were 
the predominant programming languages, with one study employing the 
R language (Table 7).

Fig. 4. Classification of (a) objective functions and (b) control variables analyzed in publications in the context of energy efficiency.

Table 4 
Distribution of the analyzed studies according to their objective functions.

Objective Function All study Design Construction Operation Retrofit

Count Perc. Count Perc. Count Perc. Count Perc. Count Perc.

Energy 67 81 % 16 80 % 7 87 % 15 60 % 14 100 %
Saving 20 24 % 5 25 % 2 25 % 6 24 % 10 70 %
Consumption 45 54 % 14 70 % 5 62 % 5 20 % 2 14 %
Generation 12 14 % 2 10 % 2 25 % 4 15 % 3 21 %
Carbon 10 12 % 2 10 % 0 0 % 2 8 % 6 42 %
Cost 15 18 % 3 15 % 1 12 % 2 8 % 4 28 %
Comfort 46 56 % 14 70 % 4 50 % 15 60 % 3 21 %
Daylight 13 15 % 10 50 % 0 0 % 0 0 % 3 21 %
Thermal 34 41 % 5 25 % 4 50 % 14 56 % 0 0 %
Other 2 2 % 1 5 % 0 0 % 1 4 % 0 0 %

Table 5 
Distribution of the analyzed studies according to control variables.

Control Variable All study Design Construction Operation Retrofit

Count Perc. Count Perc. Count Perc. Count Perc. Count Perc.

Building design 71 85 % 20 100 % 8 100 % 16 64 % 14 100 %
Climate condition 49 58 % 12 60 % 4 50 % 20 80 % 6 42 %
Technical system 9 10 % 0 0 % 0 0 % 4 16 % 3 21 %
Occupancy 10 12 % 2 10 % 0 0 % 4 16 % 1 7 %
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3.4. Simulation Tools

A total of 33 different simulation tools were utilized in the literature 
reviewed to apply ML in the context of energy efficiency in buildings. 
These simulation tools are categorized into nine groups based on their 
functionalities within the scope of this study. The categories include GIS 
and spatial analysis, solar energy and lighting, optimization, city-level 
tools, ML tools, building modeling, building energy simulation, visual-
ization and modeling, and LCA tools (Fig. 6). Among all the publications, 
building energy simulation tools were the most frequently used for 
analyzing building energy consumption and thermal performance. 
Building energy simulation and modeling tools were most commonly 
employed in the design and construction phases, depending on the 
process and objectives. In the operation phase, ‘building energy simu-
lation’ was predominantly used. Building energy simulation, GIS and 

spatial analysis (for spatial data analysis), and optimization tools (for 
optimizing design processes) were most frequently utilized in the retrofit 
phase.

3.5. Optimization Algorithm

In ML studies, optimization algorithms are essential for achieving 
optimal results. In this context, 42 different optimization algorithms 
were utilized in the studies reviewed. These algorithms are categorized 
into seven distinct groups based on their fundamental working princi-
ples, application areas, and usage contexts: Evolutionary Optimization, 
Swarm Intelligence Optimization, Deterministic Optimization, Multi- 
Objective Optimization, Rule-Based and Agent-Based Models, 
Simulation-Based Optimization, and Other Optimization Algorithms 
(Fig. 7). Evolutionary Optimization, capable of solving complex and 

Fig. 5. (a) Classification of ML algorithms used in energy studies in buildings, (b) Number of ML algorithm classes used in LC processes.

Table 6 
Distribution of ML algorithms used in the analyzed studies.

ML Algorithm All study Design Construction Operation Retrofit

Count Perc. Count Perc. Count Perc. Count Perc. Count Perc.

NN 56 67 % 13 65 % 6 75 % 17 68 % 10 70 %
SVM 12 14 % 4 20 % 2 25 % 2 8 % 2 14 %
DT 16 19 % 4 20 % 2 25 % 4 16 % 3 21 %
Bayes-Based 2 2 % 0 0 % 0 0 % 1 4 % 0 0 %
K-Nearest 3 3 % 0 0 % 0 0 % 2 8 % 0 0 %
Logistic Reg 2 2 % 0 0 % 0 0 % 1 4 % 1 7 %
Linear Reg 14 16 % 6 30 % 2 25 % 3 12 % 0 0 %
SVR 3 3 % 0 0 % 1 12 % 0 0 % 0 0 %
Ensemble Reg 2 2 % 1 5 % 0 0 % 1 4 % 0 0 %
Gaussian Pro 2 2 % 1 5 % 0 0 % 0 0 % 0 0 %
Boosting 7 8 % 2 10 % 0 0 % 2 8 % 2 14 %
RL 2 2 % 0 0 % 0 0 % 2 8 % 0 0 %
K-Means 2 2 % 2 10 % 0 0 % 0 0 % 0 0 %

Table 7 
Distribution according to the programs used in the studies examined.

Program All study Design Construction Operation Retrofit

Count Perc. Count Perc. Count Perc. Count Perc. Count Perc.

Matlab 29 34 % 4 20 % 5 62 % 11 44 % 5 35 %
Python 20 24 % 5 25 % 0 0 % 7 28 % 4 28 %
Delphi 2 2 % 2 10 % 0 0 % 0 0 % 0 0 %
R 2 2 % 1 5 % 0 0 % 0 0 % 1 7 %
Fortran 1 1 % 1 5 % 0 0 % 0 0 % 0 0 %
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multi-objective optimization problems, and Multi-Objective Optimiza-
tion, which can generate optimal solutions for multiple objectives in 
energy system optimization, were frequently employed in the studies.

Evolutionary optimization algorithms were predominantly used in 
the studies focusing on the design process, followed by multi-objective 
optimization algorithms. In the construction process, deterministic 
and other optimization categories, which can perform mathematical 
modeling, were most commonly explored. In the operation process, the 
Levenberg-Marquardt algorithm, categorized under ’other’ optimiza-
tion, was the most extensively applied to enhance ML processes. 
Evolutionary optimization and multi-objective optimization algorithms 
were utilized in the retrofit process.

4. Discussion

This review study aims to analyze the methodology of machine 
learning-supported studies in the literature for building energy effi-
ciency within the scope of building LSC. In this context, 84 publications 
were analyzed according to the screening criteria out of 323. The ma-
chine learning method was used for energy efficiency in the last fourteen 
years through the specified database. These analyses are addressed 
through three-stage research questions, and RQ1 and RQ2, the life cycle 
processes of the publications and the usage cases of the five categories 
determined (objective function, software, simulation, ML algorithm, 
optimization algorithm) are examined in the findings section. RQ3 
"What is the relationship between objective functions, simulation, ma-
chine learning algorithms, and optimization algorithms in each life cycle 

Fig. 6. Categorization of simulation tools used in the studies.

Fig. 7. Categorization of optimization algorithms in studies.
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process in the context of energy efficiency?" is discussed in this section 
based on the findings.

As a result of the findings, it was determined that a total of 48 ML 
algorithms were used in the studies involving LCS, with eight different 
objective functions, four of which were four, and ML algorithms were 
handled in 13 basic groups according to their functions. In addition, four 
different programs, 33 different simulation tools divided into nine basic 
groups according to their functions, and 42 different optimization al-
gorithms divided into seven basic groups were found to be used. When 
all the processes are examined, studies have been carried out for 
maximum energy consumption in the literature in general, and predic-
tion has been carried out with the ANN algorithm in the Python 
program-supported NN. EnergyPlus simulation was used to build energy 
simulations for energy calculations. Evolutionary and multi-objective 
optimization algorithms were used together for optimization.

In this context, RQ3, ‘What is the relationship between objective 
functions, simulation, machine learning algorithms, and optimization 
algorithms in each life cycle process in energy efficiency?’ was 
addressed. Most studies were conducted on energy consumption and 
daylighting comfort in the 20 publications that focused solely on the 
design process. Python and MATLAB were commonly used for these 
topics. Regarding the targeted areas, building energy simulation tools 
such as EnergyPlus and DesignBuilder, and building modeling tools like 
Rhino-Grasshopper were widely utilized. In this context, commonly 
used ML algorithms, including ANN, Linear Regression, SVM, and DT, 
along with optimization techniques such as genetic algorithm, NSGA-II, 
and other multi-objective optimization algorithms in evolutionary 
optimization, achieved high accuracy results (Fig. 8). In the design 
process, a study was conducted to achieve thermal comfort by opti-
mizing the building envelope and geometry. The building’s comfort and 
thermal load were estimated using the ANN algorithm. Subsequently, 
the data generated by ANN was utilized to determine the optimal design 
solutions through optimization algorithms such as NSGA-II and MOALO, 
ensuring the building’s energy efficiency (Y. Lin et al., 2021). The 

K-Means algorithm, used in Unsupervised Learning, was applied only to 
the design process. In this context, another study, including the design 
process, aimed to provide energy efficiency in the campus by using 
K-Means clustering and LTSM time data algorithms together on the ef-
fect of future climate changes on building energy consumption through 
improvements in the building envelope (Soheil Fathi and Srinivasan, 
2019).

Eight publications covering the construction process extensively 
studied energy consumption and thermal comfort. Only MATLAB was 
used for these purposes, and energy and thermal comfort calculations 
were performed through EnergyPlus simulations. The simulation data 
were predicted using NN and ML algorithms. High accuracy results were 
achieved using Pearson, Levenberg-Marquardt, and Radial Basis opti-
mization algorithms, which fall under the other and deterministic cat-
egories and work well with ML algorithms (Fig. 9). In a study covering 
the design, construction, and operation phases, SVR, ANFIS, and ANN 
algorithms were compared for energy consumption calculation, with 
ANFIS achieving the highest accuracy. It was determined that parame-
ters related to insulation materials play a crucial role in estimating en-
ergy consumption (Naji et al., 2016).

In 24 publications focusing solely on the operation process, topics 
related to consumption, saving, and generation under the broader 
thermal comfort and energy category were frequently covered. Ener-
gyPlus, which is used for building energy simulation, and TRNSYS, 
which can yield reliable results in energy generation and consumption 
calculations, were the primary simulation tools. The simulation results 
were predicted using the ANN, ML algorithm in NN. To achieve optimal 
results, the Levenberg-Marquardt algorithm from the other category was 
predominantly used alongside the genetic algorithm optimization al-
gorithm from the evolutionary category (Fig. 10). The ANN algorithm 
was used in the operation phase to estimate the performance of building- 
integrated photovoltaic (BIPV) systems. The algorithm was trained and 
tested on accurate building data, achieving high accuracy in energy 
production estimation (Polo, Martín-Chivelet, and Sanz-Saiz, 2022).

Fig. 8. Design stage Sankey diagram.
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Fig. 9. Sankey diagram of the whole construction stage in the analyzed publications.

Fig. 10. Operation stage Sankey diagram.
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In publications focusing solely on the retrofit process, the most 
frequently used simulation programs for energy saving, carbon, and cost 
analysis were EnergyPlus, DesignBuilder, and TRNSYS in the building 
energy simulation category, as well as GIS and Google Street View (GSV) 
in the GIS and spatial analysis category. The SimaPro program, which 
conducts LCA analysis, was also utilized in the retrofit process. The data 
from these simulation tools were predicted using ANN, DT, and Boosting 
ML algorithms. To achieve the best predictions, genetic algorithm, 
multi-objective, and swarm intelligence optimization tools within 
evolutionary optimization, which are compatible with ML algorithms, 
were frequently employed (Fig. 11). To improve building energy saving 
and cost during retrofit, SVM and Logistic Regression algorithms were 
used on GSV data to estimate and optimize building energy performance 
(von Platten et al., 2020).

5. Conclusion

This study observed that research on ML in the context of ensuring 
energy efficiency in buildings has been rapidly increasing, particularly 
in recent years. The primary reasons for this growth include using ML as 
a powerful tool for optimizing energy efficiency stages and utilizing 
resources more effectively. This study analyzed the use of software and 
simulation tools, as well as ML and optimization algorithms, which in-
fluence the objective functions in stages from design to retrofitting, 
within the papers examined in the context of the building life cycle, 
mainly focusing on the building envelope, which has a significant 
impact on energy consumption. The analysis results indicate that: 

• In the publications examined, research was conducted intensively on 
residential (31 %) and office (29 %) buildings, with additional 
studies also carried out at the urban scale.

• Studies on the design (36 papers) and operation (42 papers) stages 
constitute the majority of the publications analyzed, followed by 

retrofitting (24 papers) and construction (8 papers) stages. This in-
dicates the significance of the design and operation stages for future 
research on the subject, while also highlighting the need for 
increased focus on the construction stage.

• In accordance with the literature’s energy-efficient and sustainable 
building criteria, the publications primarily addressed four main 
objective functions: energy, comfort, cost, and carbon emissions.

• When examining the objective functions, energy consumption 
dominates all stages except the operation stage, where thermal 
comfort is prioritized. In the design stage, daylight comfort emerges 
as an additional key objective function alongside energy consump-
tion and thermal comfort, distinguishing it from other stages. At this 
stage, energy simulation and modeling tools were used within these 
objective functions. Predictions were made mainly through ANN and 
Linear Regression ML algorithms, and the predictions were sup-
ported by ’evolutionary optimization’ algorithms.

• Studies on energy consumption, saving, and generation are promi-
nent in the operation stage. Research on solar energy technologies 
(PV, BIPV), which are renewable energy systems, has increased 
recently, particularly within the scope of the energy generation 
objective function in the operation stage. This trend is expected to 
continue growing rapidly in the future. In this context, it was 
determined that energy simulations were mainly used during the 
operation process, and it was concluded that Levenberg-Marquardt’s 
optimization algorithm was used in the foreground along with ANN, 
DT, and ML algorithms.

• In the retrofitting stage, cost, energy consumption, and thermal 
comfort have been considered significant objective functions in 
many studies. For this reason, energy simulation and GIS tools were 
used more frequently during the retrofit phase. As in all processes, it 
was determined that the ANN algorithm was predominantly used in 
this phase.

Fig. 11. Retrofit stage Sankey diagram.
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• It has been determined that the simulations, ML algorithms, and 
optimization algorithms used vary depending on the objective 
functions within the identified life cycle stages. The accuracy rates of 
ML algorithms also vary by objective function, with the ANN, RF, 
and SVM algorithms generally demonstrating high accuracy across 
all objective functions.

Based on these findings, it has been determined that ML, a state-of- 
the-art technology product, is intensively used in the retrofitting stage, 
especially in the operation and design stage, in the studies examined 
within the scope of LC stages and energy in buildings. The high number 
of studies focused on the operation stage is attributed to the significant 
energy consumption of buildings during this stage. However, it has been 
observed that research on the construction stage is insufficient 
compared to other stages. For this reason, in studies where ML is used 
within the scope of energy efficiency in buildings, research on the 
construction stage should be increased in the future.
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Fig. A.1. Design and operation stage Sankey diagram
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Fig. A.2. Design and retrofit stage Sankey diagram

Fig. A.3. Design, operation, and retrofit stage Sankey diagram
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