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1. Introduction 

Recent studies show that impact forces generated between two pounding structures have significant influence on 

dynamic behavior of both the structures and may cause higher story shear forces. When adjacent structures have different 

dynamic characteristics, if they do not have a sufficient separation distance from each other, they may collide resulting 

in critical impact forces especially on roof levels. To prevent the occurrence of the pounding phenomenon during an 

earthquake, seismic provisions prescribe providing a minimum seismic separation distance between adjacent structures. 

However, for a large number of existing buildings not designed according to seismic provisions this separation distance 

has not been considered, and therefore structural pounding during earthquakes is expected.   

Collapse is a state that structure or a part of it loses its ability to withstand gravity loads under strong ground motions, 

and the P-Delta effect exacerbates this instability. Owing to the fact that the P-Delta effect can influence the stability of 

structure, many studies have investigated considering the P-Delta effect in modeling [1-4]. The P-Delta effect induces 

additional moments because of lateral deformations and axial gravity loads. The magnitude of P-Delta effect is related 

to the lateral deformation, Delta, and axial load, P [5, 6]. Adam and Jäger [7] introduced a collapse assessment 

methodology to assess the P-Delta effect on the seismic collapse capacity of Single-Degree-of-Freedom (SDOF) systems 

by means of the so-called collapse capacity spectra. They used 44 far-field ground motion records for creating collapse 

capacity spectra to assess the dynamic stability of multi-story structures. Black [8] derived two closed-form expressions 
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In urban areas, adjacent structures can be seen in any insufficient distance from each other, because of economic reasons 

and refusal of acquired minimum separation distance according to seismic previsions. Collapse capacity assessment of 

structures is one of the important objectives of performance-based seismic engineering. The purpose of this study is to 

consider the pounding phenomenon and P-Delta effect in seismic collapse capacity assessment of structures. For this 

purpose, 2-, 4-, 6- and 8-story adjacent structures with different conditions of separation distance among them, were 

modeled in the OpenSees software. Furthermore, Incremental Dynamic Analyses (IDAs) were performed using 78 far-

field ground motion records to compute the collapse capacities of adjacent structures. The results obtained from IDAs for 

adjacent structures show that during pounding, taller structure reaches its collapse capacity earlier than shorter one. In 

addition, by considering the P-Delta effect and increasing the distance between adjacent structures, time of collapse and 

number of impacts increases. According to results, considering the P-Delta effect in modeling has significant influence in 

seismic collapse capacity assessment of pounding structures. 
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from analytical considerations for quantifying the P-Delta effect in moment-resisting frames. He used two stability 

coefficients, which are called the modal-elastic and the modal-inelastic, to precisely predict base shear-deformation 

curve by considering the P-Delta effect. Considering appropriate seismic intensity measure (IM) is important for 

nonlinear dynamic analyses. Tsantaki et al. [9] proposed two IMs to reduce the collapse capacity dispersion of SDOF 

systems that are vulnerable to the P-Delta effect. The collapse capacity dispersion is caused by the ground motion 

variability and the variations of frequency content of ground motions. Adam et al. [10] proposed an optimal IM for 

assessing the seismic collapse capacity of generic moment frames vulnerable to the P-Delta effect. This IM, which is 

derived from the geometric mean of pseudo-spectral accelerations over a range of periods, provides minimum dispersion 

for the entire set of purely P-Delta vulnerable frames with different number of stories and fundamental periods of 

vibration. Yakhchalian et al. [11, 12] proposed new proxies for ground motion record selection for seismic collapse 

assessment of short-period and long-period structures. Using these proxies causes reduction in collapse capacity 

dispersion. Belleri et al. [13] considered the Displacement-Based Assessment (DBA) procedure for evaluating the P-

Delta effect on SDOF like structures. They showed that the P-Delta effect reduces the lateral load associated to a 

displacement, afterward leading to a decrease in effective stiffness and an increase in the effective period. Ucar and 

Merter [14] proposed a modified energy-balance equation for the P-Delta effect by adding the external work of gravity 

loads. They concluded that by increasing the number of stories, with and without considering the P-Delta effect, energy-

based base shear force decreases. Therefore, their derived an equation that provides a good estimation of the base shear 

force of Multi-Degree-of-Freedom (MDOF) structures. Adam and Jäger [15] proposed a simplified collapse assessment 

methodology based on pushover analyses for regular moment-resisting frame structures. For modeling 15-, 18-, 21- and 

24-story structures, they used moment-resisting single-bay frames that had fundamental periods of vibration equal to 

0.2N, where N is the number of stories. By using this type of modeling, it was possible to investigate the collapse 

capacity of structures, which requires computationally expensive Incremental Dynamic Analyses (IDAs). Gharyanpoor 

et al. [16] evaluated the seismic collapse capacity of SDOF systems equipped with fluid viscous dampers considering 

the P-Delta effect. They concluded that the P-delta effect controls the collapse capacity of long-period SDOF systems.  

Madani et al. [17] considered different cases of 3- to 12-story adjacent structures for evaluating the effects of 

structural pounding and Structure-Soil-Structure Interaction (SSSI). Although they conducted a comprehensive study 

on the pounding phenomenon and SSSI effect, they did not consider the P-Delta effect in modeling. According to their 

study, seismic damage in columns increases by increasing the distance of adjacent structures. In addition, considering 

the SSSI effect causes the pounding phenomenon even at farther distances, and pounding between structures causes 

increase in story shear forces and lateral displacements especially in taller structure.  

Although the P-Delta effect has been focused in many studies excluding the pounding phenomenon, but impact forces 

because of pounding of adjacent structures can change the structural response and cause the P-Delta effect more crucial. 

In other words, pounding of adjacent structures increases the lateral deformations of stories especially in first story, so 

these added deformations can increase the P-Delta effect. This study investigates the seismic collapse capacity of the 

adjacent pounding structures, with and without considering the P-Delta effect. For this purpose, 2-, 4-, 6- and 8-story 

nonlinear MDOF stick models assuming different values of separation distance among them are considered, and a linear 

viscoelastic contact element is used for simulating the pounding phenomenon between the adjacent structures. The 

results indicate that considering the P-Delta effect has a great influence on seismic collapse capacity predictions. 

2. Modeling Approaches 

In this study, 2-, 4- and 6-story moderately ductile, and 6- and 8-story highly ductile structures were considered. In 

this section, the modeling approaches used to simulate pounding phenomenon and the nonlinear behavior of the 

structures considered are described. OpenSees [18] software was used for the simulation of pounding structures. 

Jankowski and Mahmoud [19] compared the results of numerical analyses with the results of experiments conducted by 

dropping concrete, steel and timber ball onto a rigid surface with the same material. Then, the impact force time histories 

during the experiments were compared with the results of numerical analyses achieved using linear elastic, linear 

viscoelastic, modified linear viscoelastic, Hertz non-linear elastic, Hertzdamp non-linear and non-linear viscoelastic 

contact element models. The results of their study showed that the linear viscoelastic contact element model had a 

normalized root mean square (RMS) error of 11.7%, which is less than others contact element models. According to 

these results and considering concrete-to-concrete impact, the linear viscoelastic model (Kelvin-Voigt model), which 

consists of a linear spring and a viscous damper, was used in this study for simulating the pounding phenomenon. Figure 

1 shows a typical linear viscoelastic model between two SDOF systems. The linear viscoelastic contact element model 

can consider the energy dissipation in pounding phenomenon.  
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Figure 1. A typical linear viscoelastic model between two SDOF systems 

The pounding force when using this contact element model, is expressed as: 

(1) F(t)=Kδ(t)+Cδ̇(t)  

Where δ(t) describes the relative deformation between pounding structural members, and δ̇(t) denotes the relative 

velocity between them, K is the impact element’s stiffness and C is the impact element’s damping [20, 21]. 

 

Figure 2. Backbone curve of all stories 

 

Figure 3. Stick models of the 2-, 4-, 6- and 8-story structures 
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To model the nonlinear behavior of the stick models, which consist of elastic beam-column elements and nonlinear 

zero-length elements, bilinear Ibarra-Medina-Krawinkler model [22] was applied. Figure 2 indicates the backbone curve 

of each story, where Ke is the elastic stiffness of story, Ks =αsKe is the hardening stiffness of story, and Kc =αcKe is the 

post-capping stiffness of story. In this study, the hardening coefficient, αs, and post-capping coefficient, αc, used to 

simulate the nonlinear behaviour of all stories were assumed as 0.03 and -0.1, respectively. In addition, for moderately 

ductile and highly ductile structures, representing intermediate and special moment-resisting frames, µ=δc/δy was 

assumed equal to 4.0 and 6.0, respectively. Figure 3 indicates the stick models of the 2-, 4-, 6- and 8-story structures. 

To model these structures, their fundamental periods, T1, were assumed equal to 0.2 N, where N is the number of stories, 

and the height of stories were considered equal to 3.6 m. The yield base shears of all the structures were determined 

using ASCE 7-10 [23] and nonlinear static analysis. By applying the linear viscoelastic model to simulate the impact 

phenomenon, four values of separation distance equal to 0.0, 0.5D, 1.0D and 1.5D were considered, where D is equal to 

the separation distance prescribed by ASCE 7-10 [23]. 

3. Collapse Capacity Assessment of the Structures 

To capture the effect of record-to-record variability, IDAs were performed using 78 far-field ground motion records 

used by Haselton [24]. The selected records for IDAs are listed in Table 1. Sa (T1) was selected as IM for performing 

IDAs and the Hunt and Fill algorithm was applied [25]. Figures 4 and 5 illustrate the IDA curves for the 2-story and 8-

story pounding structures, without considering the P-Delta effect, and the 2-story and 6-story pounding structures, with 

considering the P-Delta effect, given the separation distance equal to 1.0D, respectively. Each black line in this figure 

represents an IDA curve corresponding to a record and the bold red line represents the median of the IDA curves. The 

flattening of each curve represents the point corresponding to the collapse capacity of the structure. For instance, the 

median collapse capacities of the 2-story and 8-story pounding structures without considering the P-Delta effect are 

equal to 3.48 and 0.42 g respectively.  

Table 1. Characteristics of the far-field ground motion records used by Haselton [24]  

EQ Index EQ ID 
PEERNGA 

Rec. Num. 
Mag. Year Event Fault Type 

Campbell Distance 

(km) 

Joyner-Boore 

Distance (km) 

1 12011 953 6.7 1994 Northridge Blind thrust 17.2 9.4 

2 12012 960 6.7 1994 Northridge Blind thrust 12.4 11.4 

3 12013 1003 6.7 1994 Northridge Blind thrust 27 21.2 

4 12014 1077 6.7 1994 Northridge Blind thrust 27 17.3 

5 12015 952 6.7 1994 Northridge Blind thrust 18.4 12.4 

6 12041 1602 7.1 1999 Duzce,Turkey Strike-slip 12.4 12 

7 12052 1787 7.1 1999 Hector Mine Strike-slip 12 10.4 

8 12061 169 6.5 1979 Imperial Valley Strike-slip 22.5 22 

9 12062 174 6.5 1979 Imperial Valley Strike-slip 13.5 12.5 

10 12063 162 6.5 1979 Imperial Valley Strike-slip 11.6 10.5 

11 12064 189 6.5 1979 Imperial Valley Strike-slip 10.8 9.6 

12 12071 1111 6.9 1995 Kobe, Japan Strike-slip 25.2 7.1 

13 12072 1116 6.9 1995 Kobe, Japan Strike-slip 28.5 19.1 

14 12073 1107 6.9 1995 Kobe, Japan Strike-slip 3.2 22.5 

15 12074 1106 7.5 1995 Kobe, Japan Strike-slip 95.8 0.9 

16 12081 1158 7.5 1999 Kocaeli,Turkey Strike-slip 15.4 13.6 

17 12082 1148 7.3 1999 Kocaeli,Turkey Strike-slip 13.5 10.6 

18 12091 900 7.3 1992 Landers Strike-slip 23.8 23.6 

19 12092 848 7.3 1992 Landers Strike-slip 20 19.7 

20 12093 864 7.3 1992 Landers Strike-slip 11.4 11 

21 12101 752 6.9 1989 Loma Prieta Strike-slip 35.5 8.7 

22 12102 767 6.9 1989 Loma Prieta Strike-slip 12.8 12.2 

23 12103 783 6.9 1989 Loma Prieta Strike-slip 74.3 74.2 

24 12104 776 6.9 1989 Loma Prieta Strike-slip 27.9 27.7 

25 12105 777 6.9 1989 Loma Prieta Strike-slip 27.6 27.4 

26 12106 778 6.9 1989 Loma Prieta Strike-slip 24.8 24.5 

27 12111 1633 7.4 1990 Manjil, Iran Strike-slip 13 12.6 
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28 12121 721 6.5 1987 Superstition Hills Strike-slip 18.5 18.2 

29 12122 725 6.5 1987 Superstition Hills Strike-slip 11.7 11.2 

30 12123 728 6.5 1987 Superstition Hills Strike-slip 13.5 13 

31 12132 829 7 1992 Cape Mendocino Thrust 14.3 7.9 

32 12141 1244 7.6 1999 Chi-Chi,Taiwan Thrust 15.5 10 

33 12142 1485 7.6 1999 Chi-Chi,Taiwan Thrust 26.8 26 

34 12143 1524 7.6 1999 Chi-Chi,Taiwan Thrust 45.3 45.2 

35 12144 1506 7.6 1999 Chi-Chi,Taiwan Thrust 24.4 19 

36 12145 1595 7.6 1999 Chi-Chi,Taiwan Thrust 15.4 10 

37 12146 1182 7.6 1999 Chi-Chi,Taiwan Thrust 13.2 9.8 

38 12151 68 6.6 1971 San Fernando Thrust 25.8 22.8 

39 12171 125 6.5 1976 Friuli, Italy Thrust 15.8 15 

 

 

Figure 4. IDA curves for the 2-story and 8-story pounding structures without considering the P-Delta effect at separation 

distance equal to 1.0D 

 

Figure 5. IDA curves for the 2-story and 6-story pounding structures with considering the P-Delta effect at separation 

distance equal to 1.0D 

4. P-Delta Effect on Collapse Capacity of the Structures 

To investigate the impact force due to pounding phenomenon, the impact force in each floor was calculated through 
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the linear viscoelastic contact element model. Figures 6 to 8 present the impact force time-histories for the 4-story and 

8-story pounding structures subjected to a record of the Northridge earthquake (Beverly Hills, USC station 90014), 

given Sa(T1) =2.6g, with considering the P-Delta effect and the three aforementioned separation distances, equal to 

0.0D, 0.5D and 1.0D, respectively. 

 

Figure 6. Impact force time-histories corresponding to the stories 1 to 4 of the 4-story and 8-story pounding structures with 

considering the P-Delta effect and the separation distance equal to 0.0D 

 

Figure 7. Impact force time-histories corresponding to the stories 1 to 4 of the 4-story and 8-story pounding structures with 

considering the P-Delta effect and the separation distance equal to 0.5D 

 

Figure 8. Impact force time-histories corresponding to the stories 1 to 4 of the 4-story and 8-story pounding structures with 

considering the P-Delta effect and the separation distance equal to 1.0D 

Figure 6 indicates that given the separation distance equal to 0.0, the maximum impact force occurs in the 4th story. 

According to Figure 7 and 8, increasing the separation distance to 0.5D and 1.0D leads to the maximum impact force 

occurring in the first story. The results obtained in these figures indicate that as the separation distance between adjacent 

structures increases from 0.0 to 1.0D, the maximum impact force increases from 79.44 to 123.35 MN. Furthermore, 

increasing the separation distance from 0.0 to 1.0D, increases the collapse time from 4.17 to 8.34 sec. Therefore, the 

collapse time and number of impacts in the first floor increases with increasing the separation distance between two 

pounding structures. Figure 9 presents the impact force time-histories of the 4-story and 8-story structures without 

considering the P-Delta effect. Comparing Figures 8 and 9 indicates that considering the P-Delta effect influences the 

impact force values significantly. Although the results of impact forces for the 4-story and 8-story pounding structures 
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are presented for the Northridge earthquake, similar results were obtained from the other considered pounding structures 

and ground motion records. 

 

Figure 9. Impact force time-histories corresponding to the stories 1 to 4 of the 4-story and 8-story pounding structures 

without considering the P-Delta effect and the separation distance equal to 1.0D 

To investigate the results of IDAs, the median collapse capacity of each of two pounding structures with and without 

considering the P-Delta effect are compared. Figure 10 presents the median collapse capacity of the 2-story and 8-story 

pounding structures given the four aforementioned separation distances. According to this figure, taking the P-Delta 

effect into account the median collapse capacity of the 2-story and 8-story structures decreases by an average of 6% and 

45%, respectively. Therefore, it is obvious that taking the P-Delta effect into account has more influence on the median 

collapse capacity of the taller structure. Although in this section only the IDA results of the 2-story and 8-story pounding 

structures are presented, the same results for the other pounding structures were observed.  

 

Figure 10. The P-Delta effect on the median collapse capacity of the 2-story and 8-story pounding structures 

5. Conclusion 

In this study, 2-, 4-, 6- and 8-story nonlinear MDOF stick models assuming four values of separation distance among 

them were considered to evaluate the seismic collapse capacity of pounding structures, with and without accounting for 

the P-Delta effect. A linear viscoelastic contact element model was used to simulate the impact phenomenon between 

pounding structures modeled using OpenSees software. Moreover, to obtain the seismic collapse capacity of pounding 

structures, Incremental Dynamic Analyses (IDAs) were performed using 78 far-field ground motion records. The results 

show that as the separation distance between two adjacent pounding structures increases, the maximum impact force 

especially in lower stories, the collapse time and the number of impacts in the first floor increase correspondingly. 

Moreover, considering the P-Delta effect increases the impact forces significantly. Based on the results, it can be seen 

that considering the P-Delta effect causes decrease in the median collapse capacity of each of the pounding structures. 

In the case of pounding between a shorter structure and a taller one, the P-Delta effect has more influence on the median 

collapse capacity of the taller structure. Therefore, in the pounding of two adjacent structures with different heights, the 

P-Delta effect is the main factor causing the collapse of the taller structure. 
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