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Abstract: An approach to a new kind of recommendation system design that suggests safe speed on
the road is presented. Real data obtained on roads were used for the simulations. As part of a project
related to autonomous road sign development, a number of measurements were carried out on both
local roads and expressways. A speed recommendation model was created based on gathered traffic
data employing the traffic simulator. Depending on the traffic volume and atmospheric conditions
prevailing on the road, as well as the surface conditions, the proposed system recommends the
safe speed for passing vehicles by influencing the distance from the preceding vehicle to prevent
collisions. The observed effect of the system application was an increase in the minimal distance
between vehicles in most simulations.

Keywords: intelligent transport systems; road safety; traffic simulation

1. Introduction

An estimated 1.2 million people are killed in road crashes each year, and as many as
50 million are injured. Most accidents occur on the roads of rural areas or driveways of
cities, representing about 54% of all accidents. As many as 71% of accidents occurred on
dry surfaces [1].

According to a European Parliament resolution, 92% of road accidents are caused by
human error. The use of cooperative intelligent transport systems (C-ITS) technology is
important for the smooth functioning of some driver assistance systems. Considering the
age of the vehicle fleet, it is essential to take the persistently large number of vehicles that
are not part of the system into account and ensure that connected and automated vehicles
coexist with traditional unconnected vehicles, so that road safety is not compromised [2].

The European Road Transport Research Advisory Council (ERTRAC) is the European
technology platform (ETP) for road transport. ERTRAC is recognized and supported by the
European Commission. As a European technology platform, ERTRAC gathers experts from
industry, research, and public authorities, regularly updating its roadmap on connected,
cooperative, and automated mobility (CCAM), delivering a common stakeholder view of
the long-term development of CCAM in Europe.

According to the mentioned roadmap, in 2050, vehicles will have 100% real-time
connectivity regarding the relevant road network, and the transport management system
will have the appropriate quality of service level and remote operation [3].

Currently, the EU is funding a vast number of projects in the CCAM area, so the list is
too long to cite here. A complete and up-to-date list of all EU-funded projects is available
through the online CAD knowledge base [4]. European test sites can be found in the same
database at [5].
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In the USA, by 2021, 56 different companies tested their highly automated vehicles on
the roads; just in California, circa two million miles have been driven without a driver. In
June 2020, the National Highway Safety Administration (NHTSA) launched the AV-TEST
initiative, a voluntary platform for AV testers to share information regarding their testing
activities. NHSA acts as a clearinghouse for that information [6].

In Japan, the government has established the Strategic Innovation Promotion Program
(SIP), where an automated driving system for universal service (adus) is considered to
be one of the 12 priority themes. Additionally, 29 organizations, including the vehicle
manufacturers and automotive suppliers BMW, Valeo, Honda, Nissan, Suzuki, Volkswagen,
Bosch, and Mitsubishi, are working together in the CAD field operational test in the Tokyo
waterfront area (FOT).

According to SIP, fully automated driving (SAE level 4) will be achieved on express-
ways by around 2025 [7].

In China, in December 2020, the Chinese Ministry of Transport announced its focus
on the development of critical technologies for CAD, mainly considering the smart road
infrastructure and cooperative systems between the vehicles and infrastructure. The
industrialized application of autonomous driving technologies is meant to be deployed
by 2025 in China [8]. The State Council of China also announced that a cloud-based pilot
area for self-driving vehicles was planned to built in the Beijing Economic–Technological
Development Area by the end of 2021. The area known as E-Town, which is 60 km2, is
the first high-level automated driving demonstration area and China’s first pilot zone for
cloud-based self-driving vehicle policies [9].

The above brief overview shows that, currently, the work is still in the research or
testing stage, and a transitional state is underway, in which the connected vehicles are in
the vast minority. This fact has led the authors to address a topic in this area, combining
traditional vehicles with those that may appear in the future.

Preventing road accidents requires a variety of traffic analyses. A road with its signage
and users can be thought of as a discrete event system. Petri nets have become a useful
tool in this context [10]. An interesting example of using Petri nets for traffic modeling was
presented in the literature [11].

Transport safety should use intelligent transport systems that may be improved by,
e.g., adjusting the speed for road, traffic, and pavement conditions and detecting danger-
ous events, e.g., objects on the road, broken vehicles, or accidents. The development of
intelligent transportation systems (ITS) places higher demands on all components, e.g., the
microwave radar used to detect objects involved in traffic. Progress in this area, particu-
larly the improvement of the constant false alarm rate (CFAR) detectors, is vital [12]. An
essential aspect of intelligent traffic analysis is vehicle behavior recognition. Based on the
deep learning technique, an interesting method is presented in the literature [13].

Intelligent transport systems perform several functions, such as acquiring traffic-
related statistics or the maximization of safety-related metrics [14–16]. In our work, we
focus on the latter aspect and present the results of simulations, in which we tested an
algorithm to calculate recommended vehicle velocity based on a traffic density tracker. By
changing the recommended speed, it is assumed that this will improve the safety measured
by maintaining the distance between consecutive vehicles, thus enabling efficient braking
in an emergency.

Keeping a safe distance is described in many publications on improving road safety [17–19].
There are quite a few approaches to this issue. The best-known is the two-second rule
of keeping a safe distance from the vehicle ahead within 2 s of driving [20]. Another
known rule or model is the Gipps model, which consists of maintaining a distance that
allows for emergency braking in the event of a breakdown or other event in which the
preceding vehicle could be subjected [21]. Many articles describe the so-called safe distance
car-following model [17,22]. In the case discussed in this paper, the authors wanted to
show the possibility of the created model improving safety by manipulating the speed
limit based on the number of vehicles (i.e., the traffic volume), thus recommending a safe
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speed and increasing the distance between vehicles. In the literature, one can also find
more sophisticated approaches based upon fuzzy logic or neural networks; however, their
complexity makes their application challenging, in regard to embedded or distributed
traffic control systems. In the case of such applications, hardware platforms have to be
power-efficient, and algorithms that are implemented on them are most often executed by
small devices that are capable of being mounted inside the intelligent road sign. In such a
case, it is desirable to choose more straightforward and easier methods of calculating the
recommended velocity (or intravehicular distance) employed in stimulus–response, leader-
following, or collision avoidance models [23–27]. An example of a collision avoidance
model is the aforementioned Gipps model, which also provides equations for the estimation
of saving minimal distance between vehicles [23]. It should also be noted that classic models
that do not employ methods based upon artificial intelligence can also become complicated
if complex methods for the detection of lane changes are employed [28]. Our model
for calculating the recommended vehicle velocity utilizes the equations proposed in the
Gipps model. It is a relatively simple and computationally effective method of obtaining a
value for the safe distance between vehicles, which can be converted into a safe maximum
vehicle speed recommended for the given road fragment. Our experiment tested how those
equations behave if they are fed estimated data, such as mean vehicle velocity or mean
vehicle length, obtained by the intelligent road sign in just one point of measurement.

Data obtained from test installations implemented under the “INZNAK: Intelligent
Road Signs with V2X Interface for Adaptive Traffic Controlling” project were employed
to prepare the environment for the simulation of our model and safe maximum speed
calculation [29]. The developed intelligent road sign communicates the speed calculated,
concerning the information received from a sequence of similar variable content signs
distributed along a highway, which are connected via a wireless network. A unique feature
of road signs is the possibility of their autonomous operation, as the speed limit communi-
cated by the signs is the result of their traffic measurements. The recommended speed is
communicated by displaying it on a variable message sign, and it is transmitted wirelessly
to vehicles equipped with the V2X interface (interface to electronic communication system:
vehicle infrastructure) [29].

In our project, we not only ran simulations but also built experimental autonomous
traffic signs, on which we have already published articles previously [30–42]. They contain
several sensors: microwave radar, lidar, intensity acoustic probe, cameras, Bluetooth
scanner, light intensity sensor, temperature sensor, and precipitation sensor. The goal of
the research described in this paper is to fill the gap via the selection of an algorithm to
determine the speed displayed on these road signs.

Using the collected sensor data to create a model based on the traffic simulator allows
for estimating safe speed values for various pavement states, based on the simulation of real
traffic volumes obtained, thanks to the testing installations. It has been proven in several
papers related to the INZNAK project that the use of sensors, such as acoustic probes,
allows for estimating both vehicle speed and type, as well as the surface condition [30–33]
and traffic intensity [34,35]. Additionally, it is possible to indicate which lane the vehicle is
moving in [35,36].

The objective of the simulated system is to select such values of recommended speed,
which will statistically increase the minimal distance between vehicles in the simulated
environment. The experiment proposed in our manuscript allows for finding out whether
the method used for estimating safe velocity in the model can be used by the system that
autonomously monitors the local traffic state on the given road fragment to estimate the
velocity. In turn, it may lead to an increase in the time that drivers react to unexpected
events on the road, as it would be guaranteed that the minimal distance between vehicles is
sufficient for the driver to react to the dangerous situation and stop the vehicle completely,
thus avoiding collision with the preceding vehicle.

A similar approach was presented in the literature [43]. According to the authors,
previous research presents an inconclusive assessment of the impact of VLSLs on safety
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and traffic performance; therefore, this paper attempts to quantify the impact of selected
VSLS control strategies on safety and traffic flow using a section of an urban highway in
North America. The research undertaken differed from that reported in the literature, in
that the VSLS control strategies evaluated were designed for practical implementation by
providing a dynamic response directly to loop detector data at 20-second intervals, as well
as adhering to the typical design standards concerning maximum speed limits, similar in
structure to those already in use in the UK and Netherlands. Simulations of the designed
algorithm showed that the effect of VSLS on safety and traffic flow strongly depends on
the traffic volume. The improvement of both parameters is pronounced during high traffic
intensity (peak) and negligible off-peak. The negative effect of the tested algorithm was a
corresponding increase in travel time—significant during peak, insignificant during off-
peak. A strategy that could provide a consistent and positive impact on safety and travel
time at all congestion levels was not identified, but the analysis provided evidence that
significant improvements could be achieved.

2. Material and Methods

First, the results were obtained utilizing computer simulation in the SUMO traffic
simulator. It is an open-source environment that is mainly used for educational purposes,
but it has several capabilities that allow for a fairly precise simulation of road traffic [44].
SUMO uses the Krauss car-following model, which can be described as a safe distance-
based model. It tries to maintain a safe distance between preceding vehicles, and it has
settings that allow us to interfere with the simulated behavior of drivers and comply
with their speed limits [45]. In addition, there are scientific works in which SUMO was
successfully used to simulate urban traffic; otherwise, improved frameworks for simulation
were built [46,47].

The first tests were conducted on a local, two-way road that included two lanes of
traffic. This is a non-urban road, on which vehicles reach quite high speeds, on the order of
90 km/h. This road was chosen for the tests because the traffic is too irregular and slow in
the city, and testing the new designs and algorithms on freeways at high speeds would be
too dangerous to begin with.

The speed limit assigned to this road fragment is 90 km/h. The traffic volume values
utilized as input parameters for the simulations are based on data obtained from the test
installation. Traffic measurement using a specially constructed data acquisition module
from an intelligent road sign lasted 128 days (in the spring and summer seasons, between
May and September). Based on the analysis of the collected data, average traffic volume
values were obtained by averaging out the influence of the time of day, weather conditions,
and other factors, such as the day of the week or impact of random events. The use of
simulation, instead of a real-life experiment, allowed us to test multiple possible scenarios
of system application, as well as to estimate its performance for various road traffic types.
More details regarding the testing scenarios are provided in the subsequent part of the
manuscript. Outcomes of simulations were used to evaluate the anticipated influence of
the proposed system on the traffic parameters in the place of its application. Values of
typical traffic intensity and statistical parameters, such as mean time between events of
a vehicle entering, were derived from the measurement of those parameters in the real
world. Additionally, the percentage of vehicle classes, i.e., trucks, cars, and motorcycles,
were estimated based on measurement results. This information was used for selecting
test cases, as well as for the calibration of the Krauss model to reflect the intensity and
structure of vehicle classes observed in the real-world measurement place. The length of
the road fragment used to design the simulation environment was approximately 2.5 km.
The visualization of road fragment geometry used for the simulation is shown in Figure 1.
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Figure 1. The geometry of the road used for the simulation.

The system interacts with vehicles moving between the entry and exit points, as shown
in Figure 1. At the beginning of the simulated road section, the system applies a speed limit
that depends on information regarding the average speed, number, and length of vehicles
passing the point in the middle of the selected road section. In the simulation, we assumed
that vehicle drivers completely respect the speed limit set by our algorithm. This way of
simulation reflects the situation in which the system takes all traffic measurements near the
recommended speed indicator.

Equations used to calculate the maximum recommended (safe) velocity in our pro-
posed system were similar to those applied in the Gipps model [23]. Our goal was to
calculate the value of the maximum recommended vehicle velocity (vrec) at which vehicles
would be able to stop completely over the minimal distance between vehicles (dm) that are
moving on the analyzed fragment of the road. We should take the distance covered by a
vehicle during the phase of slowing down until the vehicle stops (dbr) into account, but it
is also necessary to take the distance covered by the vehicle during the reaction time of
the driver (tr) into account. We denote this distance as (dr). The following equation may
describe this situation:

dbr + dr = dm (1)

We can derive the final equation used for obtaining the recommended velocity (2) after
the application of simple transformations that include the calculation of dbr; the formula is
applied for obtaining a distance covered by the linearly decelerating object. A substitution
of dr with the formula for obtaining a distance covered by the object moving with the
constant speed was made. We assumed, with regard to the above context, that the initial
velocity of the vehicle is equal to the recommended velocity of vrec. The discussed equation
adopts the following form:

V2
rec

2adec
+ trvrec − dm = 0 (2)

where:

vrec is recommended safe vehicles velocity on the simulated road fragment,
adec denotes deceleration of the vehicle while braking,
tr is the reaction time of a driver and the vehicle, and
dm is the mean distance between vehicles.

The solution of Equation (2), concerning vrec, results in the following formula, which
is used for calculating the recommended vehicle velocity, being used for our simulation as
a speed limit:

vrec =
√
(a2

dect2
r + 2adecdm)− adectr (3)

If the speed of vehicles is equal to or less than the threshold value of vrec, the vehicles
are guaranteed to be able to stop over a distance dm. Therefore, the speed limit equal to the
value of the recommended velocity vrec, which is applied automatically for each vehicle
entering the simulated road fragment.
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Value of adec was set to 3.2 m/s2. The system calculates the dm value from the follow-
ing formula:

dm =
vmean

q
− L (4)

where vmean is the mean velocity of vehicles calculated from information provided by
the SUMO software (mean of vehicle velocities at the beginning of the simulated road
fragment), q is the local estimate of mean traffic intensity (in vehicles per hour) calculated
via the algorithm, and L is the estimated mean length of the vehicle, which was also
acquired from the SUMO software.

Calculations were performed for three values of drivers’ reaction times tr, namely 850,
1150, and 1500 ms, as well as three values of traffic intensity q: 400, 800, and 1200 vehicles
per hour. Thus, 9 experiments were carried out for each possible reaction time and traffic
intensity. The selected values were consistent with the reaction time values appearing in
the literature [48–50]. Data, which were input to the formula (4), mimicked the structure
of data obtained from the sensors of the InZnak intelligent road sign. The mean length
of vehicles was obtained by analysis of the vehicle types structure. Mean intensity and
speed were obtained by measuring the speed of passing vehicles, which was obtained from
sensors based on LIDAR, Doppler, and an acoustic vector sensor in the real application.

Implementing the recommended speed was the subject of a separate series of experi-
ments conducted using the traffic simulator. Attention was focused on the issue of a local,
i.e., not extensive, traffic control system. Such a system would consist of a small number
of intelligent, interconnected road signs deployed along a critical road section, where the
probability of traffic incidents is relatively high.

The experiments used the model shown in Figure 2. This model consists of five road
sections of identical length, differing in the number of variable message signs installed.
Road number 5 does not contain any speed limits (within the allowed range, defined at the
beginning of all sections) and is the reference section.
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The following denotations were adopted:

Vin—the permitted speed, depending on the road class;
TL(m)—the length of the test section for time measurement, expressed in meters;
S—distance between variable message traffic signs in meters (assumed to be the same for
all signs);
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L(m)—total length of the modeled road sections in meters.

The experiments were conducted for several variations of the model shown in Figure 2:

- variant 1: L = 1000 m, S = 100 m, TL = 600 m;
- variant 2: L = 2000 m, S = 200 m, TL = 1600 m;
- variant 3: L = 2000 m, S = 300 m, TL = 1600 m.

The simulations were conducted for four technical classes of roads, as specified in
the national regulations in Poland. These classes differ in traffic intensity and allowed
speeds. The results of the measurements of travel times of the test sections were normalized,
concerning the average value obtained for road No. 5 (reference road), on which the traffic
took place without any obstacles. Depending on the tested road class, two models of
drivers’ behavior were used in the simulation: Wiedemann 74 [51] and Wiedemann 99 [52].
Under normal traffic conditions, the maximum deceleration is assumed to be 3.2 m/s2 to
3.5 m/s2 [53], and this was assumed in the simulation. The maximum deceleration for
emergency braking is approximately 1 g, i.e., 9.81 m/s2 [54].

3. Results
3.1. Speed Recommendation Involving Traffic Simulator

Simulations related to the recommended traffic speed were conducted for two cases.
In the first one, the system for calculating and enforcing the recommended speed was
turned off, and combinations of the three previously mentioned vehicle traffic volumes and
response times were tested. Then, the same situations were analyzed, but with the system
turned on. The output of the simulation was a set of statistical descriptors reflecting the
distance between vehicles in each simulated scenario. The minimal, maximal, median, and
mean value of the distance between the vehicles was collected. Such a set of parameters
was obtained for each of the 40 repetitions of the simulations. Each repetition contained a
traffic example, which was affected by the proposed system for the automatic control of
the speed limit, as well as an example of a situation in which the system was turned off.
Therefore, it was possible to calculate the change in the statistical properties of the distance
between the vehicles for each considered case.

Boxplots illustrating the statistical properties obtained for the drivers’ reaction time,
equal to 850 ms and a traffic intensity of 400 vehicles per hour, are presented in Figure 3.
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The most important chosen descriptor from all four considered variables is the minimal
mean distance between the vehicles, as obtained for the whole run of each simulation.
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This value determines how fast the traffic can move, with each vehicle able to come to
a complete stop without colliding with the preceding vehicle. From values of minimal
distances between vehicles, in case the system was turned on, we subtracted the value of
minimal distance for the case with the system turned off. Thus, the positive value identifies
an improvement introduced by the system, as well as an improvement of the safety of
driving on the fragment of the simulated road with the proposed speed management
system turned on. The results are shown in Figure 4. The boxplot also contains a box
related to a reference sequence of fourty zeros. This artificial sequence was added to
perform a statistical comparison, in order to find out whether the medians of increase in
minimal distance between vehicles were statistically significantly greater than zero.
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Figure 4. Boxplot visualization illustrates increase in the vehicles’ minimal distance for each simula-
tion scenario.

The x-axis shows the simulation conditions. The convention adopted was: <number
of vehicles per hour>_<drivers reaction time in milliseconds>.

We can observe an increase in the minimal observed distance between vehicles for each
traffic intensity and driver reaction time. As the variances of all variables from Figure 4 are
not equal, due to the addition of this artificial sequence of zeros, a requirement of equality
of variances of all variables is not fulfilled. Thus, an ANOVA test cannot be applied to find
out whether the differences between the variables are statistically significant. Instead, we
used a Kruskal–Wallis test. The value of the test statistic is equal to 79.29, and this means
that the p-value of the test is less than 10−6. Thus, we can conclude that, for a significance
level of 0.05, differences between at least two variables from Figure 4 are statistically
significant. This outcome provides us the information that at least one pair of minimal
distance sets, depicted as boxes in Figure 3, have medians that differ statistically. To further
investigate the statistical significance of the differences between the values of the variables
associated with the boxes in Figure 3, we performed a Dunn post hoc test, which is one of
the common statistical post hoc tests used together with the Kruskal–Wallis test. It analyses
the differences between all possible pairs of distance sets and returns information regarding
comparisons in the form of p-values. The test is designed to minimize the possibility of
errors that are caused by the multiple comparisons problem [55,56]. Such calculations are
shown in Table 1 in the form of a matrix.
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Table 1. Results of Dunn post hoc test carried out for acquired values of minimal distance increase
after turning on the traffic management system.

850 ms 1150 ms 1500 ms -

400 vph 800
vph

1200
vph 400 vph 800

vph
1200
vph 400 vph 800

vph
1200
vph Ref.

40
0

vp
h

- 0.42 0.68 0.04 0.14 0.15 0.11 0.07 0.14 < 10−3

80
0

vp
h

0.42 - 0.22 0.21 0.52 0.02 0.42 0.01 0.02 < 10−3

85
0

m
s

12
00

vp
h

0.68 0.22 - 0.01 0.06 0.31 0.04 0.16 0.28 < 10−3

40
0

vp
h

0.04 0.21 0.01 - 0.55 < 10−3 0.66 < 10−3 < 10−3 < 10−3

80
0

vp
h

0.14 0.52 0.06 0.55 - < 10−3 0.88 < 10−3 < 10−3 < 10−3

11
50

m
s

12
00

vp
h

0.15 0.02 0.31 < 10−3 < 10−3 - < 10−3 0.71 0.96 < 10−3

40
0

vp
h

0.11 0.42 0.04 0.66 0.88 < 10−3 - < 10−3 < 10−3 < 10−3

80
0

vp
h

0.07 0.01 0.16 < 10−3 < 10−3 0.71 < 10−3 - 0.75 < 10−3

15
00

sm

12
00

vp
h

0.14 0.02 0.28 < 10−3 < 10−3 0.96 < 10−3 0.75 - < 10−3

- Ref. < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3 -

3.2. Travel Time Measurement Involving Vissim Traffic Simulator

The results of the travel time measurement experiments are shown in Figure 5.
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Figure 5. Normalised travel time, depending on traffic volume and road signs distance. (a) Road G:
L = 1 km, TL = 600 m; (b) Road GP: L = 1 km, TL = 600 m; (c) Road S: L = 2 km, TL = 1600 m; (d) Road
S: L = 2 km, TL = 1600 m.

The following denotations were adopted:

• Road G—the main road;
• Road GP—main road of accelerated traffic;
• Road S—express road;
• W74, W99—driver behavior models (Wiedemann’s models 74 and 99);
• S—the distance between signs;
• L—total length of the test road section;
• TL—length of the driving time measurement section.

The experiments showed that grading in speed limitation causes a reduction of travel
time through the test section. This trend is independent of the road category, although it
can also be seen that increased traffic volumes are associated with traffic flow disruptions.
Increasing the distance between the signs resulted in a noticeable increase in travel time.

4. Discussion

The analysis of the results is carried out in this chapter separately for both types of
simulations performed.

4.1. Speed Recommendation Algorithm

As it can be seen in Table 1, the increase in the mean distance between vehicles
was found to be statistically significant. All p-values obtained from comparisons of the
minimum distance increase and reference sequence of zeros were less than 10−3. Therefore,
for both the significance level of 0.05 and even more restrictive levels of significance, such
as 10−3, we found the observed increase in distance statistically significant. It should be
taken into account that the results obtained by employing simulations, as well as the model
implemented in the SUMO software, may not reflect all the nuances and phenomena that
occur on the road. However, the example provided in our experiment may serve as a
proof of concept for further research. On the other hand, we analyzed the increase in the
minimal distance between the vehicles in our experiment. Such a measure is calculated by
subtracting the distance between the vehicles that was obtained from the state in which our
system was not active from the analogous distance obtained from the state in which our
system was active. Both cases were simulated with the use of the same model. Therefore,
there is a chance that at least some error sources were cancelled, due to the aforementioned
subtraction of the results. However, one has to remember that error can still be introduced
to the outcomes of such a simulation, i.e., due to the inaccuracies related to the reaction of
vehicles to the speed limit imposed by the system.
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An additional interesting observation is the fact that the system, which was set to
control traffic with drivers with a larger value of reaction time, was more vulnerable to
changes in traffic intensity. The performance decreased for larger values of traffic intensity.
The trend was statistically significant in some cases, as can be seen by both analyzing
Figure 3 and Table 1 content. This may be an important observation, so it should be taken
into account while designing systems capable of handling large values of traffic intensity.

Our experiment is based upon information regarding a single place of measurement;
thus, it is derived from possibly locally-biased acquired data. Data acquired in such a
way was later used to estimate the proposed system’s anticipated behavior to calculate
recommended velocity. This means that more research is needed, in order to determine
how the performance of the model tested in this study changes before it is applied to other
system placement locations.

4.2. Implementation Method for Recommended Speed Limits vs. Travel Time

Experiments related to travel time measurements showed a clear impact of both multi-
ple speed limit gradations and the distance between the signs on the parameter studied.

The most orderly situation can be seen in Figure 5a. Low traffic volumes and relatively
slow speeds caused the measurement points to line up regularly. An increase in traffic
volume to 431 vehicles per hour, while maintaining the speed (Figure 5b, i.e., 90 km/h), did
not cause significant changes. However, the first signs of disturbance on road No. 1 can be
observed, which manifested in an increased number of outliers. Doubling the traffic volume
and increasing the speed to 120 km/h, as in Figure 5c,d, caused an apparent increase in
the number of vehicles, for which the travel time was significantly longer. The formation
of queues manifests this. Comparing Figure 5c,d, it can also be seen that increasing the
distance between traffic signs resulted in a clear increase in travel time.

5. Conclusions

The presented research results can be used directly by existing traffic control systems
and taken into account when designing new road sections, including forecasting safety
indices [57]. However, measurements and comparative studies can only assess the actual
impact on the road safety potential (SAPO) index in operation. Therefore, more extensive
studies could make one of the following stages of our research. It is also necessary to note
that, although our outcomes were statistically significant and the input data fed into the
Krauss model implemented in the SUMO software were obtained from a real place, our
results and conclusions are derived from the outcomes of a computer simulation.

Under normal road conditions, it seems obvious to qualify the introduction of a single
large speed limit, e.g., from 120 to 30 km/h, as an erroneous procedure. However, it
should be noted that this is a common situation in the event of, for example, a traffic
collision. Therefore, introducing adaptive local systems capable of multi-stage speed
reduction on sections exposed to an exceptionally high risk of sudden traffic disruption
could significantly improve traffic safety.

The next step in our research should be implementing our models to predict and assess
the recommended vehicle speed under real traffic conditions.
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38. Czyżewski, A.; Cygert, S.; Szwoch, G.; Kotus, J.; Weber, D.; Szczodrak, M.; Koszewski, D.; Jamroz, K.; Kustra, W.; Sroczyński,
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