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In this paper, we discuss four-point boundary value problems for impulsive second order
differential equations with deviating arguments. We investigate separately, cases when
arguments are of delayed or advanced types. We formulate sufficient conditions under
which our problems have at least one or two positive solutions. To obtain our results we
apply the fixed point index.
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1. Introduction

For J = [0, 1], let 0 = t0 < t1 < · · · < tm < tm+1 = 1. Put J ′ = (0, 1) \ {t1, t2, . . . , tm}. Put R+ = [0,∞) and
Jk = (tk, tk+1], k = 0, 1, . . . ,m− 1, Jm = (tm, tm+1).
Let us consider second order impulsive differential equations of type{x′′(t)+ h(t)f (x(α(t))) = 0, t ∈ J ′,

∆x′(tk) = Qk(x(tk)), k = 1, 2, . . . ,m,
x(0) = γ x(ξ), βx(η) = x(1),

(1)

where as usual∆x′(tk) = x′(t+k )− x
′(t−k ); x

′(t+k ) and x
′(t−k ) denote the right and left limits of x

′ at tk, respectively.
We assume that:

H1: f ∈ C(R+,R+), α ∈ C(J, [0, 1]), t ≤ α(t) for t ∈ J and if there exists a point t̄ ∈ J such that α(t̄) ∈ {t1, t2, . . . , tm},
then t̄ ∈ {t1, t2, . . . , tm},

H
′

1: f ∈ C(R+,R+), α ∈ C(J, [0, 1]), α(t) ≤ t for t ∈ J and if there exists a point t̄ ∈ J such that α(t̄) ∈ {t1, t2, . . . , tm},
then t̄ ∈ {t1, t2, . . . , tm},

H2: h ∈ C(J,R+) and h does not vanish identically on any subinterval, Qk ∈ C(R+, (−∞, 0]) and are bounded for
k = 1, 2, . . . ,m,

H3 : ξ, η ∈ (0, 1), β > 0, γ > 0, γ ξ(1− β)+ (1− βη)(1− γ ) > 0,
H4: ξ, η ∈ (0, 1), 0 < β < 1

η
, 0 < γ < 1

1−ξ , γ ξ(1− β)+ (1− βη)(1− γ ) > 0.

Let us introduce the space:

PC1(J,R) =
{
x ∈ C(J,R), x|Jk ∈ C

1(Jk,R), k = 0, 1, . . . ,m and there exist x′(t+k ) for k = 1, 2, . . . ,m
}

with the norm:

‖x‖ = sup
t∈J
|x(t)|, ‖x‖PC1 = ‖x‖ + ‖x

′
‖.
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Then PC1(J,R) is a Banach space. By a positive solution of problem (1) we mean a function x ∈ PC1(J,R) ∩ C2(J ′,R)which
is positive on (0, 1) and satisfies (1).
Throughout this paper we assume that α(t) 6≡ t, t ∈ J.
Impulsive differential equations have become more important in recent years; see for example books [1,2] and the

references therein. In the existing literature, there is a lot of papers in which the problem of existence of positive solutions
for differential equations has been investigated. The existence results are obtained by studying problems in the cone of
nonnegative functions in suitable Banach spaces. Recently, we can find papers inwhich four-point boundary value problems
for differential equations were investigated; see for example [3–8], see also papers [9–12] for three-point boundary value
problems, see also [13,14]. However, only a few papers concern this problem for impulsive differential equations; see for
example [15,16,9,5,6,17,18]. Usually, authors investigate differential equations without deviating arguments. It is important
to indicate that it is a first paper in which the existence of positive solutions to four-point boundary value problems for
impulsive differential equations is investigated by the fixed point index. Note that corresponding results for impulsive
differential equations by using the Leggett–Williams theorem are obtained, for example, in papers [15,5,6].
This paper is organized as follows. In Section 2, we present some lemmas which are useful in our investigation. The main

results of this paper are given in Section 4. Using the fixed point index we formulate sufficient conditions under which
problem (1) has at least one or two positive solutions. Such results are formulated for cases when argument α is delayed
(see Theorems 1–6), and in Theorems 7–12 if α is advanced.

2. Some lemmas

Let us consider the following problem{
u′′(t)+ y(t) = 0, t ∈ J,
∆u′(tk) = Qk, k = 1, 2, . . . ,m, (2)

u(0) = γ u(ξ), (3)

u(1) = βu(η). (4)

We require the following:

Lemma 1 (See [5]). Assume that ξ, η ∈ (0, 1), δ ≡ γ ξ(1−β)+ (1−βη)(1−γ ) 6= 0 and y ∈ C(J,R). Then problem (2)–(4)
has the unique solution given by the following formula

u(t) =
1
δ

{
γ [1− βη + t(β − 1)]

[
r∑
′

i=1

Qi(ξ − ti)−
∫ ξ

0
(ξ − s)y(s)ds

]

+ [γ ξ − t(γ − 1)]

[
β

j∑
′

i=1

Qi(η − ti)−
m∑
i=1

Qi(1− ti)− β
∫ η

0
(η − s)y(s)ds+

∫ 1

0
(1− s)y(s)ds

]}

+

k∑
′

i=1

Qi(t − ti)−
∫ t

0
(t − s)y(s)ds (5)

for t ∈ Jk, k = 0, 1, . . . ,m, ξ ∈ Jr , η ∈ Jj and r, j = 0, 1, . . . ,mwith
∑s′
i=q · · · = 0 if q > s.

Lemma 2 (See [5]). Let Assumption H3 hold. Assume that Qi ≤ 0, i = 1, 2, . . . ,m and y ∈ C(J,R+). Then the unique solution
u of problem (2)–(4) satisfies the condition u(t) ≥ 0 on [0, 1] provided that
(i) ξ < η and 0 < β < 1

η
, 0 < γ < 1

1−ξ , or
(ii) ξ ≥ η.

Lemma 3 (See Appendix, [6]). Let Assumption H4 hold and ξ < η. Assume that y ∈ C(J,R+). Then the unique solution u of
problem (2)–(4) satisfies the condition

min
[0,ξ ]
u(t) ≥ Γ1‖u‖ and min

[η,1]
u(t) ≥ Γ2‖u‖, (6)

where

Γ1 =


min

{
ξγ

1+ γ ξ − γ
,
(1− η)γ
1− βη

}
if 0 < γ < 1, 0 < β < 1,

ξγ

1+ γ ξ − γ
if 0 < γ < 1, 1 ≤ β <

1
η
,

1− η
1− βη

if 1 ≤ γ <
1

1− ξ
, 0 < β < 1,
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Γ2 =


min

(
ξβ

1+ γ ξ − γ
,
(1− η)β
1− βη

)
if 0 < γ < 1, 0 < β < 1,

ξ

1+ γ ξ − γ
if 0 < γ < 1, 1 ≤ β <

1
η
,

(1− η)β
1− βη

if 1 ≤ γ <
1

1− ξ
, 0 < β < 1.

Lemma 4 (See Appendix, [6]). Let Assumption H3 hold and η < ξ . Assume that y ∈ C(J,R+). Then the unique solution u of
problem (2)–(4) satisfies the condition

min
[0,η]
u(t) ≥ Γ3‖u‖ and min

[ξ,1]
u(t) ≥ Γ4‖u‖, (7)

where

Γ3 =

{
γ min(1− ξ, η) if 0 < γ < 1, 0 < β < 1,
γ η if 0 < γ < 1, 1 ≤ β,
1− ξ if 1 ≤ γ , 0 < β < 1,

Γ4 =

{
βmin(1− ξ, η) if 0 < γ < 1, 0 < β < 1,
η if 0 < γ < 1, 1 ≤ β,
β(1− ξ) if 1 ≤ γ , 0 < β < 1.

Remark 1. Note that max(Γ1,Γ2,Γ3,Γ4) < 1.

3. The fixed point index

Let us introduce

Definition 1. Let E be a real Banach space. A nonempty convex closed set P ⊂ E is called a cone if it satisfies the following
properties:

(i) u ∈ P, λ ≥ 0 implies λu ∈ P,
(ii) u ∈ P, −u ∈ P implies u = θ , where θ denotes the zero element of E.

Every cone P in E defines a partial ordering given by u ≤ v for u, v ∈ P iff v − u ∈ P. Let us define two convex sets
Pr , P̄r , r > 0 by relations

Pr = {u ∈ P : ‖u‖ < r}, P̄r = {u ∈ P : ‖u‖ ≤ r}.

We need some properties about the fixed point index of compact maps, for example see [13, Chapter 3], [19, Chapter
2], [12, p. 2015]. The index has the following properties.

Lemma 5. Let S be a closed convex set in a Banach space and let D be a bounded open set such that DS = D ∩ S 6= ∅. Let
T : D̄S → S be a compact map. Suppose that x 6= Tx for all x ∈ ∂DS .

(D1) (Existence) If i(T ,DS, S) 6= 0, then T has a fixed point in DS .
(D2) (Normalization) If u ∈ DS , then i(ũ,DS, S) = 1, where ũ(x) = u for x ∈ D̄S .
(D3) (Homotopy) Let ζ : J × D̄S → S be a compact map such that x 6= ζ (t, x) for x ∈ ∂DS and t ∈ J . Then

i(ζ (0, ·),DS, S) = i(ζ (1, ·),DS, S).

(D4) (Additivity) If U1,U2 are disjoint open subsets of DS such that x 6= Tx for x ∈ D̄S \ (U1 ∪ U2), then

i(T ,DS, S) = i(T ,U1, S)+ i(T ,U2, S)

where i(T ,Uj, S) = i(T |Ūj ,Uj, S), j = 1, 2.

Lemma 6. Let P be a cone in a Banach space E. For ρ > 0, define Ωρ = {x ∈ P : ‖x‖ < ρ}. Assume that T : Ω̄ρ → P is a
compact map such that x 6= Tx for x ∈ ∂Ωρ .

(i) If ‖x‖ ≤ ‖Tx‖ for x ∈ ∂Ωρ , then i(T ,Ωρ, P) = 0.
(ii) If ‖x‖ ≥ ‖Tx‖ for x ∈ ∂Ωρ , then i(T ,Ωρ, P) = 1.
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4. Existence of positive solutions of problem (1) by the fixed point index

By T , we denote the operator defined by

(Tu)(t) =
1
δ

{
γ [1− βη + t(β − 1)]

[
r∑
′

i=1

Qi(u(ti))(ξ − ti)−
∫ ξ

0
(ξ − s)h(s)f (u(α(s)))ds

]

+ [γ ξ − t(γ − 1)]

[
β

j∑
′

i=1

Qi(u(ti))(η − ti)−
m∑
i=1

Qi(u(ti))(1− ti)

−β

∫ η

0
(η − s)h(s)f (u(α(s)))ds+

∫ 1

0
(1− s)h(s)f (u(α(s)))ds

]}

+

k∑
′

i=1

Qi(u(ti))(t − ti)−
∫ t

0
(t − s)h(s)f (u(α(s)))ds

for t ∈ Jk, k = 0, 1, . . . ,m, ξ ∈ Jr , η ∈ Jj and r, j = 0, 1, . . . ,m. Indeed, T : B→ B, where B = C(J,R+).
Theorems 1 until 6 deal with the case when α(t) ≤ t on J.

Theorem 1. Let Assumptions H′1,H2,H4 hold and ξ < η. We assume that there exist constants b, c,Q such that 0 < b ≤
min[ 1

µ
,Γ 21 ]c,Q ≥ 0, where Γ1 is defined as in Lemma 3 and

µ ≥
1
δ

[
∆

∫ 1

0
(1− s)h(s)ds+ Q

]
, ∆ = max

t∈J
[γ ξ − t(γ − 1)]

with δ defined as in Lemma 1.

In addition, we assume that:

(A1) −[γ ξ − t(γ − 1)]
∑m
i=1 Qi(u(ti))(1− ti) ≤

Q
µ
c, f (u(t)) ≤ 1

µ
c for 0 ≤ u(t) ≤ c, t ∈ J,

(A2) f (u(t)) ≥ b
l1
for b ≤ u(t) ≤ b

Γ 21
, 0 ≤ t ≤ ξ with

l1 = min(γ , 1)
1− ξ + β(ξ − η)

δ

∫ ξ

0
sh(s)ds.

Then problem (1) has at least one positive solution.

Proof. We see that problem (1) can be written as the fixed point problem Tu = u. It is easy to show that operator T is
completely continuous. Indeed T is compact. This results from the Ascoli–Arzela theorem.
Let

P = {u ∈ B : u(t) ≥ 0, t ∈ J and min
[0,ξ ]
u(t) ≥ Γ1‖u‖}.

Take u ∈ P . Then Lemma 3 and

min
[0,ξ ]

(Tu)(t) = min
[0,ξ ]
u(t) ≥ Γ1‖u‖ = Γ1‖Tu‖

show that TP ⊂ P.
First we want to show that

min
[0,ξ ]

(Tu)(t) ≥ Γ1‖Tu‖, u ∈ P̄c . (8)

Take u ∈ P̄c . Then 0 ≤ u(t) ≤ c on J; so ‖u‖ ≤ c. Because α ∈ C(J, [0, 1]), then 0 ≤ u(α(t)) ≤ c on J . Indeed (Tu)(t) ≥ 0,
by Lemma 2. Moreover, in view of Assumption (A1), we have

‖Tu‖ = sup
t∈J
|(Tu)(t)| = sup

t∈J
(Tu)(t)

= sup
t∈J

{
1
δ

[
γ [1− βη + t(β − 1)]

(
r∑
′

i=1

Qi(u(ti))(ξ − ti)−
∫ ξ

0
(ξ − s)h(s)f (u(α(s)))ds

)

+[γ ξ − t(γ − 1)]

(
β

j∑
′

i=1

Qi(u(ti))(η − ti)−
m∑
i=1

Qi(u(ti))(1− ti)
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−β

∫ η

0
(η − s)h(s)f (u(α(s)))ds+

∫ 1

0
(1− s)h(s)f (u(α(s)))ds

)

+ δ

(
k∑
′

i=1

Qi(u(ti))(t − ti)−
∫ t

0
(t − s)h(s)f (u(α(s)))ds

)]}

≤ sup
t∈J

{
−
1
δ
[γ ξ − t(γ − 1)]

[
m∑
i=1

Qi(u(ti))(1− ti)−
∫ 1

0
(1− s)h(s)f (u(α(s)))ds

]}

≤
1
δ

[
Q
µ
+
∆

µ

∫ 1

0
(1− s)h(s)ds

]
c ≤ c.

It proves that T : P̄c → P̄c . Hence, in view of Lemma 3, we have relation (8).
Now we want to show that

min
[0,ξ ]

(Tu)(t) > b for u ∈ P̄c with b ≤ u(t) ≤
b
Γ 21
, t ∈ [0, ξ ]. (9)

Let b ≤ u(t) ≤ b
Γ 21
for 0 ≤ t ≤ ξ . Then α(t) ≤ t ≤ ξ for t ∈ [0, ξ ] and also

b ≤ u(α(t)) ≤
b
Γ 21
≤
c
Γ 21
min

(
1
µ
,Γ 21

)
≤ c for 0 ≤ t ≤ ξ .

Moreover
(Tu)′′(t) = −h(t)f (u(α(t))) ≤ 0, t ∈ J ′.

Now we consider two cases.
Case (1) Let 0 < γ < 1, 0 < β < 1

η
. Then

min
[0,ξ ]

(Tu)(t) = min
[0,ξ ]
u(t) = min[u(0), u(ξ)] = min[γ u(ξ), u(ξ)] = γ u(ξ).

We see that
min
[0,ξ ]

(Tu)(t) = γ u(ξ)

=
γ

δ

{
[1− ξ + β(ξ − η)]

[
−

r∑
′

i=1

Qi(u(ti))ti +
∫ ξ

0
sh(s)f (u(α(s)))ds

]

+ ξ

[
−

j∑
′

i=r+1

Qi(u(ti))(1− βη + ti(β − 1))−
m∑
′

i=j+1

Qi(u(ti))(1− ti)

+

∫ η

ξ

(1− βη + s(β − 1))h(s)f (u(α(s)))ds+
∫ 1

η

(1− s)h(s)f (u(α(s)))ds

]}

>
γ

δ
[1− ξ + β(ξ − η)]

∫ ξ

0
sh(s)f (u(α(s)))ds

≥
γ

δ

b
l1
[1− ξ + β(ξ − η)]

∫ ξ

0
sh(s)ds ≥ b,

by Assumption (A2).
Case (2) Let 1 ≤ γ < 1

1−ξ , 0 < β < 1. Then

min
[0,ξ ]

(Tu)(t) = u(ξ).

Indeed, by Assumption (A2), we obtain

min
[0,ξ ]

(Tu)(t) = u(ξ)

>
1
δ
[1− ξ + β(ξ − η)]

∫ ξ

0
sh(s)f (u(α(s)))ds

≥
1
δ

b
l1
[1− ξ + β(ξ − η)]

∫ ξ

0
sh(s)ds ≥ b;

see also the proof in Case (1).
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This shows that (9) holds.
To show the assertion of Theorem 1 we apply Lemma 5. As a closed convex set S (from Lemma 5) we take the set P̄c . Put

U = {u ∈ P̄c : min
[0,ξ ]
u(t) > b}.

Wewant to show that Tu 6= u for u ∈ ∂U . Assume that this relation is not true. It means that there exists u0 ∈ ∂U such that
Tu0 = u0 and min[0,ξ ] u0(t) = b.We consider two cases.
Case (a) Let u0 ∈ {u ∈ P̄c : ‖u‖ ≤ b

Γ 21
, min[0,ξ ] u(t) = b}. It means that

b = min
[0,ξ ]
u(t) ≤ ‖u‖ ≤

b
Γ 21
.

This and (9) give

b = min
[0,ξ ]
u0(t) = min

[0,ξ ]
(Tu0)(t) > b.

This is a contradiction.
Case (b) Let ‖u0‖ > b

Γ 21
. In view of (8), we obtain

b = min
[0,ξ ]
u0(t) = min

[0,ξ ]
(Tu0)(t) ≥ Γ1‖Tu0‖ = Γ1‖u0‖ > Γ1

b
Γ 21
=
b
Γ1
> b.

This is a contradiction too. It proves that Tu 6= u for u ∈ ∂U .
To prove that T has a fixed point in U we need to show that i(T ,U, P̄c) 6= 0; see condition (D1) of Lemma 5. To do it

we use conditions (D3) and (D2). Take u0 ∈ P such that min[0,ξ ] u0(t) > b, ‖u0‖ ≤ b
Γ 21
and define the map ζ by relation

ζ (λ, u) = λu0 + (1− λ)Tu for λ ∈ [0, 1]. Note that

‖ζ (λ, u)‖ ≤ λ‖u0‖ + (1− λ)‖Tu‖ ≤ λ
b
Γ 21
+ (1− λ)c

≤ λc + (1− λ)c = c.

We see that ζ : [0, 1] × Ū → P̄c . Indeed, ζ is compact. Now, we need to show that u 6= ζ (λ, u) on [0, 1] × ∂U . Assume that
it is not true; so there exist (λ1, u1) ∈ [0, 1] × ∂U such that ζ (λ1, u1) = u1. We have two cases.
Case (i) Let ‖Tu1‖ > b

Γ 21
. Then,

min
[0,ξ ]

(Tu1)(t) ≥ Γ1‖Tu1‖ > Γ1
b
Γ 21
=
b
Γ1
> b,

by relation (8). Moreover,

b = min
[0,ξ ]
u1(t) = min

[0,ξ ]
[λ1u0(t)+ (1− λ1)(Tu1)(t)]

≥ min
[0,ξ ]

λ1u0(t)+min
[0,ξ ]

(1− λ1)(Tu1)(t) > λ1b+ (1− λ1)b = b.

This contradicts.
Case (ii) Let ‖Tu1‖ ≤ b

Γ 21
. Then

‖u1‖ = ‖λ1u0 + (1− λ1)Tu1‖ ≤ λ1‖u0‖ + (1− λ1)‖Tu1‖

≤ λ1
b
Γ 21
+ (1− λ1)

b
Γ 21
=
b
Γ 21
.

Note that

b = min
[0,ξ ]
u1(t) ≤ ‖u1‖ ≤

b
Γ 21
.

This and relation (9) give

b = min
[0,ξ ]
u1(t) = min

[0,ξ ]
[λ1u0(t)+ (1− λ1)(Tu1)(t)]

≥ min
[0,ξ ]

λ1u0(t)+min
[0,ξ ]

(1− λ1)(Tu1)(t) > λ1b+ (1− λ1)b = b.

This is a contradiction.
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It proves that ζ (λ, u) 6= u for (λ, u) ∈ [0, 1] × ∂U . Hence, in view of (D3), we have

i(T ,U, P̄c) = i(u0,U, P̄c).

This and (D2) show that i(u0,U, P̄c) = 1, so i(T ,U, P̄c) = 1. In view of condition (D1), it proves that T has a fixed point
x∗ ∈ U . Because,

min
[0,ξ ]
x∗(t) > b, ‖x∗‖ ≤ c,

x∗ is a nonzero fixed point of T in U . This ends the proof. �

In the next two theorems we use constants Γ1 and l1 defined earlier.

Theorem 2. Let Assumptions H′1,H2,H4 hold and ξ < η. In addition, we assume that:

(A3) f0 = f∞ = 0 and there exists constants δ1, Q̄i ≥ 0, i = 1, 2, . . . ,m such that
−Qi(u(ti)) ≤ Q̄iu(ti) if u(ti) ≥ 0,
1
δ
max(γ ξ, γ ξ − γ + 1)

m∑
i=1

Q̄i(1− ti) ≤ δ1 < 1,
(10)

where

f0 = lim
u→0+

f (u)
u
, f∞ = lim

u→∞

f (u)
u
,

(A4) there exists a constant ρ > 0 such that

f (u) ≥
1
l1
ρ for u ∈ [Γ1ρ, ρ].

Then problem (1) has at least two positive solutions x∗1 and x
∗

2 such that

0 < ‖x∗1‖ < ρ < ‖x∗2‖.

Proof. Indeed, problem (1) has a solution u if and only if u is a solution of the operator equation u = Tu, where T is defined
earlier. Put

µ0 >
1
δ
max(γ ξ, γ ξ − γ + 1)

∫ 1

0
(1− s)h(s)ds.

If f0 = 0, then we may choose a constant r ∈ (0, ρ) such that f (u) ≤ δ2u for 0 < u ≤ r , where 0 < δ2 <
1−δ1
µ0
. Take u ∈ P

such that ‖u‖ = r. In view of assumptions H
′

1,H2,

(Tu)(t) ≤
1
δ
[γ ξ − t(γ − 1)]

[
−

m∑
i=1

Qi(u(ti))(1− ti)+
∫ 1

0
(1− s)h(s)f (u(α(s)))ds

]

≤
1
δ
max(γ ξ, γ ξ − γ + 1)

[
m∑
i=1

Q̄iu(ti)(1− ti)+ δ2

∫ 1

0
(1− s)h(s)u(α(s))ds

]
≤ (δ1 + δ2µ0)‖u‖ < ‖u‖.

Then ‖Tu‖ < ‖u‖ for u ∈ ∂Ω , where Ω = {u ∈ P : ‖u‖ < r}. It means that u 6= Tu for u ∈ ∂Ω. It shows that
i(T ,Ω, P) = 1, by Lemma 6(ii).
Now, we consider the case when f∞ = 0. It means that we may choose ω > ρ such that f (u) ≤ κu for u ≥ ω with

0 < κ <
1−δ1
µ0
.We consider two cases.

Case (C1) We assume that f is bounded; so there exists a constant M > 0 such that f (u) ≤ M for u ∈ [0,∞). Put
maxi u(ti) = N. Let us choose u ∈ P such that ‖u‖ = r̄,where r̄ > max(δ1N + µ0M, ω). Then

(Tu)(t) ≤
1
δ
[γ ξ − t(γ − 1)]

[
−

m∑
i=1

Qi(u(ti))(1− ti)+
∫ 1

0
(1− s)h(s)f (u(α(s)))ds

]

≤
1
δ
max(γ ξ, γ ξ − γ + 1)

[
m∑
i=1

Q̄iu(ti)(1− ti)+M
∫ 1

0
(1− s)h(s)ds

]
≤ δ1N +Mµ0 < r̄ = ‖u‖;

so ‖Tu‖ < ‖u‖, u ∈ ∂Ω0, whereΩ0 = {u ∈ P : ‖u‖ < r̄}.
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Case (C2)We assume that f is unbounded. Note that f ∈ C([0,∞), [0,∞)); so there exists r̄ > max(ω, rΓ1 ) such that
f (u) ≤ f (r̄) for 0 < u ≤ r̄ . Take u ∈ P such that ‖u‖ = r̄ . Then

(Tu)(t) ≤
1
δ
[γ ξ − t(γ − 1)]

[
−

m∑
i=1

Qi(u(ti))(1− ti)+
∫ 1

0
(1− s)h(s)f (u(α(s)))ds

]

≤
1
δ
max(γ ξ, γ ξ − γ + 1)

[
m∑
i=1

Q̄iu(ti)(1− ti)+ f (r̄)
∫ 1

0
(1− s)h(s)ds

]
≤ (δ1 + κµ0)r̄ < r̄ = ‖u‖.

Hence, in view of (C1) and (C2), we have ‖Tu‖ < ‖u‖ for u ∈ ∂Ω0. It shows that i(T ,Ω0, P) = 1, by Lemma 6(ii).
LetΛ = {u ∈ P : ‖u‖ < ρ}. Note that ∂Λ ⊂ P; so min[0,ξ ] u(α(t)) ≥ Γ1‖u‖ = Γ1ρ. For u ∈ ∂Λ,we have,

‖Tu‖ ≥ u(ξ) >
1
δ
[1− ξ + β(ξ − η)]

∫ ξ

0
sh(s)f (u(α(s)))ds

>
ρ

l1

1
δ
[1− ξ + β(ξ − η)]

∫ ξ

0
sh(s)ds ≥ ρ = ‖u‖,

by Assumption (A4). It shows that ‖Tu‖ > ‖u‖ for u ∈ ∂Λ. Hence, i(T ,Λ, P) = 0, by Lemma 6(ii). Because r < ρ < r̄ , we
see that i(T ,Λ \ Ω̄, P) = i(T ,Λ, P)− i(T ,Ω, P) = −1 and i(T ,Ω0 \ Λ̄, P) = i(T ,Ω0, P)− i(T ,Λ, P) = 1. It proves that
problem (1) has two positive solutions x∗1 and x

∗

2 such that x
∗

1 ∈ Λ \ Ω̄, x
∗

2 ∈ Ω0 \ Λ̄ and 0 < ‖x
∗

1‖ < ρ < ‖x∗2‖. This ends
the proof. �

Theorem 3. Let Assumptions H′1,H2,H4 hold and ξ < η. In addition, we assume that condition (10) holds and moreover

(A5) f0 = f∞ = ∞ where f0 and f∞ are defined as in Theorem 2,
(A6) there exists a positive constant ρ such that

f (u) <
1− δ1
µ0

ρ for u ∈ [0, ρ],

where µ0 is defined as in Theorem 2.

Then problem (1) has at least two positive solutions x∗1 and x
∗

2 such that

0 < ‖x∗1‖ < ρ < ‖x∗2‖.

Proof. Case (1) Let f0 = ∞. Then there exists r ∈ (0, ρ) such that f (u) ≥ δ3u for 0 < u ≤ r with δ3 > 1
Γ1 l1

. Let
Ω = {u ∈ P : ‖u‖ < r}. Take u ∈ P such that ‖u‖ = r; so u ∈ ∂Ω . Then, as in the proof of Theorem 2, we have

‖Tu‖ ≥ u(ξ) >
1
δ
[1− ξ + β(ξ − η)]

∫ ξ

0
sh(s)f (u(α(s)))ds

≥
1
δ
[1− ξ + β(ξ − η)] δ3

∫ ξ

0
sh(s)u(α(s))ds

≥
1
δ
[1− ξ + β(ξ − η)] δ3Γ1

∫ ξ

0
sh(s)‖u‖ds ≥ δ3Γ1l1‖u‖ > ‖u‖.

It shows that ‖Tu‖ > ‖u‖ for u ∈ ∂Ω . Hence, i(T ,Ω, P) = 0, by Lemma 6(i).
Case (2) Let f∞ = ∞. It means that there exists ν > ρ such that f (u) ≥ κu for u ≥ ν and κ > 1

Γ1 l1
. Put

Ω0 = {u ∈ P : ‖u‖ < ω}, where ω > max
(
ν
Γ1
, ρ
)
. Then for u ∈ ∂Ω0, we have

min
[0,ξ ]
u(α(t)) ≥ Γ1‖u‖ = Γ1ω > Γ1

ν

Γ1
= ν.

Hence, as before, we have

‖Tu‖ ≥ u(ξ) > κΓ1l1‖u‖ > ‖u‖.

This shows that i(T ,Ω0, P) = 0, by Lemma 6(i).
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Now we apply condition (A6). PutΩ1 = {u ∈ P : ‖u‖ < ρ}. As in Theorem 2, for u ∈ ∂Ω1, we have

(Tu)(t) ≤
1
δ
[γ ξ − t(γ − 1)]

[
−

m∑
i=1

Qi(u(ti))(1− ti)+
∫ 1

0
(1− s)h(s)f (u(α(s)))ds

]

≤

[
δ1 +

1− δ1
µ0

1
δ
max(γ ξ, γ ξ − γ + 1)

∫ 1

0
(1− s)h(s)ds

]
ρ

< ρ = ‖u‖.

Then ‖Tu‖ < ‖u‖ for u ∈ ∂Ω1. It shows that i(T ,Ω1, P) = 1.
Note that r < ρ < ω. Hence i(T ,Ω1 \ Ω̄, P) = i(T ,Ω1, P) − i(T ,Ω, P) = 1 and i(T ,Ω0 \ Ω̄1, P) = i(T ,Ω0, P) −

i(T ,Ω1, P) = −1. It shows that operator T has two positive fixed points x∗1 ∈ Ω1 \ Ω̄, x∗2 ∈ Ω0 \ Ω̄1 such that
0 < ‖x∗1‖ < ‖x

∗

2‖. This ends the proof. �

We formulate the next three theorems without proofs since they are respectively similar to those of Theorems 1–3.
Throughout this paper we use the constant µ defined as in Theorem 1.

Theorem 4. Let Assumptions H′1,H2,H3 hold and η < ξ. We assume that there exist constants b, c,Q such that 0 < b ≤
min[ 1

µ
,Γ 23 ]c,Q ≥ 0, where Γ3 is defined as in Lemma 4. Let Assumption (A1) hold. In addition, we assume that:

(A′2) f (u(t)) ≥
b
l3
for b ≤ u(t) ≤ b

Γ 23
, 0 ≤ t ≤ η with

l3 = min
(
γ

δ
[1− βη + ξ(β − 1)],

1− η
δ

)∫ η

0
sh(s)ds.

Then problem (1) has at least one positive solution.

Theorem 5. Let Assumptions H′1,H2,H3, (A3) hold and η < ξ. In addition, we assume that:

(A′4) there exists a constant ρ > 0 such that

f (u) ≥
1
l3
ρ for u ∈ [Γ3ρ, ρ].

Then problem (1) has at least two positive solutions x∗1 and x
∗

2 such that

0 < ‖x∗1‖ < ρ < ‖x∗2‖.

Theorem 6. Let Assumptions H′1,H2,H3, (A3), (A5), (A6) hold and η < ξ. Then problem (1) has at least two positive solutions
x∗1 and x

∗

2 such that

0 < ‖x∗1‖ < ρ < ‖x∗2‖.

The next six theorems concern the case when α(t) ≥ t on J . The next results we also formulate without proofs (they are
similar to the previous ones).

Theorem 7. Let Assumptions H1,H2,H3 hold and ξ < η. We assume that there exist constants b, c,Q such that 0 < b ≤
min[ 1

µ
,Γ 22 ]c,Q ≥ 0, where Γ2 is defined as in Lemma 4. Let Assumption (A1) hold. In addition, we assume that:

(A′′2) f (u(t)) ≥
b
l2
for b ≤ u(t) ≤ b

Γ 22
, η ≤ t ≤ 1 with

l2 = min(β, 1)
γ ξ − γ η + η

δ

∫ 1

η

(1− s)h(s)ds.

Then problem (1) has at least one positive solution.

Theorem 8. Let Assumptions H1,H2,H3, (A3) hold and ξ < η. In addition, we assume that:

(A′′4) there exists a constant ρ > 0 such that

f (u) ≥
1
l2
ρ for u ∈ [Γ2ρ, ρ].
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Then problem (1) has at least two positive solutions x∗1 and x
∗

2 such that

0 < ‖x∗1‖ < ρ < ‖x∗2‖.

Theorem 9. Let Assumptions H1,H2,H3, (A3), (A5), (A6) hold and ξ < η. Then problem (1) has at least two positive solutions
x∗1 and x

∗

2 such that

0 < ‖x∗1‖ < ρ < ‖x∗2‖.

Theorem 10. Let Assumptions H1,H2,H3 hold and η < ξ. We assume that there exist constants b, c,Q such that 0 < b ≤
min[ 1

µ
,Γ 24 ]c,Q ≥ 0, where Γ4 is defined as in Lemma 4. Let Assumption (A1) hold. In addition, we assume that:

(A′′′2 ) f (u(t)) ≥
b
l4
for b ≤ u(t) ≤ b

Γ 24
, ξ ≤ t ≤ 1 with

l4 = min
(
β

δ
[γ ξ − ηγ + η],

ξ

δ

)∫ 1

ξ

(1− s)h(s)ds.

Then problem (1) has at least one positive solution.

Theorem 11. Let Assumptions H1,H2,H3, (A3) hold and η < ξ. In addition, we assume that:

(A′′′4 ) there exists a constant ρ > 0 such that

f (u) ≥
1
l4
ρ for u ∈ [Γ4ρ, ρ].

Then problem (1) has at least two positive solutions x∗1 and x
∗

2 such that

0 < ‖x∗1‖ < ρ < ‖x∗2‖.

Theorem 12. Let Assumptions H1,H2,H3, (A3), (A5), (A6) hold and η < ξ. Then problem (1) has at least two positive solutions
x∗1 and x

∗

2 such that

0 < ‖x∗1‖ < ρ < ‖x∗2‖.

Appendix

In this part, we provide the proofs of Lemmas 3 and 4 from paper [6].

Proof of Lemma 3. Put u(t∗) = ‖u‖. We divide the proof into four cases.
Case (1) Let 0 < γ < 1, 0 < β < 1. In this case

u(0) = γ u(ξ) ≤ u(ξ), u(1) = βu(η) ≤ u(η).

Subcase (1a) Let u(ξ) ≤ u(η). Note that t∗ ∈ (ξ , η) or t∗ ∈ (η, 1) and

min
[0,ξ ]
u(t) = u(0) and min

[η,1]
u(t) = u(1).

Then

u(t∗) ≤ u(ξ)+
[u(ξ)− u(0)]

ξ − 0
(t∗ − ξ) =

t∗(1− γ )+ γ ξ
ξ

u(ξ) ≤
1+ γ ξ − γ

ξ
u(ξ)

=
1+ ξγ − γ

γ ξ
u(0).

Hence

min
[0,ξ ]
u(t) ≥

ξγ

1+ γ ξ − γ
‖u‖ and min

[η,1]
u(t) ≥

ξβ

1+ γ ξ − γ
‖u‖.

Subcase (1b) Let u(ξ) > u(η). In this case t∗ ∈ (0, ξ) or t∗ ∈ (ξ , η) and

min
[0,ξ ]
u(t) = u(0) and min

[η,1]
u(t) = u(1).
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Then

u(t∗) ≤ u(η)+
u(η)− u(1)
η − 1

(t∗ − η) =
u(η)
1− η

[1− βη + t∗(β − 1)] ≤
1− βη
1− η

u(η)

≤
1− βη
(1− η)γ

u(0).

Hence

min
[0,ξ ]
u(t) ≥

(1− η)γ
1− βη

‖u‖ and min
[η,1]
u(t) ≥

(1− η)β
1− βη

‖u‖.

Case (2) Let 0 < γ < 1, 1 ≤ β < 1
η
. In this case

u(0) = γ u(ξ) ≤ u(ξ), u(1) = βu(η) ≥ u(η).

Let u(ξ) ≤ u(η). Note that t∗ ∈ (η, 1),

min
[0,ξ ]
u(t) = u(0) and min

[η,1]
u(t) = u(η).

Then

u(t∗) ≤ u(ξ)+
u(ξ)− u(0)
ξ − 0

(t∗ − ξ) =
u(ξ)
ξ
[t∗(1− γ )+ γ ξ ] ≤

1− γ + γ ξ
ξ

u(ξ)

=
1− γ + γ ξ

ξγ
u(0).

It yields

min
[0,ξ ]
u(t) ≥

ξγ

1− γ + γ ξ
‖u‖ and min

[η,1]
u(t) ≥

ξ

1− γ + γ ξ
‖u‖.

The case when u(ξ) > u(η) contradicts with the concavity of u.
Case (3) Let 1 ≤ γ < 1

1−ξ , 0 < β < 1. In this case

u(0) = γ u(ξ) ≥ u(ξ), u(1) = βu(η) ≤ u(η).

If u(ξ) ≥ u(η), then t∗ ∈ (0, ξ) and

min
[0,ξ ]
u(t) = u(ξ) and min

[η,1]
u(t) = u(1).

Moreover,

u(t∗) ≤ u(η)+
u(η)− u(1)
η − 1

(t∗ − η) =
u(η)
1− η

[1− βη + t∗(β − 1)] ≤
1− βη
1− η

u(η)

≤
1− βη
1− η

u(ξ).

It yields

min
[0,ξ ]
u(t) ≥

1− η
1− βη

‖u‖ and min
[η,1]
u(t) ≥

(1− η)β
1− βη

‖u‖.

The case when u(ξ) < u(η) contradicts with the concavity of u.
Case (4) Let 1 ≤ γ < 1

1−ξ , 1 ≤ β <
1
η
. Then u(0) ≥ u(ξ), u(1) ≥ u(η). This case contradicts with the concavity of u.

This ends the proof. �

Proof of Lemma 4. Put u(t∗) = ‖u‖. First we prove the first inequality of (7).
Case (1) Let 0 < γ < 1, 0 < β < 1. In this case

u(0) = γ u(ξ) ≤ u(ξ), u(1) = βu(η) ≤ u(η).

Subcase (1a) Let u(ξ) ≤ u(η) and u(1) ≤ u(ξ). Note that t∗ ∈ (0, η) or t∗ ∈ (η, ξ) and

min
[0,η]
u(t) = u(0) and min

[ξ,1]
u(t) = u(1).
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Then

u(t∗) ≤ u(ξ)+
[u(ξ)− u(1)]

ξ − 1
(t∗ − ξ) =

u(ξ)
1− ξ

(1− t∗)−
u(1)
1− ξ

(ξ − t∗) ≤
u(ξ)
1− ξ

=
u(0)

(1− ξ)γ
.

Hence

min
[0,η]
u(t) ≥ γ (1− ξ)‖u‖ and min

[ξ,1]
u(t) ≥ β(1− ξ)‖u‖.

Subcase (1ab) Let u(1) > u(ξ). This case contradicts with the concavity of u.
Subcase (1b) Let u(ξ) > u(η).
Subcase (1ba) Let u(0) ≤ u(η). Then t∗ ∈ (η, ξ) or t∗ ∈ (ξ , 1) and

min
[0,η]
u(t) = u(0) and min

[ξ,1]
u(t) = u(1).

Then

u(t∗) ≤ u(η)+
u(η)− u(0)

η
(t∗ − η) =

u(η)
η
t∗ −

u(0)
η
(t∗ − η) ≤

u(η)
η

≤
u(ξ)
η
=
u(0)
γ η

.

It yields

min
[0,η]
u(t) ≥ γ η‖u‖ and min

[ξ,1]
u(t) ≥ βη‖u‖.

Subcase (1bb) Let u(0) > u(η). This case contradicts with the concavity of u.
Case (2) Let 0 < γ < 1, 1 ≤ β . In this case

u(0) = γ u(ξ) ≤ u(ξ), u(1) = βu(η) ≥ u(η).

Subcase (2a) Let u(ξ) ≤ u(η). This case contradicts with the concavity of u.
Subcase (2b) Let u(ξ) > u(η).
Subcase (2ba) Let u(0) < u(η) and u(1) ≤ u(ξ). It yields t∗ ∈ (η, ξ) or t∗ ∈ (ξ , 1) and

min
[0,η]
u(t) = u(0) and min

[ξ,1]
u(t) = u(1).

Then

u(t∗) ≤ u(η)+
u(η)− u(0)

η
(t∗ − η) ≤

1
η
u(η) ≤

u(ξ)
η

=
u(0)
γ η

.

Hence

min
[0,η]
u(t) ≥ γ η‖u‖ and min

[ξ,1]
u(t) ≥ βη‖u‖.

Subcase (2bb) Let u(0) < u(η) and u(1) > u(ξ). Then t∗ ∈ (η, ξ) or t∗ ∈ (ξ , 1) and

min
[0,η]
u(t) = u(0) and min

[ξ,1]
u(t) = u(ξ).

Moreover

u(t∗) ≤ u(η)+
u(η)− u(0)

η
(t∗ − η) ≤

1
η
u(η)

≤
u(ξ)
η
=
u(0)
γ η

.

Hence

min
[0,η]
u(t) ≥ γ η‖u‖ and min

[ξ,1]
u(t) ≥ η‖u‖.

Subcase (2bc) Let u(0) > u(η). This case contradicts with the concavity of u.
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Case (3) Let 1 ≤ γ , 0 < β < 1. In this case

u(0) = γ u(ξ) ≥ u(ξ), u(1) = βu(η) ≤ u(η).

Subcase (3a) Let u(ξ) ≤ u(η).
Subcase (3aa) Let u(1) < u(ξ) and u(0) ≤ u(η). It yields t∗ ∈ (0, η) or t∗ ∈ (η, ξ) and

min
[0,η]
u(t) = u(0) and min

[ξ,1]
u(t) = u(1).

Moreover,

u(t∗) ≤ u(ξ)+
u(ξ)− u(1)
ξ − 1

(t∗ − ξ) ≤
u(ξ)
1− ξ

=
u(0)

γ (1− ξ)
.

It yields

min
[0,η]
u(t) ≥ γ (1− ξ)‖u‖ and min

[ξ,1]
u(t) ≥ β(1− ξ)‖u‖.

Subcase (3ab) Let u(1) < u(ξ) and u(η) ≤ u(0). It yields t∗ ∈ (0, η) and

min
[0,η]
u(t) = u(η) and min

[ξ,1]
u(t) = u(1).

Moreover

u(t∗) ≤ u(ξ)+
u(ξ)− u(1)
ξ − 1

(t∗ − ξ) ≤
u(ξ)
1− ξ

≤
u(η)
1− ξ

.

Hence

min
[0,η]
u(t) ≥ (1− ξ)‖u‖ and min

[ξ,1]
u(t) ≥ β(1− ξ)‖u‖.

Subcase (3ac) Let u(1) > u(ξ). This contradicts with the concavity of u.
Subcase (3b) Let u(ξ) > u(η). This contradicts with the concavity of u too.
Case (4) Let 1 ≤ γ , 1 ≤ β . Then u(0) ≥ u(ξ), u(1) ≥ u(η). This case contradicts with the concavity of u. This ends the

proof. �
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