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Abstract

This paper concerns differential equations with boundary conditions. Given are sufficient conditions under which such problems
with deviated arguments have a unique solution in a corresponding sector. To obtain existence results we apply a monotone iterative
method.
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1. Introduction

In this paper, we deal with the following problem{
x ′(t) = f (t, x(β(t, x(t)))) ≡ F(x, x)(t), t ∈ J,

x(0) = λx(T ) + k,
(1)

where

F(x, y)(t) = f (t, x(β(t, y(t)))) (2)

and J = [0, T ], f ∈ C(J × R, R), β ∈ C(J × R, R), λ, k ∈ R.
If λ = 1 and k = 0, then we have the periodic boundary condition, if λ = −1 and k = 0, then we have the

antiperiodic boundary condition, and if λ = 0, we have an initial condition as special cases of the boundary condition
in (1).

To obtain existence results for differential problems someone may use the monotone iterative method, for details
see for example [1]. There is a vast literature devoted to the applications of this method to differential equations with
initial and boundary conditions. It can be applied to differential problems with deviated arguments, see for example
the papers [2–8]. We also apply this technique to problem (1). It is important to indicate that (1) is different from
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corresponding problems investigated in the papers published earlier. Note that in problem (1) a deviated argument β

depends on the unknown solution x . It is the first paper when the monotone iterative method is applied to problems of
type (1).

The plan of this paper is as follows. Section 2 concerns the case when a parameter λ ≥ 0, while in Section 3 we
discuss problem (1) when λ < 0. In both sections, we formulate sufficient conditions when problem (1) has a unique
solution in a corresponding sector. In Section 2, an example is added to illustrate imposed assumptions. A problem
more general then (1) is discussed in Section 4.

2. Case λ ≥ 0

Take y0, z0 ∈ C1(J, R) such that y0(t) ≤ z0(t), t ∈ J . Let

Ω = {(t, u) : y0(t) ≤ u ≤ z0(t), t ∈ J }.

A pair u, v ∈ C1(J, R) is called a lower–upper solution of problem (1) for λ ≥ 0 if{
u′(t) ≤ F(v, v)(t), t ∈ J, u(0) ≤ λu(T ) + k,

v′(t) ≥ F(u, u)(t), t ∈ J, v(0) ≥ λv(T ) + k.

Let us define two sequences {yn, zn} by relations:{
y′

n+1(t) = F(zn, zn)(t), t ∈ J, yn+1(0) = λyn(T ) + k,

z′

n+1(t) = F(yn, yn)(t), t ∈ J, zn+1(0) = λzn(T ) + k (3)

for n = 0, 1, . . . . Functions y0, z0 will be defined later.
A pair X, Y ∈ C1(J, R) is called a quasi-solution of (1) if{

X ′(t) = F(Y, Y )(t), t ∈ J, X (0) = λX (T ) + k,

Y ′(t) = F(X, X)(t), t ∈ J, Y (0) = λY (T ) + k.

A pair ρ, γ ∈ C1(J, R) is called the minimal and maximal quasi-solution of problem (1) if for any U, V ∈

C1(J, R) quasi-solution of (1) we have ρ(t) ≤ U (t), V (t) ≤ γ (t) on J .

Theorem 1. Assume that

(H1) f ∈ C(J × R, R), β ∈ C(J × R, R), and f is nonincreasing with respect to the last variable,
(H2) a pair y0, z0 ∈ C1(J, R) is a lower–upper solution of problem (1) for λ ≥ 0, and y0(t) ≤ z0(t) on J .
(H3) β : Ω → J, β(t, u) is nondecreasing with respect to u for y0(t) ≤ u ≤ z0(t), t ∈ J ,
(H4) y0, z0 are nondecreasing on J and f (t, u) ≥ 0 for t ∈ J, y0 ≤ u ≤ z0.

Then problem (1) has the minimal and maximal quasi-solution in the sector

[y0, z0]∗ = {u ∈ C1(J, R) : y0(t) ≤ u(t) ≤ z0(t), t ∈ J }.

Proof. Note that y0(t) ≤ y1(t), z1(t) ≤ z0(t) on J . Put p = y1 − z1. Then p(0) ≤ 0, and p′(t) = F(z0, z0)(t) −

F(y0, y0)(t) ≤ 0 because

y0(β(t, y0(t))) ≤ y0(β(t, z0(t))) ≤ z0(β(t, z0(t))).

It shows that

y0(t) ≤ y1(t) ≤ z1(t) ≤ z0(t), t ∈ J.

Moreover, in view of assumptions (H3), (H4), we have

y′

1(t) = F(z0, z0)(t) − F(z1, z1)(t) + F(z1, z1)(t) ≤ F(z1, z1)(t),

z′

1(t) = F(y0, y0)(t) − F(y1, y1)(t) + F(y1, y1)(t) ≥ F(y1, y1)(t)

because y0, z0 are nondecreasing and

z0(β(t, z0(t))) ≥ z1(β(t, z1(t))), y0(β(t, y0(t))) ≤ y1(β(t, y1(t))).
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By induction, we can show that

y0(t) ≤ y1(t) ≤ · · · ≤ yn(t) ≤ zn(t) ≤ · · · ≤ z1(t) ≤ z0(t)

for t ∈ J and n = 0, 1, . . . .
By the Arzeli theorem, yn → y, zn → z, where the pair y, z ∈ C1(J, R) is a quasi-solution of problem (1) and

y0(t) ≤ y(t) ≤ z(t) ≤ z0(t), t ∈ J . Now, we need to show that the pair y, z is the minimal and maximal quasi-solution
of (1) in the sector [y,z0]∗. Let u, v ∈ [y0, z0]∗ be any quasi-solution of problem (1). Put p = y1 − u, q = v − z1.
Then p(0) ≤ 0, q(0) ≤ 0, and

p′(t) = F(z0, z0)(t) − F(u, u)(t) ≤ 0,

q ′(t) = F(v, v)(t) − F(y0, y0)(t) ≤ 0

because

z0(β(t, z0(t))) ≥ z0(β(t, u(t))) ≥ u(β(t, u(t))).

y0(β(t, y0(t))) ≤ y0(β(t, v(t))) ≤ v(β(t, v(t))),

Hence y1(t) ≤ u(t), v(t) ≤ z1(t), t ∈ J . By induction, we can prove that yn(t) ≤ u(t) and v(t) ≤ zn(t), t ∈ J, n =

0, 1, . . . . If n → ∞, then we have the assertion of Theorem 1. �

It is easy to show the following.

Remark 1. Let all assumptions of Theorem 1 hold. If u is any solution of (1) such that y0(t) ≤ u(t) ≤ z0(t), t ∈ J ,
then

yn(t) ≤ u(t) ≤ zn(t), t ∈ J, n = 0, 1, . . .

and y(t) ≤ u(t) ≤ z(t), t ∈ J , where y, z are from Theorem 1.

Now, we want to formulate sufficient conditions under which problem (1) has a unique solution. First we give the
following.

Lemma 1. Assume that β ∈ C(Ω , J ), K , L ∈ C(J, R+), R+ = [0, ∞), p ∈ C1(J, R) and

p′(t) ≤ K (t)p(t) + L(t)p(β(t, w(t))), t ∈ J, p(0) = λp(T ), λ ∈ [0, 1) (4)

for y0(t) ≤ w(t) ≤ z0(t), t ∈ J . In addition assume that for L∗(t) = K (t) + L(t) we have

λ +

∫ T

0
L∗(t)dt < 1. (5)

Then p(t) ≤ 0, t ∈ J .

Proof. Suppose that the assertion p(t) ≤ 0, t ∈ J is not true. Then, we can find t0 ∈ J such that p(t0) > 0. Put

p(t1) = max
t∈J

p(t) > 0.

Integrating the differential inequality in (4) we obtain

p(t) ≤ p(0) + p(t1)
∫ T

0
L∗(s)ds, t ∈ J. (6)

Then

p(0) = λp(T ) ≤ λ

[
p(0) + p(t1)

∫ T

0
L∗(s)ds

]
.

This gives

p(0) ≤
λ

1 − λ
p(t1)

∫ T

0
L∗(s)ds.
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This and (6) for t = t1 yield

p(t1)
[

1 −
1

1 − λ

∫ T

0
L∗(s)ds

]
≤ 0.

It contradicts the assumption that p(t1) > 0. This shows that p(t) ≤ 0 on J and the proof is complete. �

Theorem 2. Let all assumptions of Theorem 1 hold. In addition assume that

(H5) there exists functions L , M ∈ C(J, R+), such that

f (t, u) − f (t, ū) ≤ L(t)(ū − u),

β(t, v̄) − β(t, v) ≤ M(t)(v̄ − v)

if y0(t) ≤ u ≤ ū ≤ z0(t), y0(t) ≤ v ≤ v̄ ≤ z0(t), t ∈ J ,
(H6) condition (5) holds for L∗(t) = L(t)M(t)N (t)+ L(t), where f (t, w) is bounded by N (t) for t ∈ J, y0 ≤ w ≤

z0.

Then problem (1) has, in the sector [y0, z0]∗, a unique solution.

Proof. From Theorem 1 we know that y, z ∈ [y0, z0]∗, and y(t) ≤ z(t), t ∈ J . We need to show that y = z. Put
q = z − y, so p(0) = λp(T ) and

p′(t) = F(y, y)(t) − F(z, z)(t) ≤ L(t)[z(β(t, z(t))) − y(β(t, y(t)))]

= L(t)[p(β(t, z(t))) + y(β(t, z(t))) − y(β(t, y(t)))]

≤ K (t)p(t) + L(t)p(β(t, z(t))) for K (t) = L(t)M(t)N (t).

This and Lemma 1 show that z(t) ≤ y(t), t ∈ J . It means that y = z. �

Example. We consider the following boundary value problem{
x ′(t) = γ1e−γ2x(δt x(t)), t ∈ J = [0, 1],

x(0) = λx(1) + k, λ ≥ 0,
(7)

where 0 < δ ≤
1
2 , 0 < γ1 ≤ 1, γ2 > 0. Here β(t, u) = δtu.

Take y0(t) = 0, z0(t) = t + 1, t ∈ J and 0 ≤ k ≤ 2λ + k ≤ 1. We see that 0 ≤ β(t, u) ≤ t for
y0(t) ≤ u ≤ z0(t), t ∈ J . Note that

F(z0, z0)(t) = γ1e−γ2(1+δt (1+t)) > 0 = y′

0(t), λy0(1) + k = k ≥ 0 = y0(0),

F(y0, y0)(t) = γ1 ≤ 1 = z′

0(t), λz0(1) + k = 2λ + k ≤ 1 = z0(0)

It proves that the pair (y0, z0) is a lower–upper solution of problem (7).
Moreover, L(t) = γ1γ2, M(t) = δt, N (t) = γ1. In addition assume that

λ + γ1γ2

(
1 +

1
2
γ1δ

)
< 1. (8)

Then problem (7) has, in the sector [y0, z0]∗, a unique solution, by Theorem 2. For example, if we take γ1 = δ =
1
2 , γ2 = 1, the condition (8) holds for λ < 7

16 .
Now we consider the case when function β is nonincreasing with respect to the second variable. We have

Theorem 3. Assume that assumptions (H1), (H′

2), (H′

3), (H′

4), (H′

5), (H6) are satisfied where

(H′

2) λ ≥ 0, u0, w0 ∈ C1(J, R), u0(t) ≤ w0(t), t ∈ J and{
u′

0(t) ≤ F(w0, u0)(t), t ∈ J, u0(0) ≤ λu0(T ) + k,

w′

0(t) ≥ F(u0, w0)(t), t ∈ J, w0(0) ≥ λw0(T ) + k,

(H′

3) β : Ω̄ → J, β(t, u) is nonincreasing with respect to u for t ∈ J, u0 ≤ u ≤ w0, t ∈ J , where
Ω̄ = {(t, u) : u0(t) ≤ u ≤ w0(t), t ∈ J },
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(H′

4) u0, w0 are nondecreasing on J and f (t, u) ≥ 0 for t ∈ J, u0 ≤ u ≤ w0,
(H′

5) there exist functions L , M ∈ C(J, R+), such that

f (t, u) − f (t, ū) ≤ L(t)(ū − u),

β(t, v) − β(t, v̄) ≤ M(t)(v̄ − v)

if u0(t) ≤ u ≤ ū ≤ w0(t), u0(t) ≤ v ≤ v̄ ≤ w0(t), t ∈ J .

Then, problem (1) has, in the sector [u0, w0]∗, a unique solution.

Proof. Let us define the sequences {un, wn} be relations{
u′

n+1(t) = F(wn, un)(t), t ∈ J, un+1(0) = λun(T ) + k,

w′

n+1(t) = F(un, wn)(t), t ∈ J, wn+1(0) = λwn(T ) + k

for n = 0, 1, . . . . The proof of this theorem is similar to the proof of Theorems 1 and 2, and therefore it is
omitted. �

3. Case λ < 0

A pair u, v ∈ C1(J, R) is called a lower–upper solution of problem (1) for λ < 0 if{
u′(t) ≤ F(v, v)(t), t ∈ J, u(0) ≤ λv(T ) + k,

v′(t) ≥ F(u, u)(t), t ∈ J, v(0) ≥ λu(T ) + k.

Theorem 4. Let all assumptions of Theorems 1 and 2 be satisfied with (H′′

2) instead of (H2), where

(H
′′

2) a pair y0, z0 ∈ C1(J, R) is a lower–upper solution of problem (1) for λ < 0, and y0(t) ≤ z0(t) on J .

Then the assertion of Theorem 2 holds.

Proof. For n = 0, 1, . . . , let us define the sequences {yn, zn} by relations{
y′

n+1(t) = F(zn, zn)(t), t ∈ J, yn+1(0) = λzn(T ) + k,

z′

n+1(t) = F(yn, yn)(t), t ∈ J, zn+1(0) = λyn(T ) + k.

Repeating the proof of Theorems 1 and 2, we have the assertion of Theorem 4. �

Theorem 5. Let all assumptions of Theorem 3 be satisfied with (H′′′
2) instead of (H′

2),

(H
′′′

2 ) λ < 0, u0, w0 ∈ C1(J, R), u0(t) ≤ w0(t), t ∈ J , and{
u′

0(t) ≤ F(w0, u0)(t), t ∈ J, u0(0) ≤ λw0(T ) + k,

w′

0(t) ≥ F(u0, w0)(t), t ∈ J, w0(0) ≥ λu0(T ) + k.

Then the assertion of Theorem 3 hold.

In the proof use the sequences {un, wn} defined by relations.{
u′

n+1(t) = F(wn, un)(t), t ∈ J, un+1(0) = λwn(T ) + k,

w′

n+1(t) = F(un, wn)(t), t ∈ J, wn+1(0) = λun(T ) + k

for n = 0, 1, . . . .

4. General case

Now we consider the problem{
x ′(t) = f (t, x(β(t, x(t))), x(γ (t, x(t)))) ≡ F(x, x, x, x)(t), t ∈ J,

x(0) = λx(T ) + k,
(9)
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where

F(x, y, u, w)(t) = f (t, x(β(t, y(t))), u(γ (t, w(t)))) (10)

and J = [0, T ], f ∈ C(J × R × R, R), β, γ ∈ C(J × R, R), λ, k ∈ R.

Theorem 6. Assume that

(A1) f ∈ C(J × R × R, R), β, γ ∈ C(J × R, R), and f is nonincreasing with respect to the last two variables,
(A2) λ ≥ 0, and y0, z0 ∈ C1(J, R) satisfy the system{

y′

0(t) ≤ F(z0, z0, z0, y0)(t), t ∈ J, y0(0) ≤ λy0(T ) + k,

z′

0(t) ≥ F(y0, y0, y0, z0)(t), t ∈ J, z0(0) ≥ λz0(T ) + k

and y0(t) ≤ z0(t), t ∈ J ,
(A3) β, γ : Ω → J, β(t, u) is nondecreasing, and γ (t, u) is nonincreasing, with respect to u for y0(t) ≤ u ≤

z0(t), t ∈ J ,
(A4) y0, z0 are nondecreasing on J, f (t, u, v) ≥ 0 for t ∈ J, y0 ≤ u ≤ z0, y0 ≤ v ≤ z0, t ∈ J .
(A5) There exist functions L1, L2, M1, M2 ∈ C(J, R+), such that

f (t, u, v) − f (t, ū, v̄) ≤ L1(t)(ū − u) + L2(t)(v̄ − v),

β(t, v̄) − β(t, v) ≤ M1(t)(v̄ − v)

γ (t, w) − γ (t, w̄) ≤ M2(t)(w̄ − w)

if y0(t) ≤ u ≤ ū ≤ z0(t), y0(t) ≤ v ≤ v̄ ≤ z0(t), y0(t) ≤ w ≤ w̄ ≤ z0(t), t ∈ J .
(A6) Condition (5) holds for L∗(t) = N (t)[L1(t)M1(t)+ L2(t)M2(t)]+ L1(t)+ L2(t), where f (t, u.w) is bounded

by N (t) for t ∈ J, y0 ≤ u ≤ z0, y0 ≤ v ≤ z0.

Then problem (H9) has, in the sector [y0, z0]∗, a unique solution.

In the proof, use the sequences {yn, zn} defined by:{
y′

n+1(t) = F(zn, zn, zn, yn)(t), t ∈ J, yn+1(0) = λyn(T ) + k,

z′

n+1(t) = F(yn, yn, yn, zn)(t), t ∈ J, zn+1(0) = λzn(T ) + k

for n = 0, 1, . . . .

Theorem 7. Let all assumptions of Theorem 6 be satisfied with assumption (A′

2) instead of (A2), where

(A′

2) λ < 0, and y0, z0 ∈ C1(J, R) satisfy the system{
y′

0(t) ≤ F(z0, z0, z0, y0)(t), t ∈ J, y0(0) ≤ λz0(T ) + k,

z′

0(t) ≥ F(y0, y0, y0, z0)(t), t ∈ J, z0(0) ≥ λy0(T ) + k

and y0(t) ≤ z0(t), t ∈ J .

Then the assertion of Theorem 6 holds.

Now, the sequences {yn, zn} are defined by:{
y′

n+1(t) = F(zn, zn, zn, yn)(t), t ∈ J, yn+1(0) = λzn(T ) + k,

z′

n+1(t) = F(yn, yn, yn, zn)(t), t ∈ J, zn+1(0) = λyn(T ) + k

for n = 0, 1, . . . .

Remark 2. There is no problem to formulate corresponding existence results for problems having more arguments of
type β and γ .
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