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Abstract—In the letter, a reliable procedure for expedited design 
optimization of antenna structures by means of trust-region adaptive 
response scaling (TR-ARS) is proposed. The presented approach 
exploits two-level electromagnetic (EM) simulation models. A 
predicted high-fidelity model response is obtained by applying 
nonlinear frequency and amplitude correction to the low-fidelity 
model. The surrogate created this way is iteratively rebuilt and 
optimized within the trust region framework. Utilization of the 
correlations between the EM models of various fidelities allows for 
significant reduction of the design optimization cost. The main 
contributions of the work are twofold: (i) application of ARS for 
antenna optimization (in particular, making it work with coarse-
discretization EM models as low-fidelity models), and (ii) 
integration of ARS with TR optimization framework. 
The operation and performance of the algorithm are 
demonstrated using two antenna designs optimized for several 
scenarios. A comparative study reveals computational benefits of 
TR-ARS over direct optimization of the high-fidelity EM model. 
Reliability of the optimization process is further confirmed by 
experimental validation of the fabricated antenna prototypes. 

Index Terms—Antenna optimization, EM-driven design, 
surrogate modeling, adaptive response scaling, trust-region 
framework, variable-fidelity simulations. 

I. INTRODUCTION

ESIGN of contemporary antennas and antenna arrays is 
heavily based on full-wave electromagnetic (EM) 
simulations. EM analysis is mandatory to ensure 

reliable evaluation of antenna performance. Unfortunately, 
high-fidelity simulation is computationally expensive 
particularly for electrically large structures or when 
electromagnetic interactions with antenna environment (e.g., 
housing or connectors) has to be accounted for. Furthermore, 
increasing topological complexity of modern antenna structures 
leads to a large number of geometry and/or material parameters 
that need to be adjusted. These reasons make EM-driven design 
closure a challenging task. In particular, parameter sweeping 
(which is still the most widely used design tuning approach) 
fails to find optimum designs. On the other hand, direct 
numerical optimization of EM-models may be very expensive 

 

[1]-[4]. 
Design speedup can be achieved by exploiting adjoint 

sensitivities [5], [6], or, attracting more and more attention, 
surrogate-assisted techniques [7]-[10]. One of the most popular 
methods of this class in high-frequency design is space 
mapping, which is however of limited use in case of antennas 
because of the lack of fast low-fidelity models (e.g., equivalent 
circuits) [11]. For certain classes of antennas, such as narrow-
band or multi-band, reduction of the design optimization cost 
can be achieved by exploiting a particular structure of the 
antenna responses as realized in shape-preserving response 
prediction [12] or feature-based optimization [13]. Another 
option is a utilization of auxiliary data-driven surrogates (e.g., 
[14]), however, this is normally limited to antennas described 
by a small number of parameters. 

An adaptive response scaling (ARS) is one of generic 
techniques (i.e., not relying on a particular structure of the 
system response) [15]. It exploits correlations between the low- 
and high-fidelity models and response correction in the form of 
nonlinear frequency and amplitude scaling. It has been 
introduced for optimization of microwave structures and 
requires a very fast low-fidelity model (e.g., equivalent circuit). 
In this letter, ARS is adopted for antenna design. In order to 
address the issue of an expensive low-fidelity model (coarse-
discretization EM simulation one), the ARS surrogate is 
updated during its optimization process (i.e., after each 
successful iteration), which considerably limits the number of 
low-fidelity model evaluations and makes ARS a feasible 
approach to antenna optimization. The ARS model construction 
and optimization are embedded within the trust-region 
framework [16]. The major novelty of the work is in making 
ARS applicable for antenna design optimization, which is 
achieved by combining it with the trust-region framework. 
Operation and performance of TR-ARS is demonstrated using 
two antenna examples, a dual-band patch and a wideband 
monopole. Comparison with the benchmark methods as well as 
experimental validation of the optimized designs are also 
provided. 
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II. ANTENNA DESIGN WITH ADAPTIVE RESPONSE SCALING 

Here, a formulation of adaptive response scaling (ARS) [15]
is recalled. We also outline the proposed ARS enhancements 
oriented towards making the technique applicable for antenna 
optimization. 

A. Adaptive Response Scaling Formulation

The foundation of adaptive response scaling [15] is to
construct a mapping between the low- (Rc) and high-fidelity 
(Rf) models of the structure under design. As opposed to many 
other physics-based surrogate-assisted optimization methods 
(e.g., space mapping [9]), ARS can be considered as non-
parametric, therefore, more flexible and more generic. In case 
of antennas, we have two EM-simulated models, with the low-
fidelity model being a coarse-discretization one. Here, the ARS 
concept is explained using a narrow-band antenna example. 
Fig. 1 shows the high- and low-fidelity reflection responses at 
a certain reference design x(i) and a test design x. ARS exploits 
the correlation between the models, and, in case of complex 
characteristics, the scaling process is conducted independently 
for the real and imaginary parts of the response(s). ARS 
modeling is realized in several stages. At the first stage, a 
frequency relationship between Rc and Rf is established at the 
design x(i) (in the optimization context this would be the current 
iteration point found by the algorithm). The frequency scaling 
function F is obtained by solving a nonlinear regression 
problem of the form 

max

min

( ) ( ) ( )( ) arg min ( , ) ( , ( ))



     x xi i i

f c
F

F r r F d      (1) 

In our implementation, the F is realized by means of cubic 
splines; rf/rc are the high- and low-fidelity responses of interest 
(e.g., Re(S11)); the purpose of F(i) is to reduce the (“horizontal”) 
discrepancies between the responses within the frequency range 
of interest min to max. 

In the next stage, a frequency relationship between the low-
fidelity model responses at the design x(i) and at the (evaluation) 
design x is established. This is done similarly as in (1), i.e., 

max

min

( )( , ) arg min ( , ) ( , ( ))



    x x x i

c c
F

F r r F d      (2) 

The third stage is to quantify the level (amplitude) 
relationship between the frequency-scaled low-fidelity model 
at the reference design and the low-fidelity model at the 
evaluation design (here,  denotes component-wise division) 

  ( )( , ) ( , ) ( , ( , ))i
c cA r M r F M       x x x x           (3) 

The shift by M (we use M = 1) is necessary to avoid division 
by zero (for frequencies for which rc(x(i),F(x,)) = 0).  

At the prediction stage, ARS surrogate model rs estimated 
the high-fidelity model response at the evaluation design x. We 
have 

( ) ( )( , ) ( , ( )) ( , ( , ))i i
s fr A F r F M M      x x x x     (4) 

where  denotes component-wise multiplication. 
The above concepts are explained in Figs. 1(b) and 2. 

Fig. 1(b) shows Re(S11) of the responses shown in Fig. 1(a) as 

well as the response of the ARS surrogate. The prediction 
power of ARS is very good also at the level of |S11| (cf. Fig. 2). 
This is not the case for conventional correction (output space 
mapping) which fails to account for frequency changes of the 
response. For practical applications, ARS is realized at the level 
of real and imaginary parts of the reflection response which 
makes it more accurate [15], and further recalculated to 
whatever form is required by calculation of the design 
objectives (here, the absolute value). 

B. ARS for Antenna Design

In original implementation of ARS [16], construction the
the surrogate model Rs

(i)(x) at the current design x(i) is followed 
by its optimization to yield the next approximation  

x(i+1) = argmin{x : U(Rs
(i)(x))}                       (5) 

of the optimum design x* = argmin{x : U(Rf(x))} (U is the 
objective function). Subsequently, the high-fidelity model is 
evaluated and the surrogate is reset (both at x(i+1)). This 
procedure works fine assuming that the low-fidelity model is 
very fast (e.g., an equivalent circuit as in [15]). In case of 
coarse-discretization EM antenna models, iterative solving of 
(5) is just too expensive.

In order to make ARS feasible for antenna design, a
modified procedure is proposed here. It generates a sequence of 
designs x(i), i = 0, 1, …, (approximations to x*) as  

( )
( ) ( )

( 1) ( ) ( ) ( )

, || ||
arg min ( ( ) ( ) ( ))i

i i s

i i i i
sU





 
   

Rx x x
x R x J x x x    (6) 

where JRs
(i) is a Jacobian of the ARS surrogate estimated using 

finite differentiation. The cost of each iteration of (6) is one 
evaluation of the high-fidelity model and n evaluations of Rc (n 
being the number of design variables).  

     (a)                                                        (b) 
Fig. 1. Example narrow-band antenna responses: (a) |S11| at a reference design x(i) 
(—) and at evaluation design x (- - -); High- and low-fidelity models shown using 
thick and thin lines, respectively. Designs are taken arbitrarily for illustration 
purposes; (b) responses at x(i) (—) and x (- - -) (cf. Fig. 1(a)): Rf (thick lines) and 
Rc (thin lines); ARS surrogate model response shown using circles. 

Fig. 2. High-fidelity model response at the evaluation design x (thick line), ARS 
surrogate model response (o), and conventional response correction (output 
space mapping) (*). Note severe distortion of the latter due to inability to 
account for frequency changes of the low-fidelity model response. 
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The entire process is embedded in the trust-region (TR) 
framework [16] in which (i) is the TR radius, updated in each 
iteration. The design x(1) is obtained through direct optimization 
of the low-fidelity model. 

The differences between (6) and the original 
implementation of the ARS algorithm should be explained. In 
(5), a complete optimization process of the ARS surrogate is 
carried out, which incurs a considerable number of low-fidelity 
model evaluations. In (6), the surrogate model is updated upon 
each successful TR iteration. In practice, a larger number of 
iterations (6) may be necessary to converge, however, the 
overall computational cost of the optimization process is lower.  

It should also be clarified that the ARS algorithm can work 
with any objective function U (cf. (5)). The purpose of ARS is 
to improve alignment between the corrected low-fidelity model 
and the high-fidelity EM model, whereas objective function 
only translated design requirements imposed on the antenna 
structure into a scalar value to be minimized. In the examples 
shown in Section III, optimization of input characteristics is 
considered as a representative situation in antenna design. 

III. CASE STUDY AND RESULTS

The proposed optimization approach is demonstrated using 
two antenna structures. The first test case is a dual-band planar 
antenna shown in Fig. 3(a). The structure is implemented on 
RF-35 substrate (h = 0.762 mm, r = 3.5). The design variables 
are xI = [L l1 l2 l3 W w1 w2 g]T; o = 7, l0 = 10, s = 0.5, and w0 = 
1.7, are fixed (all dimensions in mm). The EM models are 
implemented in CST Microwave Studio: Rf (~3,300,000 cells, 
90 minutes) and Rc (~82,000, ~138,000, and ~154,000 mesh 
cells, simulation time 88, 139, and 169 seconds, for the three 
mesh densities corresponding to the global mesh parameter 
LPW (lines per wavelength) of 12, 14, and 16). Some 
discussion concerning the low-fidelity model selection can be 
found in [7] and [17]. The second structure is a UWB monopole 
shown in Fig. 4(b), implemented on FR4 substrate (r = 4.4, h 
= 1.55 mm), with design variables xII = [Lg L0 Ls Ws d dL ds dWs 
dW a b]T. The EM models are implemented in CST: Rf 
(~5,500,000 cells,  22 minutes) and Rc (~195,000, ~360,000, 
and ~500,000 mesh cells, simulation time 102, 138, and 236 
seconds, for the three mesh densities corresponding to the 
global mesh parameter LPW of 12, 14, and 16). The high-
fidelity models are equipped with the SMA connector. 

The dual-band patch has been optimized using ARS to 
maximize the symmetric bandwidth at the operating 
frequencies of 2.45 GHz and 5.3 GHz. The objective function 
was defined as follows. Let fk1 and fk2, k = 1, 2, denote the 
frequencies corresponding to the beginning and end of the 
operating band for the lower and upper band, respectively. This 
information can be extracted from the simulated antenna 
response. We have U(Rf(x)) = –min{B1,B2}, where Bk = 
2min{fk0 – fk1, fk2 – fk0}, k = 1, 2, is a symmetric part of the 
antenna bandwidth. In case the resonance is not sufficiently 

deep (i.e., above –10 dB), a penalty term is used instead 
proportional to the difference between –10 dB and the 
resonance level at its minimum.  

The design objective for the UWB monopole was to 
minimize the maximum in-band reflection with the frequency 
range of 3.1 GHz to 10.6 GHz. Here, the objective function is 
simply defined as U(Rf(x)) = max{3.1 GHz  f  10.6 GHz : 
|S11(x,f)|} (minimization of the maximum reflection within the 
UWB frequency range). 

The ARS-optimized designs for low-fidelity models with 
LPW = 16 are xI* = [15.83 3.57 12.63 5.54 16.43 1.57 9.00 
6.70]T, and xII* = [9.67 14.09 9.36 0.49 4.03 7.64 0.99 1.15 3.29 
0.29 0.60]T, see also Fig. 4. 

ARS has been compared to build-in CST optimizers (a trust 
region algorithm, a Nelder-Mead algorithm, genetic algorithm 
and particle swarm optimizer, cf. Tables I and II) as well as 
direct optimization of the high-fidelity model. It can be 
observed that ARS offers significant cost savings without 
compromising accuracy. This is despite the fact that the time 
evaluation of the high- and low-fidelity model is quite low. It 
should also be noted that in some cases, CST optimizers fail or 
provide relatively poor results, especially the stochastics 
methods, which were terminated upon reaching five hundred 
EM simulations of the antenna at hand. On the other hand, the 
number of high-fidelity model evaluations during ARS 
optimization is very low (typically a few) which translates into 
low overall cost. Finally, ARS performance for various low-
fidelity model discretization densities has been investigated. It 
can be observed that the results are consistent although slight 
degradation is observed when discretization is reduced, which 
can be attributed to the increased level of numerical noise 
pertinent to low-fidelity EM analysis. 

The verification designs have been manufactured and 
measured for the sake of additional validation. Fig. 5 shows the 
photographs of the fabricated prototypes, whereas Figs. 6 and 7 
show the reflection characteristics and the E- and H-plane 
patterns, respectively. The agreement between the simulations 
and measurements is acceptable which additionally validates 
the reliability of the optimization procedure. Discrepancies for 
E-plane radiation pattern result from the measurement setup 
(shadowing effect of the 90-degree bend used to mount the 
structure as well as a piece of cable extending from the 
measurement tower, neither of which have been included in the 
computational model of the antennas). 
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      (a)                                                              (b) 
Fig. 3. Benchmark antennas: (a) dual-band patch antenna; ground plane marked 
using the lighter shade of gray, (b) UWB monopole. 
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(a) 

(b) 
Fig. 4. Initial (- - -) and optimized (—)antenna responses obtained using ARS: 
(a) dual-band patch, (b) UWB monopole.

TABLE I  DUAL-BAND ANTENNA OPTIMIZATION RESULTS 

Optimization algorithm 
Optimization cost Objective 

function $ # Rc # Rf Total# 

CST built-in (trust-region) - 22 22 failed 

CST built-in (Nelder-Mead) - 488 488 0.071 
CST built-in (GA) - 500 500 0.027 

CST built-in (PSO) - 500 500 0.006 

Direct optimization - 75 75 0.068 

ARS (Rc with LPW = 12) 112 8 9.7 0.050 
ARS (Rc with LPW = 14) 103 8 10.5 0.036 

ARS (Rc with LPW = 16) 117 7 10.4 0.065 
$ Minimum of the symmetric bandwidth for the two operating frequencies at the final design. 
# Optimization cost expressed in the equivalent number of high-fidelity number evaluations. 

TABLE II  UWB MONOPOLE OPTIMIZATION RESULTS 

Optimization algorithm 
Optimization cost Objective 

function $ # Rc # Rf Total# 

CST built-in (trust-region) - 59 59 –10.9 
CST built-in (Nelder-Mead) - 375 375 –13.5 

CST built-in (GA) - 500 500 –11.4 

CST built-in (PSO) - 500 500 –12.9 

Direct optimization - 152 152 –15.0 
ARS (Rc with LPW = 12) 168 12 25.4 –12.9 

ARS (Rc with LPW = 14) 190 11 31.6 –13.9 
ARS (Rc with LPW = 16) 192 11 46.7 –14.5 

$ Maximum in-band reflection level (operating frequency 3.1 GHz to 10.6 GHz). 
# Optimization cost expressed in the equivalent number of high-fidelity number evaluations. 

     (a)                                                        (b) 
Fig. 5. Photographs of the fabricated prototypes of the ARS-optimized 
antennas: (a) dual-band patch, (b) UWB monopole. 

(a) 

(b) 
Fig. 6. Simulated (gray) and measured (o) reflection characteristics of the antennas 
of Fig. 4: (a) dual-band patch, (b) UWB monopole. 

  (a)     (b) 

  (c)     (d) 
Fig. 7. Simulated (- - -) and measured (—) radiation patterns of the antennas of Fig. 
5: (a) H-plane for the dual-band patch at 2.45 GHz and 5.3 GHz, (b) E-plane for the 
dual-band patch at 2.45 GHz and 5.3 GHz, (c) H-plane for the UWB monopole at 
4 GHz and 8 GHz, (d) E-plane for the UWB monopole at 4 GHz and 8 GHz. 

IV. CONCLUSION

A trust-region adaptive response scaling (TR-ARS) for 
antenna design optimization has been presented. Our approach 
builds upon the original ARS by interleaving the process of 
surrogate model construction and optimization (all embedded 
in the trust region framework). This combination is the major 
contribution of the work as it allows for efficient utilization of 
coarse-discretization EM antenna models, not possible within 
the original ARS implementation. Verification cases studies 
indicate considerable speedup compared to direct optimization 
of the high-fidelity model despite a relatively high cost of the 
coarse-mesh model. ARS technique is a generic one and can be 
utilized to handle a variety of designs, including antenna 
structures (as indicated in the paper) but also other high-
frequency designs such as microwave filters or couplers. A 
particular ARS implementation proposed here is particularly 
suited for cases where the computational cost of the low-fidelity 
model is relatively high. 
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