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Expedited Gradient-Based Design Closure of Antennas Using Variable-
Resolution Simulations and Sparse Sensitivity Updates 

Anna Pietrenko-Dabrowska and Slawomir Koziel 

Abstract—Numerical optimization has been playing an increasingly 
important role in the design of contemporary antenna systems. Due to 
the shortage of design-ready theoretical models, optimization is mainly 
based on electromagnetic (EM) analysis, which tends to be costly. 
Numerous techniques have evolved to abate this cost, including 
surrogate-assisted frameworks for global optimization, or sparse 
sensitivity updates for speeding up local search. In the latter, CPU-heavy 
updates of the system response sensitivity through finite differentiation 
are suppressed based on, e.g., the magnitude of design variability during 
the optimization run. Another approach is to incorporate variable-
resolution simulations. Recently, a technique exploiting a continuous 
spectrum of admissible model fidelity levels has been reported, thereby 
allowing for a considerable reduction of the computational expenditures. 
Seeking further savings, this work introduces an accelerated gradient-
based algorithm with sparse sensitivity updates and variable-resolution 
EM simulations. Our technique is validated using four broadband 
antennas, and demonstrated to offer substantial (around eighty percent) 
savings over the benchmark while maintaining acceptable design quality. 

Index Terms—Antenna design; parameter tuning; EM-driven 
optimization; design specification adaptation; multi-band antennas 

I. INTRODUCTION

Modern antennas feature increasingly complex topologies, 
partially resulting from stringent performance requirements implied 
by emerging application areas such as 5G technology [1], [2], body-
centric communication solutions [3], the internet of things (IoT) [4], 
or wearable [5] and implantable devices [6]. Functionality demands 
(multi-band operation [7], pattern diversity [8], circular polarization 
[9], or band-notches [10]) only redound to this complexity. Reliable 
evaluation of m antennas requires full-wave electromagnetic (EM) 
analysis. At the same time, rigorous numerical optimization has been 
playing increasingly important role in fine tuning of antenna 
parameters. The reasons are manifold: the need for a simultaneous 
refinement of numerous parameters, the necessity of handling 
multiple objectives, and, clearly, boosting the performance as much 
as possible. Thus, EM-driven optimization appears to be imperative 
in the design of contemporary antenna structures. Yet, it is an 
expensive procedure, even for local algorithms (both gradient-based 
[11], and derivative-free [12]). For global optimization, the 
expenditures may be exorbitant (thousands of EM simulations [13]). 
This makes applicability of otherwise popular global algorithms, e.g., 
particle swarm optimizers [14], [15], or evolutionary algorithms [16], 
[17], significantly limited to the cases described by few parameters and 
within restricted ranges thereof when directly handing EM simulation 
models. The same pertains to multi-objective (MO) optimization [18]. 
The cost entailed by MO versions of population-based metaheuristic 
algorithms [19], [20] is unacceptably high when carried out at the level 
of EM simulations. Solving tasks related to uncertainty quantification 
[21] or tolerance-aware design [22] is similarly expensive.

Over the last two decades, a considerable research effort has been
devoted to alleviating high cost of EM-driven design. This includes 
utilization of adjoint sensitivities [23], as well as an employment of 
fast replacement models (surrogates or metamodels).  
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The efficacy of the surrogate-assisted frameworks is subject to the 
surrogate being considerably faster than EM analysis while providing 
adequate accuracy. For local optimization or robust design, the 
surrogates are normally constructed along the optimization path, 
whereas global surrogate-based optimization requires the metamodel 
to be valid over the entire parameter space. There are two main 
categories of surrogate models: data-driven [24] and physics-based 
ones [25]. The former are versatile and easily accessible [26], [27]. 
Popular methods include kriging [28], radial basis functions [29], 
support vector regression [30], polynomial chaos expansion [31], and 
neural networks [32]. Despite the advantages, the curse of 
dimensionality and nonlinearity of system responses hinders the 
employment of data-driven surrogates for antenna design. Many 
attempts have been made to mitigate these difficulties. A popular 
approach is sequential sampling [33] offering adaptive allocation of 
training points that accounts for the shape of the functional landscape 
being modeled. Other techniques include high-dimensional model 
representation (HDMR) [34], model order reduction (MOR) [35], or 
orthogonal matching pursuit [36]. Physics-based models (space 
mapping [37], response correction methods [38], or feature-based 
optimization [39]) are less prone to the dimensionality issues due to the 
involvement of the underlying low-fidelity models. Yet, unavailability 
of low-fidelity models makes the physics-based approach of limited 
use in antenna design.  

Practical EM-driven antenna design largely relies on local 
optimization algorithms. Local optimizers are significantly cheaper 
than the global routines (nature-inspired algorithms [40], [41], or 
machine learning methods [42], [43]). Also, local search is normally 
sufficient if a reasonable initial design is at hand, e.g., when re-
designing an antenna for somewhat different target operating 
frequencies, or to boost performance (e.g., improve antenna matching 
or gain). Several methods exist for accelerating local search routines, 
including sparse sensitivity updates [44]-[47], and variable-fidelity 
methods [48]-[53]. The former rely on reducing the amount of 
expensive finite-differentiation-based evaluations of the response 
gradients, thereby allowing for cost savings exceeding fifty percent at 
the cost of a moderate deterioration of the design quality. The methods 
for lowering the optimization cost include various decision-making 
schemes for omitting some finite differentiation (FD) sensitivity 
updates during the optimization run (e.g., design relocation change 
[44] or gradient variability [45] between iterations). Other strategies
include replacing costly FD updates with a Broyden updating formula
[46], or a combination of the above mentioned approaches [47].

Another method for expediting local search is the usage of variable-
fidelity simulations. Most of the reported variable-fidelity frameworks 
exploit two levels of resolution: low- and high-fidelity. In antenna 
design, due to the lack of parameterized equivalent network models 
[48], relatively expensive coarse-discretization models seem to be the 
only option [49]. A properly corrected low-fidelity model allows for 
predicting high-fidelity responses throughout the optimization process. 
The efficacy of these methods depends on the setup of the optimization 
framework, including the appropriate selection of the low-fidelity 
model [50], and the correction technique [51]. Another issue is the 
model management scheme, i.e., the selection of the discretization 
levels, and the criteria for switching between them [52]. In a recent 
technique of [53], a discretization level at each stage of the 
optimization run is selected from the continuous spectrum of 
admissible resolutions: from the lowest acceptable accuracy up to the 
high-fidelity model decided upon by the designer. The selection 
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criterion is based on the algorithm convergence status. The 
optimization process is launched with the coarsest model, which 
allows for a low-cost exploration of parameter space. Upon 
convergence, the fidelity is increased to ensure reliability.  

This work proposes a gradient-based optimization technique, in 
which the variable-resolution technique of [53] is accelerated by 
incorporating sparse sensitivity updates [45]. The FD updates are 
suppressed when stable patterns of the system parameter sensitivities 
are detected. The merger of the two acceleration mechanism allows for 
a significant reduction of CPU expenses while retaining satisfactory 
design quality. Our approach has been benchmarked against the 
conventional reference gradient-based procedure (trust-region (TR) 
gradient search), its accelerated version with sensitivity change 
monitoring, and variable-resolution algorithm with full-FD sensitivity 
updates. As demonstrated using four broadband antenna examples, the 
proposed approach is considerably more efficient than the benchmark 
procedures (average speedup is almost eighty percent as compared to 
the TR algorithm, and around fifty percent over multi-resolution 
algorithm with full-FD sensitivity updates) without compromising the 
design quality. 

The originality and the technical contributions of the paper can be 
summarized as follows: (i) the development of an algorithm for direct 
optimization of antenna structures, capitalizing on variable-resolution 
EM simulations and sparse sensitivity updates, (ii) demonstrating the 
possibility of accomplishing the optimization process at remarkably 
low cost corresponding to about two dozens of high-fidelity EM 
analyses, which, according to the authors knowledge is the lowest cost 
reported for direct (i.e., not surrogate-based) methods, (iii) providing 
the procedure that is fully automated and globally convergent. The 
computational complexity of our algorithm is weakly dependent on the 
parameter space dimensionality, and offers the same level or reliability 
as classical gradient-based methods. Consequently, it can be 
considered a practical alternative to existing methods, and can be 
readily incorporated into EM simulation environments. 

II.  EXPEDITED ANTENNA OPTIMIZATION WITH SPARSE SENSITIVITY 

UPDATES AND VARIABLE-RESOLUTION SIMULATIONS 

The purpose of this section is to introduce the proposed 
optimization procedure. It exploits trust-region gradient-based search 
as an optimization engine, which is expedited through incorporating 
the two following acceleration mechanisms: (i) sparse sensitivity 
updates [45], and (ii) variable-resolution EM simulations [53]. The 
former utilizes gradient variability tracking to decide upon omitting 
costly FD updates, whereas the latter exploits convergence-based 
decision-making scheme for appointing appropriate model fidelity 
level at each stage of the optimization run: starting from the coarsest, 
through the intermediate ones, up to the high-fidelity representation 
when closer to convergence. 

A. EM-driven Antenna Design by Numerical Optimization 

To fulfil increasingly stringent design specifications imposed on 
modern antenna structures, it is often necessary to resort to 
numerical optimization. A final tuning of geometry parameters is 
referred to as design closure [24]. It requires a definition of a design 
quality metric, which is typically a scalar function of design 
variables, unless multi-objective optimization is of interest [54]. At 
the presence of multiple goals, a possible approach is to select a 
primary objective and handle the remaining ones implicitly through 
constraints. A single-objective design task is defined as 

* arg min ( ) U
x

x x                                    (1) 

where x denotes the vector of geometry parameters, and U stands for 
the objective function. In addition, (1) might be subject to inequality 
constraints gk(x)  0, k = 1, …, ng, and equality constraints hk(x) = 0, 
k = 1, …, nh. Evaluation of electrical/field-related constraints 
involves costly EM analysis. A convenient way of dealing with them 

is offered by a penalty function approach [55], where the problem is 
reformulated into 

* arg min ( ) PU
x

x x                                     (2) 

with the merit function UP taking the form 

1
( ) ( ) ( )


  g hn n

P k kk
U U cx x x                           (3) 

In (2), constraint violations are quantified by penalty functions ck(x), 
k = 1, …, ng + nh, with k being the penalty coefficients.  

A specific formulation of the merit function in (2) or (3) depends 
on the particular antenna, the imposed design constraints, as well as 
the assumed performance figures. Here, we focus on ultra-wideband 
(UWB) antennas, with the design objective defined as minimization 
of the maximum reflection level within the frequency range from 3.1 
GHz to 10.6 GHz, denoted as F. For this task, we have  

11( ) max{ : | ( , ) |} U f F S fx x                           (4) 

B. Trust-Region-Based Gradient Search 

The proposed optimization routine utilizes a standard trust-region 
(TR)-based gradient search algorithm [55] as an underlying search 
engine. The conventional TR gradient-based algorithm iteratively 
renders the consecutive approximations x(i + 1), i = 0, 1, …, to the 
optimum design x* as 

  
     

1 ( )

; ; 1,...,

argmin ( ( ))

    


i i i

k k k k k

i i
S

x d x x d k n

Ux L x                    (5) 

where n stands for a number of design variables, and d(i), k = 1, …, n, 
denote the entries of the trust region size vector d(i). Whereas LS

(i)(x) 
= S11(x(i),f) + GS(x(i),f)(x – x(i)) refers to a linear approximation of S11 
at the current iteration x(i), and GS(x(i),f) represents the gradient of S11 
at x(i) and frequency f.  LS

(i)(x) has to be formulated taking into 
account the particular definition of the objective function, i.e., it is to 
be a linear approximation of relevant antenna response. Throughout 
the optimization run, the size vector d(i) is being modified in 
accordance with the standard rules based on the gain ratio  = 
[U(S11(x(i+1)))  U(S11(x(i)))]/[U(LS

(i)(x(i+1)))  U(LS
(i)(x(i)))] [55]. If 

 > 0, the current iteration is considered successful, and the 
candidate design rendered by (5) is accepted.  

The gradient GS is usually estimated through finite differentiation 
(FD) at the computational cost of n additional full-wave EM 
simulations per algorithm iteration. If an iteration turns out to be 
unsuccessful (i.e.,  < 0), a new search for a candidate design is 
carried out by solving (5), yet, with a reduced size vector d(i) [55]. 

C. Expedited Trust-Region Algorithm with Sparse Sensitivity Update 
Management 

In [45], a technique for accelerating the conventional TR 
algorithm has been proposed, in which the fluctuations of the 
antenna response sensitivities have been monitored to enable 
detection of the antenna parameters featuring stable gradient 
behaviour. For these design variables, costly FD-based sensitivity 
updates were suppressed for a predefined number of iterations. This 
allowed for a significant reduction of the overall optimization cost 
with only slight deterioration of the design quality as compared to 
the standard TR algorithm with full-FD gradient updates. This 
section briefly recalls the technique of [45] as one of the major 
components of the optimization framework presented in this work.  

The entries of the gradient vector of the antenna reflection 
characteristics GS = [G1 … Gn]T are the sensitivities Gk = S11/xk 
w.r.t the k-th parameter, k = 1, …, n. Also, Gk

(i)(f) and Gk
(i–1)(f) are 

the k-th entries of GS in ith and (i–1)th iteration, respectively (with 
the dependence of the gradient components on the frequency f shown 
explicitly). In [45], a metric for quantifying the difference between 
Gk

(i) and Gk
(i–1) in two subsequent iterations has been defined as  

            1 12 ( ) ( ) / ( ) ( )  


   i i i i i

k k k k k
f F

mean G f G f G f G f   (6) 
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In each iteration, the parameters for which the gradient change 
factors assumed the minimum and the maximum value are 
pinpointed, i.e., min

(i) = min{k = 1, …, n : k
(i)} and max

(i) = max{k = 1, 
…, n : k

(i)}. The response sensitivities for the parameters featuring 
the smallest values of k

(i) are not updated through FD (for the 
maximum allowable number of iterations Nmax), whereas for the 
variables of the highest k

(i) the FD update is mandatory. For each 
parameter, the actual number Nk

(i+1) of upcoming iterations without 
FD is assessed through the following affine conversion function 

( 1) ( ) ( ) ( )
max min( )       

i i i i
k kN N A                           (7) 

In (7), the slope factor A(i) = (Nmax – Nmin)/(min
(i) – max

(i)), whereas 
[[.]] is the nearest integer function. Nmin and Nmax are the algorithm 
control parameters: the minimum and the maximum number of 
iterations for which FD is to be omitted, respectively.  

D. Convergence-Based Adjustment of EM-Simulations Fidelity 

In this work, the TR algorithm is expedited by employing the 
sparse sensitivity updates scheme of Section II.C, along with multi-
fidelity EM simulations with convergence-based model management 
scheme [53], briefly outlined below.  

Appropriate assessment of the range of the admissible 
discretization levels: from the coarsest one up to that corresponding 
to the high-fidelity model, can be performed by visual examination 
of the simulated antenna responses. The discretization levels are 
parameterized using LPW (lines per wavelength), which governs the 
mesh density in CST Microwave Studio, utilized in this work to 
evaluate the antenna structures. Let Lmin be the lowest value usable in 
practice, and Lmax be the highest one, ensuring an adequate rendition 
of the characteristics of the antenna at hand. In [53], the optimization 
process has been expedited by using models from the range Lmin ≤ L 
≤ Lmax, where L refers to model fidelity. The model management 
scheme has been based on its convergence status. The optimization 
process has been initiated with L = Lmin. As the algorithm converges, 
the model discretization level is gradually increased, to assume the 
highest value Lmax in the concluding phase, to ensure reliability. 

The algorithm is terminated if either ||x(i+1) – x(i)|| < x 

(convergence in argument), ||d(i)|| < x (TR region shrinking), or 
|UP(x(i+1)) – UP(x(i))| < U (convergence in the objective function 
value). The following auxiliary variable is defined  

 ( ) ( 1) ( ) ( 1) ( )( , ) max / || ||, / | ( ) ( ) |      i i i i i
x U x U P PQ U Ux x x x  (8) 

Q(i) is associated with the aforementioned thresholds, and it is used 
to determine the current discretization level L(i) with the use of the 
following (monotonic) function 

 

( )
min

( 1) 1
( ) ( )

min max min

if ( , )

max , ( , ) 

 

 


 


         
 

i
x U

i

i i
x U

L Q M

L
L L L L Q M

      (9) 

For reliability, the discretization level is switched to the highest 
one in the final stage of the optimization run. This is because using 
solely (9) does not ensure that L(i+1) eventually assumes Lmax. More 
specifically, when the optimization process is close to convergence, 
the condition L(i+1) = Lmax is enforced when needed (i.e., if L(i) < Lmax 
upon convergence) with simultaneous increase of the trust region 
size by a factor Md (to increase room for possible further design 
improvement after setting L(i+1) = Lmax) [53]. 

To further reduce the optimization costs, the antenna response 
gradients are estimated through FD using lower value of the 
discretization parameter, referred to as LFD, instead of the current one 
L(i) (utilized for the evaluation of the antenna response), with LFD = 
max{Lmin, L(i)}, where 0 ≤  ≤ 1 is the control parameter. The usage 
of LFD rather than L(i) allows for achieving sufficient accuracy of the 
system gradients at a reduced cost.  

E. Proposed Optimization Framework 

The proposed optimization framework is an expedited version of 
the TR algorithm recollected in Section II.A. In our approach, the 
following two acceleration mechanisms are employed: sparse 
sensitivity updating scheme of Section II.C, and convergence-based 
model management routine using multi-fidelity simulations delineated 
in Section II.D. The control parameters include the control parameters 
of the aforementioned two component procedures, as well as the 
termination criteria for the TR algorithm. The control parameters 
pertaining to the multi-fidelity EM simulations are briefly described in 
Section II.D (a more thorough discussion on their adjustment is 
provided in [53]).  Whereas the control parameters pertaining to the 
sparse sensitivity updates procedure are only the minimum and the 
maximum numbers of algorithm iterations for which FD is not to be 
carried out, Nmin and Nmax, respectively (here, we set Nmin = 1 and 
Nmax = 5). Whereas the set of the control parameters for multi-
fidelity model management scheme comprises six parameters. The 
first two parameters, Lmin and Lmax, are to be established by the user 
prior to optimization through grid convergence analysis. Here, Lmax 
refers to the discretization level ensuring satisfactory accuracy, and 
Lmin denotes the discretization level of the coarsest usable model. 
The termination thresholds of the entire optimization process are set 
by the user and have to reflect the required resolution level.  

In the initial two iterations of the proposed procedure, the entire 
sensitivity matrix GS(x) is estimated using finite differentiation. 
Whereas in the subsequent iterations, GS(x) is a merger of the 
selected parameter sensitivities evaluated using FD, as well as those 
for which FD-update has been omitted and their prior values form 
the preceding iterations have been retained.  

III. VERIFICATION CASE STUDIES 

This section provides numerical verification of the optimization 
framework delineated in Section II. The proposed optimization 
algorithm (Algorithm IV) has been benchmarked against three 
gradient-based local search procedures: (i) the reference trust-region 
gradient search routine (Algorithm I [55]), (ii) the accelerated 
algorithm with sparse sensitivity updates based on gradient change 
tracking using high-fidelity EM simulations (Algorithm II [45]), and 
(iii) the multi-fidelity TR procedure with full-FD sensitivity update 
(Algorithm III [53])). The benchmark procedures have been recalled 
in Sections II.B, II.C and II.D, respectively. Since all of the 
benchmark antenna structures have been already validated (both in 
the source papers [56]-[59] and in our previous work, e.g., [45], 
[47]), the experimental validation of the optimized designs has not 
been provided, as being immaterial to the scope of the paper.  

A. Results 

The performance of all algorithms (both benchmark Algorithms I 
through III, and the proposed Algorithm IV) is assessed with respect 
to the computational overhead they incur, as well as their reliability 
(among others, the ability to render quality optimal designs meeting 
the design specifications).  

The verification examples include four ultra-wideband antennas 
that have been optimized to ensure best in-band matching (see Fig. 
1). Table I gathers information about the geometry parameters (both 
designable and fixed ones), as well as the details on the substrate the 
structure has been implemented on. The computational models of all 
antennas are implemented in CST Microwave Studio and simulated 
using its time-domain solver. All models incorporate the SMA 
connectors. The antennas are to operate within the frequency range 
3.1 GHz to 10.6 GHz (UWB frequency range). The design task is to 
minimize the maximum in-band reflection within the said band, and 
the merit function is formulated as follows U(x) = max{3.1 GHz ≤ f 
≤ 10.6 GHz : |S11(x,f)|}. 
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              (a)                             (b)                      (c)                          (d) 
Fig. 1. Antenna structures used as verification case studies: (a) Antenna I 
[56], (b) Antenna II [57], (c) Antenna III [58], (d) Antenna IV [59]. Light-
grey shade indicates ground plane. 

TABLE I 
ANTENNA STRUCTURES USED AS VERIFICATION CASE STUDIES 

An- 
tenna 

Substrate 
Designable Parameters  

[mm] 
Other  

I  
[56] 

RF-35  
(εr = 3.5, h = 0.762 mm) 

x = [l0 g a l1 l2 w1 o]T 
w0 = 2o + a, 
wf = 1.7 mm 

II  
[57] 

RF-35  
(εr = 3.5, h = 0.762 mm) 

x = [L0 dR R rrel dL dw Lg 
L1 R1 dr crel]T 

w0 = 1.7 mm 

III  
[58] 

FR4  
(εr = 4.3, h = 1.55 mm) 

x = [Lg L0 Ls Ws d dL ds 
dWs dW a b]T 

W0 = 3.0 mm 

IV  
[59] 

RO4350  
(εr = 3.48, h = 0.762 mm) 

x = [L0 L1 L2 L dL Lg w1 
w2 w dw Ls ws c]T 

w0 = 1.7 mm 

 

TABLE II 
DISCRETIZATION DENSITY RANGES FOR ANTENNAS [53] 

Antenna 
Lowest-fidelity model High-fidelity model 

Lmin 
Simulation time 

[s] 
Lmax 

Simulation time 
[s] 

I 10 42 21 150 
II 11 41 24 424 
III 10 46 20 265 
IV 10 37 25 97 

 

Table II gathers the lowest and the highest discretization levels for 
all antennas. The time evaluation ratio (the ratio between the 
simulation times of the high-resolution model and the coarsest one) 
is problem specific: below three in the case of Antenna IV, and 
around ten for Antenna II. Thus, potential computational speedup 
due to the involvement of multi-fidelity simulations may be sizeable.  

The considered optimization tasks are, in general, multimodal, and 
the procedures employed to solve them are local ones. So, the search 
process launched from different initial designs typically yields 
different local optimum solutions. Therefore, statistical verification of 
the considered algorithms has been conducted as follows: each 
procedure has been re-run ten times starting from random initial 
designs in order to assess both the reliability and efficiency of the 
optimization process. The considered algorithms are compared with 
respect to the following aspects: computational expenditures (averaged 
over the set of ten initial designs), design quality (quantified as the 
average value of the merit function), as well as the result repeatability 
(measured as standard deviation of the objective function across the 
entire set). Due to the problem multimodality, the said standard 
deviation does not assume zero value even for the reference TR 
algorithm with high-fidelity simulations. Thus, the standard deviation 
values obtained for each algorithm should be considered with regard to 
the reference technique instead of a zero value. 

The control parameters of Algorithm II and IV (with sparse 
sensitivity updates) have been set to: Nmin = 1 and Nmax = 5 (cf. 
Section II.C). Moreover, for Algorithm III and IV (employing multi-
fidelity model management scheme) (see Section II.D) we have:  M 
= 10–2,  = 3, λ = 2/3, and Md = 10. The termination thresholds have 
been set to: x = U = 10–3 (see Section II.E). 
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Fig. 2. Antenna input characteristics for the selected runs of the proposed 
algorithm: (a) Antenna I, (b) Antenna II, (c) Antenna III, (d) Antenna IV 
(obtained for the maximum discretization level for the respective antenna 
structures). Horizontal lines indicate design specifications. Initial and optimal 
designs are marked with dashed (- - -), and solid lines (—), respectively. 

 
TABLE III 

OPTIMIZATION RESULTS FOR ANTENNAS I THROUGH IV 

An-
ten-
na 

Algorithm 

Performance figure 

Cost1 
Cost 
sav-
ings2 

Max 
|S11|3 

max 
|S11|4 

Std 
max 
|S11|5 

I 

I Conventional TR search 97.6 – –11.9 – 0.4 
II Accelerated TR search [45] 44.3 55 % –11.5 0.4 0.8 
III Multi-fidelity [53] 48.2 51 % –11.2 0.7 0.7 
IV This work 24.7 75 % –10.9 1.0 0.9 

II 

I Conventional TR search 111.2 – –14.9 – 0.6 
II Accelerated TR search [45] 66.3 40% –14.7 0.2 0.8 
III Multi-fidelity [53] 25.8 77% –13.8 1.1 1.0 
IV This work 23.7  79 % –13.9 1.0 1.0 

III 

I Conventional TR search 111.0 – –13.9 – 1.0 
II Accelerated TR search [45] 68.7 57 % –13.5 0.4 1.1 
III Multi-fidelity [53] 42.3 62 % –11.3 2.6 1.0 
IV This work 26.1 76 % –12.3 1.6 1.7 

IV 

I Conventional TR search 139.7 – –17.6 – 1.2 
II Accelerated TR search [45] 41.1 71% –13.5 4.1 4.1 
III Multi-fidelity [53] 97.2 31% –17.0 0.6 2.1 
IV This work 35.2 75 % –16.3 1.4 1.8 

1 Number of equivalent high-fidelity EM simulations averaged over 10 algorithm runs. 
2 Relative computational savings in percent w.r.t. the reference algorithm. 
3 Objective function value (max. in-band reflection in dB), averaged over 10 algorithm runs.  
4 Degradation of max|S11| w.r.t. the TR algorithm in dB, averaged over 10 algorithm runs. 
5 Standard deviation of max|S11| in dB across the set of 10 algorithm runs. 
 

 
Fig. 3. Computational complexity of the optimization process as a function of 
parameter space dimensionality (of all benchmark antennas) for the proposed 
algorithm (Algorithm IV) and the reference procedures (Algorithms I through 
III). The parameter space dimensionalities (i.e., the numbers of the design 
variables) are: seven (Antenna I), eleven (Antennas II and III), and thirteen 
(Antenna IV). The optimization cost expressed in the equivalent number of 
high-fidelity model evaluations. The costs for Antenna II and III are averaged 
as the number of parameters is eleven in both cases. 
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B. Discussion 

The performance statistics for the proposed and the benchmark 
algorithms are provided in Table III. Figure 2 shows the reflection 
responses at the respective algorithm runs: for the initial and optimal 
designs of Antennas I through IV. The data of Table III include: the 
cost of the optimization process (equivalent number of high-fidelity 
EM simulations of the respective antenna), the cost savings w.r.t. the 
reference TR algorithm using high-fidelity simulations (Algorithm 
I), along with: the average objective function value across the set of 
ten algorithm runs (i.e., the maximum antenna reflection in UWB 
frequency range), its deterioration with respect to Algorithm I, and 
the standard deviation of the merit function (indicator of the results 
repeatability, to be compared to that of Algorithm I, as discussed 
above). The optimization cost of Algorithm II and IV algorithms 
which exploit multi-fidelity simulations is computed by taking into 
account the time evaluation ratios between the low- and the high-
fidelity models utilized throughout the optimization run in the 
following manner. In each iteration, the equivalent number of high-
fidelity EM simulations is assessed as Nc

(i)/m(i), where Nc
(i) is the 

actual number of simulations executed at a current resolution L(i), 
whereas m(i) denotes the ratio of the simulation time between the 
high- and (current) low-fidelity model. The overall optimization cost 
constitutes a sum of these numbers throughout all iterations.  

At the same time, the obtained savings are achieved without a 
significant loss of design quality. The deterioration of the average 
objective function value in comparison to Algorithm I ranges from 
around 1.0 dB for Antenna I and II, and it is around 1.5 dB for 
Antennas III and IV (i.e., around 1.3 dB on average). The result 
repeatability, measured as the standard deviation of the objective 
function value across the set of ten optimal designs, is somewhat 
worse than the reference Algorithm I (slightly over 0.5 dB across the 
benchmark antenna set). Moreover, it is comparable to that of 
Algorithm II and III on average. 

C. Computational Complexity 

This section investigates and compares computational complexity 
of the considered algorithms. The relevant dependencies, i.e., the 
optimization costs versus parameter space dimensionality, have been 
shown in Fig. 3. Despite relatively limited data, it can be observed 
that the reference trust-region procedure (Algorithm I), and the 
multi-fidelity procedure (Algorithm III), exhibit the complexity 
typical for gradient-based algorithms involving first-order 
sensitivities, i.e., the dependence between the number of antenna 
parameters and is slightly higher than linear. The cost of procedures 
involving sparse sensitivity updates (here, gradient tracking), i.e., 
Algorithms II and IV, is only weakly dependent on the parameter 
space dimensionality. At the same time, Fig. 3, clearly indicates that 
the procedure proposed in this work capitalizes on both mechanisms 
(incorporation of variable-resolution simulations and sparse gradient 
updates) to the fullest extent. It features by far the best computational 
efficiency (as reported in Table III, the savings are as high as 80 
percent as compared to Algorithm I), with the cost being almost 
independent of the number of antenna parameters within the 
considered range (7 to 13 variables). In absolute terms, the average 
cost is only about 27 high-fidelity EM analyses of the respective 
antenna structures, which makes the presented procedure one of the 
fastest algorithms for direct (i.e., not surrogate-based) optimization 
of antenna structures ever presented in the literature. Its important 
advantage is that it is fully automated. This is in contrast to 
surrogate-assisted methods, especially physics-based ones, which 
require considerable experience and problem-specific knowledge to 
properly setup and handle the algorithm. 

IV.  CONCLUSION 

This work introduced a novel algorithm for expedited trust-region 
gradient-based design optimization of antenna structures. Our 
methodology involves two separate acceleration mechanisms: sparse 
sensitivity updates and variable-resolution simulations. The former 
allows for omitting a certain number of the CPU-heavy finite-
differentiation-based evaluations of antenna response gradients. The 
decision about abstaining from some updates is based on the 
assessment of the variability of the antenna response sensitivities 
pattern throughout the optimization run. The second acceleration 
mechanism, i.e., variable-resolution model management scheme, 
controls a continuous adaptation of the model discretization level 
taking into account the algorithm convergence status. The procedure is 
initiated with the lowest acceptable fidelity, and the resolution is 
gradually increased towards its conclusion, with the high-fidelity 
model only utilized as the algorithm is close to convergence.  

The employed acceleration mechanisms allow for achieving 
dramatic computational savings of around eighty percent. Further, our 
framework outperforms the recently proposed accelerated optimization 
routines of around fifty percent in terms of computational efficiency. 
Moreover, the computational cost of the proposed procedure is only 
weakly dependent on the parameter space dimensionality. This is not 
the case for gradient-based algorithms involving first-order 
sensitivities, such as the reference trust region algorithm, whose 
dependence between the number of antenna parameters is slightly 
stronger than linear. The proposed algorithm is capable of yielding 
high-quality designs at the cost of around two dozens of full-wave 
antenna analyses. This makes it one of the most efficient algorithms 
for direct (i.e., not surrogate-based) optimization of antenna structures 
ever presented in the literature so far. Finally, the proposed framework 
is fully automated, which is in contrast to surrogate-assisted methods, 
normally requiring problem-specific knowledge to be properly set up. 
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