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Experience-Based Product Inspection Planning in Industry 4.0 

Abstract:  

In this paper we describe how our Smart Virtual Product Development (SVPD) system can be 

used to enhance product inspection planning. The SVPD system is comprised of three main 

modules, these being the design knowledge management (DKM) module, the manufacturing 

capability and process planning (MCAPP) module, and the product inspection planning (PIP) 

module. Experiential knowledge relating to formal decisional events is collected, stored and used 

by the system in the form of set of experiences (SOEs). Here we discuss the working mechanism 

of the PIP module and show how experiential knowledge relating to the inspection of products 

that have features and functions in common can be used to enhance product inspection planning 

during early stages of product development. Our discussion commences with an introduction to 

fundamental concepts and a general system overview. We then describe the development of our 

SVPD system’s PIP module, and a case study we undertook for validation purposes. Results of 

the case study show that our system is capable of supporting product inspection planning in smart 

manufacturing, and thus has a vital role to play in Industry 4.0. 

Keywords: Product development, Smart virtual product development system, Product 

inspection planning, Set of experience knowledge structure (SOEKS) and decisional 

DNA (DDNA), Metrology  

1 Introduction and Background 

Dimensional measurement plays a central role in enabling advanced manufacturing 

technologies by ensuring the quality of products and increasing the productivity of 

manufacturing organisations, and is crucial in the context of Industry 4.0, which requires 

reliable and accurate digital models of products, processes and production systems 

(Carmignato et al., 2020). It is performed by using an appropriate measuring instrument 

to measure the geometrical features of a part or product (Toteva and Vasileva, 2013) and 

is an important component of product inspection planning, which is an integral part of 

product design and manufacturing. Product inspection planning determines what 
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characteristics of a product are to be inspected, and where and when inspection is to take 

place (Zhao et al., 2009). In order to guarantee the quality of both the product features 

and the processes used to manufacture the product, product inspection planning ensures 

that measurements are made at appropriate stages of the manufacturing processes to check 

that the work piece is not deviating from the shape specified by the design drawing  

(Badar et al., 2005, Whitehouse, 2010).  

Among the things that distinguish advanced manufacturing from traditional 

manufacturing are higher levels of product customisation, tighter tolerances, and higher 

product qualities. The inspection of parts and assembled products has also evolved to 

support integrated manufacturing with the result that manufacturers can no longer rely on 

a one-dimensional approach in which they wait till the end of the manufacturing process 

before deciding whether to accept or reject an individual workpiece, and as such, 

companies have moved on to using multi-dimensional product inspection planning 

techniques. Such techniques involve the inspection of parts or products during 

prototyping as well as manufacturing (Zhao et al., 2009).  

While the emergence of smart manufacturing has increased the variety and complexity of 

product lifecycle applications, it has also created challenges for manufacturing industries 

in the area of digital knowledge capture during product design, manufacturing, and 

inspection planning. Companies are in a race to gather, analyse and utilise data and 

knowledge related to product life cycle impact assessment, design improvement and 

quality assurance, however certain technical barriers prevent industries from utilizing 

knowledge related to product design and inspection during early stages of product 

development. The main obstacle is the lack of a well-accepted mechanism that would 

enable users to integrate data and knowledge  (Feng et al., 2017a). The third industrial 

revolution has seen an increase in the capability, accuracy and complexity of measuring 
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resources, and along with this has come automation and a need for updated inspection 

standards and advanced metrology equipment  (Feng et al., 2017b).  

The selection of any particular piece of measuring equipment or instrument is made based 

on the characteristics, tolerances, and datums of the part to be measured, and although it 

is an important aspect of quality control, very few techniques for the selection of 

dimensional metrology equipment are currently available (Toteva et al., 2014). In 

addition to this, the dawning of Industry 4.0 will see the transformation of conventional 

manufacturing to smart manufacturing, and whereas smart manufacturing opens the 

manufacturing loop by converting digital parts (drawings and models) into physical parts, 

product inspection closes this loop by using those physical parts to generate information 

and data i.e. product inspection / measurement reports (Moroni and Petrò, 2018).  

These ongoing technological advances are having a significant influence on product 

design and manufacturing, with the selection of manufacturing equipment playing an ever 

more crucial role in the implementation of the cyber-physical production systems (CPPS) 

that promise to so significantly increase the flexibility and efficiency of manufacturing. 

Furthermore, new approaches to product inspection are required so as to ensure that 

standards of product quality can be maintained in these new cyber-physical environments  

(Anokhin and Anderl, 2019). The question of whether or not the inspection of a particular 

product or feature will be effective in ensuring adherence to required standards of quality 

depends on product inspection planning.  If appropriate plans for product inspection have 

already been made at early stages of product development, then the potential for later 

mistakes can be diminished, and production costs can thus be kept under control (Moroni 

and Petrò 2018). The product inspection planning (PIP) module of the SVPD system, 

proposed by Ahmed et al. (Ahmed et al., 2020a, Bilal Ahmed et al., 2019), has been 

developed precisely to allow product developers to make product inspection plans at early 

stages of product development. The PIP module uses collaborative knowledge collected 
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from relevant past product inspection experiences involving similar products or families 

of products.   

The structure of this paper comprises of fundamental concepts in Section 2, which 

presents the basic concept of dimensional metrology and its importance along with 

product inspection planning, methods for selecting measuring equipment, and Set of 

experience knowledge structure (SOEKS) and Decisional DNA (DDNA). Overview of 

the SVPD system is described in Section 3, and implementation of the PIP module to 

enhance the product inspection planning is explained in Section 4. Results and discussion, 

and concluding remarks are presented in Section 5 and Section 6 respectively. 

2 Fundamental Concepts 

2.1 Introduction to metrology 

Dimensional metrology is a science that involves the geometrical measurement of 

product features including length, area, volume, flatness, circularity, true position, 

perpendicularity, flatness, symmetry, straightness, concentricity, cylindricity, and 

parallelism among others (Leach and Smith, 2018, Ferrucci et al., 2018). It is 

synonymous with dimensional measurement and inspection in the literature. 

Dimensional metrology is essential for the correct manufacture of parts, and is 

based on complex 3D-geometric entries and the relationships between those entries. 

These geometric entries are associated with a large and diverse knowledge base that 

includes interconnections between measurement processes, measurement 

equipment, measurement management systems, traceability of equipment, and 

statistics (Zhao et al., 2011). 

Dimensional metrology can be thought of as comprising four major interacting elements: 

product definition, measurement process planning, measurement process execution, 

analysis and reporting of the data (Proctor et al., 2007). In order to generate information 
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that can support the development of a product inspection plan, it is very important to 

know which features need to be measured and which of the available measurement 

resources should be used (Zhao et al., 2011). Geometrical features can be measured using 

various measuring instruments and equipment. Included amongst these would be any type 

of hardware used in a measurement process, for example, coordinate measuring machines 

(CMM), vision inspection machines (VIM), fixtures, gauges, probes, probe extensions, 

styli, probe tips, vernier callipers, micrometres, dial indicators, scanners, laser trackers, 

and theodolites etc.. Among the gauges would be included such things as block gauges, 

height gauges, go/no-go gauges, depth gauges, and bore gauges (Toteva et al., 2014, 

Leach, 2011). 

 Dimensional metrology is also an important part of the post-manufacturing inspection of 

a manufactured workpiece. It is typically carried out in an environmentally-controlled 

metrology room and is done to ensure that the geometrical parameters of the workpiece 

meet design requirements for the purposes of quality inspection and control (Gao et al., 

2019), however the role that metrology plays in quality control is not just restricted to 

workpieces. On-machine and in-process surface metrology is also used for the 

optimisation of manufacturing processes and machine tool settings. This is based on the 

fact that the quality of the product’s surface texture reflects the characteristics of the 

manufacturing process.  Surface form errors can be indicative of machine tool 

imperfections which can manifest as vibration, geometric error and thermal distortion 

(Whitehouse, 2010). 

2.2 Importance of dimensional metrology and product inspection planning 

Dimensional metrology has major applications in manufacturing, and in particular 

in workshops that produce mechanical parts. In the case of any product that is 

composed of multiple parts, dimensional metrology will have been applied to each 

part so as to ensure its compatibility and fit. The range of sizes and product types 
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over which dimensional metrology is applied extends from the tiniest tracks on 

computer chips present in any smartphone or television, to aeroplane wings and 

wind turbines. Some specific examples of dimensional measurements required in 

precision industries include those crucial to the assembly and function of 

automotive components such as fuel injectors, and those relating to the 

displacement of a wafer support in a photolithography scanner  (Ferrucci et al., 

2018). 

High productivity, flexibility, efficiency, product reliability and low scrap rates are 

important goals of modern manufacturing, which is also facing increasing pressure to 

reduce time to market. A number of methodologies have been proposed and implemented 

with a view to achieving these objectives. Many industrial products require optimisation 

with respect to key geometry-dependant characteristics (e.g. energy efficiency, 

manufacturability, wear, durability), and in this regard, geometrical metrology plays an 

essential role in the development of a comprehensive understanding of the geometry-

based links that exist between the function, design and manufacture of an assembled 

product. When geometrical metrology is integrated into product and process development 

in an intelligent way, the result is more rapid optimisation of the product (Savio et al., 

2016). An ‘Inspection and test plan’ (ITP) - also known as a ‘Quality inspection plan’ - 

lays out a schedule of inspections that are to be carried out at critical control points or 

holds  within a process in order to verify that things are progressing in the way that they 

should be. Product inspection and test plans are often used so that the requirements of the 

ISO 9001 and other manufacturing standards relating to the control of production and 

service provision can be satisfied. Few of the important clauses of ISO 9001:2015, 

showing the importance of product inspection plans are shown in Figure 1 (Natarajan, 

2017). The same principles apply to Industry 4.0, although the associated increased 

product diversity and sophistication has also resulted in a need for enhanced automated 
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inspection planning and improved decision making in order that the close-fitting 

dimensions, tight tolerances, and required surface finishes can be achieved in the CPPS 

environment. 

Figure 1: Clauses from ISO9001:2015, showing the importance of product inspection plans. 

2.3 Methods for selecting measuring instruments 

The selection of appropriate measuring instruments is one of the most important 

aspects of the process of measurement, and as such careful attention should be paid 

to this when generating product inspection plans. When selecting measuring 

instruments, many complexities such as the size and geometry of the feature, and 

the relevant tolerances and datum must be taken into account (Feng et al., 2017b). 

In single production companies the dimensional control of workpieces in 

manufacturing can be achieved by use of universal measuring equipment (callipers, 

micrometres, indicating internal gages etc.), while for serial production the main 

measurement testing and control instruments are limit gauges, measurement 

templates and semiautomatic measurement instruments (Toteva et al., 2014). 

2.4 Set of experience knowledge structure (SOEKS) and Decisional DNA 

(DDNA) 

Set of experience knowledge structure (SOEKS) are able to store formal decisional events 

in an explicit manner  (Sanin and Szczerbicki, 2009, Sanin and Szczerbicki, 2004). 

Generally speaking, SOEKS is a smart knowledge-based decision support tool which 

stores, shares, and maintains experiential knowledge, which can then be used for the 

enhancement of future decision-making whenever a new query is generated or presented. 
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A Set of Experience (SOE, a shortened form of SOEKS) is comprised of four basic 

components, these being variables (V), functions (F), constraints (C) and rules (R) (see 

Figure 2).   

Figure 2: A three-dimensional view of a Set of Experience (SOE). 

The variables define the functions, while the functions create the relationships between 

the variables, with both of these then being used to develop multi-objective goals. The 

constraints are also functions, and they are applied by the SOEs in order to obtain feasible 

solutions, and to control the system’s performance with respect to defined goals. Rules, 

on the other hand, represent the conditional relationships between the variables, and are 

defined in terms of IF-THEN-ELSE logical statements. Any particular formal decisional 

event can be represented within the SOE by a unique combination of these variables, 

functions, constraints, and rules. Groups of SOEs form ‘chromosomes’. Each 

chromosome contains all the SOEs related to a specific area/domain within the 
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organization, and stores decisional strategies related to a given domain. The entirety of 

an organisation’s precisely structured and grouped sets of chromosomes is known 

collectively as the organisation’s Decisional DNA (Sanin and Szczerbicki, 2004). 

The term ‘Decisional DNA’ comes from the idea that SOEs and their related structures 

possess features that are in some ways analogous to those of biological DNA. For 

example, just as the uniqueness of a particular piece of DNA is dependent upon its 

particular combination of the four nucleotides Adenine, Thymine, Guanine, and Cytosine, 

so the uniqueness of a particular SOE derives from its particular combination of variables, 

function, constraints, and rules (Sanin and Szczerbicki, 2009). SOEKS and DDNA are 

already being applied successfully in various fields, including in those related to industrial 

maintenance, in the semantic enhancement of virtual engineering applications, in state-

of-the-art digital control systems involved in the production of geothermal and renewable 

energy, in the storage of information and periodic decision-making in banking and 

supervision, in the e-decisional community, in virtual organization, in interactive TV, and 

in decision-support medical systems (Shafiq et al., 2014).  

3 Overview of the Smart Virtual Product Development System 

Figure 3: Architecture of SVPD system. 

The Smart Virtual Product Development (SVPD) system is a decisional support tool for 

industrial product development processes. It stores, uses and shares the experiential 
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knowledge of past decisional events in the form of set of experiences (SOEs). It has been 

developed to address a need for digital knowledge capture in the areas of product design, 

manufacturing, and inspection planning in smart manufacturing, and will bring about the 

improvements in product quality and development times that will be required from an 

Industry 4.0 perspective. The architecture for our SVPD system is given in Figure 3. The 

system consists of three modules, these being the design knowledge management (DKM) 

module, manufacturing capability analysis and process planning (MCAPP) module, and 

product inspection planning (PIP) module (Ahmed et al., 2020a, Ahmed et al., 2019, Bilal 

Ahmed et al., 2019).  

Figure 4: The various phases of advance product quality planning (APQP) methodology. 

These modules interact with the system’s DDNA knowledge repository, in which is held 

experiential knowledge acquired from previous projects. Integrated SVPD modules are 

able to provide confirmation that the processes involved in the production of a given 

product are ecologically sustainable, and can be undertaken in an existing facility. These 

modules are also fully capable of supporting the five phases of Advance Product Quality 

Planning (APQP) methodology, which is a framework for developing products or 

services that are able to satisfy customer requirements, and has been widely used in the 
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aerospace, automobile, and medical device manufacturing industries. The five phases of 

APQP are shown in Figure 4 (Stamatis, 2001, Stamatis, 2018). Working mechanism of 

DKM module and MCAPP module was presented in our previous works (Ahmed et al., 

2020a, Ahmed et al., 2019, Bilal Ahmed et al., 2019), this research presents the working 

algorithm of PIP module of the developed system. 

4 Implementation of the Product Inspection Planning (PIP) Module 

The product inspection planning (PIP) module is the third and last module of the SVPD 

system. It is used to identify which of the geometric features of a workpiece should be 

inspected during manufacturing, and is used also for the selection of measuring 

instruments or equipment most appropriate to those inspection tasks. In our previous work 

(Ahmed et al., 2018), we introduced a case study involving the design and development 

of a threading tap, which we undertook in order to validate all modules of the SVPD 

system. In this research we describe this case study in more detail, and in particular with 

respect to the validation of the development of PIP module. The first step in our 

discussion of the SVPD system thus far involved using the DKM module to select the 

appropriate material and to create geometric features. This was then followed by use of 

MCAPP module to generate the manufacturing processes and for selection of machines 

suitable for these processes. In the next step of the SVPD system, the solutions to queries 

built using these first two modules will now  be used as input to build queries for the PIP 

module. 

4.1 Working algorithm of the PIP module 

In this section we describe the working algorithm of the PIP module of SVPD system, as 

it applies to the generation of a product inspection plan for our case study involving a 

threading tap. Once the important variables involved in the product inspection planning 

of the threading tap family of products have been manually generated as SOEs and saved 
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in a comma-separated values (CSV) file, weighting is assigned to each of the 

characteristics of the variables (Ahmed et al., 2020b). For illustrative purposes a portion 

of the CSV file for the product inspection planning for threading taps is shown in 

Appendix-1. Because the DDNA and first two modules of the SVPD system had been 

developed in JAVA, we chose JAVA also when writing the parser (pipParserCSV) for 

the PIP module. The working procedure for the PIP module is as follows: 

 User provides input query in terms of variables, functions, and constraints. This 

query is converted into a new SOE i.e. Query SOE. 

 The parser then looks for the term ‘Variables’ and goes to the next line. The first 

line after the term ‘Variables’ contains the name of variables. It stores values 

written in each cell of the first line as the ‘Name’ of the variables. Each line after 

this contains the values of corresponding variables. The parser assigns values to 

the respective variables. This group of variables is stored in the system as one ‘Set 

of Variables’. 

  Similarly, the parser reads the second set of values from the CSV file and assigns 

them to the respective variables which are stored as the second ‘Set of Variables’.  

 The same process continues until the parser finds the term ‘Functions’, 

‘Constraints’, or ‘Rules’. In the same way, the parser reads ‘Set of Functions’, 

‘Set of Constraints’, and ‘Set of Rules’ from the CSV file.  

 One ‘Set of variables’ plus ‘Set of Functions’, ‘Set of Constraints’, and ‘Set of 

Rules’ are combined together to form SOEKS.  

o SOEKS = Variable set + Function set + Constraint set + Rule set 

 System finds the similarity of Query SOE with SOEKS stored in the CSV file. 

Similarity is calculated on the basis of Euclidian distance with its value ranging 

from 0 to 1 (0 being the closest). 
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 System provides output in the form of top five proposed solutions with minimum

similarity and user then selects the best solution.

4.2 Graphical user interface for the PIP module 

The graphical user interface (GUI) for the SVPD system is shown in Figure 5. After 

logging in, the user is prompted to make a selection from among the system’s three main 

modules. After selection of the PIP module, the user selects the product to be 

manufactured (in this case ‘Threading Tap’) from the ‘Select Product’ dropdown, and 

then clicks the ‘Add Product’ button. Next, the user selects the material from the list 

provided in the ‘Select Material’ dropdown (see Figure 5), enters the relevant code into 

the text box below, and then clicks the ‘Add Material’ button.   

Following this, the user selects the required machining operation from the ‘Select 

Machining Operation’ dropdown, enters the relevant workstation number into the text 

box below, and clicks the ‘Add Operation’ button. The selection of critical variables then 

proceeds in a similar way, whereby the user selects the required critical variable from a 

dropdown, enters the variable value into the textbox below, and then clicks the ‘Add 

Variable’ button. Multiple variables can be selected and added in this way. After the 

product, material, machining operation and critical variables selections have been made, 

they appear below in the ‘Built Query’ section of the screen (see Figure 5). An example 

of a possible random query is shown below.  

 Product Name = Threading Tap

 High speed steel (HSS) = T11301

 Thread grinding = 09

 Variable length = 40

 Variable diameter = 10

 Variable true position of hole = 0.03
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Figure 5: GUI for building queries for the PIP module. 
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Once the query has been built, the user then executes it by clicking the ‘Run Query’ 

button. This prompts the algorithm to retrieve the five closest matches, and these then 

appear as SOEs in the ‘Product Inspection Planning – Experience Based Solutions’ text-

field below. These SOEs contain output including the similarity of the query SOE to the 

output SOE, the product name, the product number, the geometrical features to be 

measured, the instruments or equipment required to measure those features, the 

instrument IDs and the inspection stations.  A number of other buttons can be seen at the 

bottom of the GUI screen. These include the ‘Reset’ button, which can be used to rebuild 

a query before or after it has been executed if any selection or typing errors have occurred, 

and other buttons which allow the user to switch between modules or to return to the main 

screen. As with the DKM and MCAPP modules, matching between the query SOEj (a 

SOE made up of the query) and the SOE pipDNAi (the entire PIP-DNA) is made through 

calculation of a similarity index based on Euclidean distance. In this regard, the PIP 

similarity matrix takes the following form: 

𝑆𝑣(𝑝𝑖𝑝𝐷𝑁𝐴𝑖 , 𝑄𝑢𝑒𝑟𝑦𝑆𝑂𝐸𝑗) = ∑ 𝑤𝑘  [
|𝑝𝑖𝑝𝐷𝑁𝐴𝑖𝑘

2 − 𝑄𝑢𝑒𝑟𝑦𝑆𝑂𝐸𝑗𝑘
2 |

max(|𝑝𝑖𝑝𝐷𝑁𝐴𝑖𝑘|, |𝑄𝑢𝑒𝑟𝑦𝑆𝑂𝐸𝑗𝑘|)
2]

0.5

∀𝑘 ∈

𝑛

𝑘=1

 

 𝑝𝑖𝑝𝐷𝑁𝐴𝑖  ⋀ 𝑄𝑢𝑒𝑟𝑦𝑆𝑂𝐸𝑗   (1) 

5 Result and Discussion 

The case study for the PIP module was executed on a Dell laptop running a Windows 10 

Enterprise 64-bit operating system with an Intel ® Core ™ I5-7300u CPU @ 2.60 and 8 

GB of RAM.  The working algorithm of the PIP module was tested by directing sample 

queries towards a repository consisting of 500 set of experiences made up of 7 functions 

and 21 constraints. Each SOE within the repository was comprised of 7 variables. The 

following provides a general analysis of a case study undertaken to check the robustness 

of the system. 
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5.1 Parsing time for CSV file and SOEKS elements of the PIP module 

Figure 6: Parsing time vs SOE elements for the PIP module. 

As shown in Figure 6, the average parsing time for a CSV file by the PIP module was 

0.084 seconds, which can be considered to be a good result when the complexity of the 

SOEs with their large numbers of variables, functions and constraints is taken into 

account. Where the various SOE elements are concerned, parsing times were 0.049 

seconds for variables, 0.022 seconds for functions and 0.014 seconds for constraints. 

5.2 Time required for SOE searches within PIP module 

The time for an SOE search within the PIP module was determined by averaging the times 

taken for each of 100 searches. This yielded an average parsing time of 0.02309 seconds, 

as shown in Figure 7. 
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Figure 7: Time required for SOE searches within the PIP module 

5.3 Normality test for SOE search data 

The normality of the data (time) to search SOE within the PIP module was assessed using 

the Anderson-Darling test. This statistical test provides a measurement of how well a 

specified data set fits a particular type of distribution. When using Anderson-Darling, a 

determination of whether or not the data set fits the distribution type is based on the p-

value yielded by the test (Fitrianto and Chin, 2016). The hypotheses for the Anderson-

Darling test are: 

 H0: The data follow a specified distribution

 H1: The data do not follow a specified distribution

If the p-value is less than a chosen alpha (usually 0.05 or 0.10), then the null hypothesis 

that the data follows a particular distribution type is rejected. We chose a p-value of 0.10 

as the basis on which to accept or reject the null hypothesis that our data is normally 

distributed. From Figure 8, we can see that the p-value for our 100 PIP module searches 

was less than 0.10 (our chosen p-value) and so we accept that our data is normally 

distributed and that our search results are consistent. 
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Figure 8: Normality test of time (s) for searches within the PIP module. 

Figure 9: Statistical summary report for data to search similar SOEs within the PIP module. 

A summary of the statistical data is given in Figure 9 where the p-value, mean, standard 
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deviation, median, variance, and result minimum and maximum can be seen. 

5.4 Similarity calculation for 100 SOEKS stored in PIP module 

Similarity values for 100 SOEKS stored in the PIP module that were retrieved using 

random queries are shown in Figure 7.  

Figure 10: Similarity calculation for SOEKS stored in the PIP module. 

6 Conclusion 

In this study, we presented the concept of enhancing the product development process by 

providing product inspection planning knowledge during early stages of product 

development. We were able to achieve this enhancement by using our SVPD system’s 

PIP module, which we validated using a case study involving a threading tap. Results 

from the case study indicate that our system is capable of enhancing the product 

inspection planning by using the previously acquired experiential knowledge of similar 

products.  

The PIP module of the system can be used to generate product inspection plans for newly 
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developed products.  After a query based on specific objectives is fed into the system, the 

system’s DDNA retrieves suitable solutions based on a set of priorities and constraints. 

Following execution of the query, the user selects the most appropriate solution from 

among those provided, with this then being stored in in the DDNA of the system as new 

experiential knowledge which then can be used for solving similar queries in the future. 

The integration of our system with ERP systems such as SAP or Oracle discrete 

manufacturing will lead to more enhanced decision-making in relation to product 

inspection planning in the future. 
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Appendix 1: CSV file component for PIP module. 
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