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A B S T R A C T   

Reinforced concrete (RC) beams with transverse reinforcement (stirrups) subjected to four-point bending were 
experimentally and numerically investigated. Beams were scaled along the height or length. They were over- 
reinforced to avoid longitudinal bars’ yielding. First, laboratory tests on RC beams with stirrups were con-
ducted. Due to the lack of a geometrical similarity, two separate failure modes were observed depending upon 
the ratio of the shear span to the beam depth ηa = a/D. In experiments, a shear-compression failure mode 
dominated for small values of ηa, and concrete crushing in a beam compression zone prevailed for high values of 
ηa. Next, the finite element method (FEM) was used in calculations to directly simulate the experiments. A 
coupled isotropic elasto-plastic-damage constitutive model for concrete under plane stress conditions was 
adopted. The constitutive model was enhanced by integral-type non-locality in the softening regime to provide 
mesh-objective results. A bond-slip law was assumed between concrete and longitudinal bars. Numerical sim-
ulations under plane stress conditions satisfactorily reproduced the experimental shear strengths and failure 
modes for all beams with the same set of input parameters. A wide parametric study regarding the numerical 
influence of the longitudinal and transverse reinforcement ratio and shear span parameter on beam strength and 
failure mode was performed. In addition, one full three-dimensional (3D) calculation was also carried out for 
comparative purposes.   

1. Introduction 

A size effect is an inherent characteristic of all semi-brittle materials 
such as concrete subjected to increasing load till its maximal value and 
continuing in a post-critical softening regime under displacement con-
trol. It denotes reduction of the nominal structural strength (referred to 
maximal load value) and reduction of ductility (measured by the ratio of 
the load work in the post-critical regime to the total work in the 
deformation process) with growing structural element size [1]. These 
two properties are of significant importance for the evaluation of 
element safety. The size effect is caused by intense strain localization 
regions of a certain volume which precede the occurrence of discrete 
macro-cracks (their size related to a characteristic member size con-
tributes to a deterministic size effect) and by a spatial variability/ 
randomness of local material properties (contributing to a statistical size 
effect that becomes dominant with increasing characteristic size of 
members). Since the strain localization zone size, which is sensitive to 
the ratio between the size of strain localization zones and the specimen 
size, cannot be experimentally scaled in laboratory tests. Concrete 

elements indicate a transition from a snap-through response in the post- 
critical regime for small-size elements to a snap-back response (a cata-
strophic drop in strength related to a positive slope in a stress–strain 
softening branch) for large-size elements. There exist several size effect 
rules for concrete elements for geometrically similar structures [1–4] for 
which the same failure mode occurs for a varying scalar size parameter. 
The most realistic is the combined energetic-statistical size effect rule 
proposed by Bazant [4]. However, structure shape, reinforcement layout 
and size variation can depend on several parameters, which is typical in 
the design process. Thus, differing failure modes may occur and each 
mode is characterized by a different strength reduction rule depending 
on the growth/decrease of the specific design parameter. It is thus 
desired to investigate the extended dependence of nominal strength on 
both the size parameter (as in the size effect for geometrically similar 
elements) and non-dimensional geometric parameters (e.g. size ratio) 
and to derive a size effect dependent on those geometric parameters (if 
they are variable). In our studies, the RC beams with independent var-
iations of length and depth were tested and the transition from flexural 
to shear failure modes was considered with differing expressions for 
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strength dependence on beam length and beam depth parameter values. 
Such a multi-parameter approach seems to provide more useful infor-
mation on structural strength than the developed study of a single-size 
parameter effect. 

There exist extensive experiments of a size effect for geometrically 
similar RC beams (with the same failure mechanism). A strong size effect 
was experimentally observed in RC beams without shear reinforcement 
during diagonal shear-tensile failure (e.g. [5–14]). The size effect was 
mainly of the deterministic type [1]. The size effect was also observed in 
reinforced concrete beams with shear reinforcement [15–17]. In these 
experiments, a diagonal shear-tensile fracture [15,16] or crushing of a 
compressive zone [17] took place in concrete. Thus, the use of stirrups 
did not suppress the size effect provided the longitudinal and vertical 
reinforcement yielding did not occur. The effect of the varying rein-
forcement ratio on the failure mode in RC beams was experimentally 
shown by Carpintieri et al. [18]. The observed failure mode changed 
from longitudinal reinforcement yielding, through diagonal tension to 
compressive zone crushing with increasing reinforcement ratio. How-
ever, only a few papers were devoted to the behaviour of RC beams with 
independently varying heights and lengths (e.g. [19,20]). 

In a previous paper published by the authors [20], the extensive 
laboratory experiments on longitudinally reinforced concrete beams 
without shear reinforcement subjected to four-point bending were 
described. RC beams of separately varying height and length were 
experimentally analyzed concerning the nominal strength and post- 
critical brittleness. Beams were scaled in the height direction in the 
first test series and the length direction in the second test series. Two 
failure mechanisms were exhibited: flexural failure mechanism with 
plastic yielding of reinforcement and brittle shear mechanism in con-
crete with dominant normal diagonal crack displacements (so-called 
shear-tension failure mode) or with simultaneous significant normal and 
tangential diagonal crack displacements (so-called shear-compression 
failure mode). Next, the experiments were simulated with the finite 
element method (FEM) under plane stress conditions, with the use of an 
isotropic elasto-plastic-damage formulation with non-local softening 

[21]. The bond-slip law was assumed in FE analyses between concrete 
and reinforcement. A satisfactory agreement between numerical and 
experimental results was achieved concerning both the shear strength 
and failure mechanism. The FE results were insensitive to the finite 
element mesh size and alignment due to the presence of a characteristic 
length of micro-structure, introduced with the aid of integral-type non- 
locality in a softening regime. The current paper continues the experi-
ments [20] and calculations [21] by the authors on RC beams without 
shear reinforcement, however this time the RC beams also included 
shear reinforcement. 

The main aim of our research works was to show the effect of the 
shear span ratio, main and secondary reinforcement ratio on strength 
and a failure mode of RC beams including shear reinforcement (with an 
independently varying height and length) by means of a simple diagram, 
which is of importance in the design process. Such a useful diagram does 
not exist in the literature yet. Since the existing simplified design ap-
proaches are not able to properly predict both the shear strength and a 
failure mode, we decided to use a realistic finite element model to 
construct such a diagram (the numerical model was validated by ex-
periments). First, the paper presents some experimental results on RC 
beams with shear reinforcement under four-point bending [22]. The 
geometry of beams in the current study was similar to those in [20] for 
comparative purposes. As compared to [15–17], the experiments in the 
current paper on non-geometrically similar RC beams were more 
comprehensive since they: 1) included various failure mechanisms, 2) 
took into account a change of both the effective depth or length and 3) 
directly compared beams with and without stirrups. Second, the ex-
periments were numerically simulated with FEM under plane stress 
conditions, based on the same constitutive model for concrete as in [21] 
to check its capability to reproduce also the behaviour of RC beams 
possessing vertical reinforcement. The focus was on the faithful repro-
duction of different failure modes, maximum vertical forces, location, 
inclination and spacing of failure localized zones obtained in the ex-
periments. Since large-scale experiments on concrete or RC concrete 
elements are costly as compared to numerical calculations, it is desired 

Fig. 1. Experimental reinforced concrete beams of series ‘3’ under four-point bending [22]: geometry, reinforcement arrangement, loading scheme and cross-section.  
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to formulate a realistic numerical concrete model for describing the 
beam behaviour by taking into account the influence of different pa-
rameters, such as dimensions of RC elements, shear span, main and 
secondary reinforcement ratio, tensile and compressive strength of 
concrete et ca. After validating the numerical model, based on experi-
ments, comprehensive numerical FE analyses were finally carried out for 
investigating the influence of the shear span, main and secondary 
reinforcement ratio on strength and a failure mode. In summary, the 
novel points of our research works are: 1) experiments on large non- 
geometrically similar RC beams with stirrups, taking into account a 
change of both the effective depth or length (that were not performed 

yet) and 2) presentation of a 3D diagram showing the effect of the shear 
span ratio, main and secondary reinforcement ratio on strength and a 
failure mode of RC beams, based on comprehensive numerical FE sim-
ulations using a constitutive model for concrete that was validated with 
the aid of experiments. The numerical model properly captures strain 
localization and is able to distinguish between different failure modes 
such as shear compression, shear tension and concrete crushing. Such a 
diagram was not shown in the literature yet. 

The structure of the paper is the following. After Introduction (Sec-
tion 1), the experimental results on RC beams with shear reinforcement 
are summarized in Section 2. In Section 3, FE modelling of concrete, 

Fig. 2. Experimental reinforced concrete beams of series ‘4’ under four-point bending [22]: A) geometry, reinforcement arrangement, loading scheme and B) 
cross-sections. 
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reinforcement and bond-slip is introduced. Section 4 describes FE 
analysis results of RC beams with stirrups. The comparison of shear 
strengths between experimental, numerical and analytical results is 
discussed in Section 5. The comparative 3D results for one RC beam are 
shown in Section 6.1. Some additional parametric studies regarding the 
influence of the main and secondary reinforcement ratio and shear span 
parameter on strength and failure modes of beams in 2D are presented in 
Section 6.2. The conclusions are offered in Section 7. 

2. Experiments 

2.1. RC beam geometry and material properties 

All RC beams were symmetrically loaded by two vertical concen-
trated forces at the distance a from both supports (a denotes the shear 
zone region) and had the constant bending moment zone b in the beam 
central part. The beams were scaled along with either the effective 
length Leff (series ‘3’, Fig. 1) or effective depth D (series ‘4’, Fig. 2) [22]. 
The RC beams without stirrups were denoted as the series ‘1’ and series 
‘2’ [20]. The beams of the series ‘3’ and ‘4’ were cast separately, how-
ever, the concrete recipe was similar. The maximum aggregate diameter 
was dmax = 16 mm. The concrete specimens were cut out from the 
damaged beams after experiments to verify the compressive strength. 
The mean strength fcm (determined on cylinders ϕ100 mm) of the beams 
S3D36A108_2 and S3D36A54_2 was made of weaker concrete fcm = 39 
MPa than the other ones. The remaining beams had the strengths fcm =

58 MPa and fcm = 56 MPa in the series ‘3’ and series ‘4’, respectively. The 
guaranteed yield strength of longitudinal and shear reinforcement was 
560 MPa. The shear span parameter ηa = a/D changed between 1.5 and 6 
to find as in [20] transitory points of failure mode changes (reinforce-
ment yielding, shear failure and concrete crushing). 

2.1.1. RC beams of series ‘3’: Varying shear span a 
The RC beams in the series ‘3’ had the constant effective depth D =

360 mm but the varying shear span a = 540, 1080 and 2160 mm (Fig. 1, 
Table 1) [22]. The shear span parameter ηa = a/D changed from 1.5 
through 3 up to 6. The thickness of all beams in the series ‘3’ was t = 250 
mm. The main reinforcement ratio of all over-reinforced beams was ρl =

4.3% (consisted mainly of longitudinal steel ribbed bars of the diameter 
28 mm and also of the diameter 10 mm) and the shear reinforcement 
ratio was ρs = 0.4% (designed as two-legged closed stirrups of the 
diameter ϕ8). Next, the same reinforcement ratio was adopted for other 
RC beams. The beams were denoted as S3D36A54, S3D36A108 and 
S3D36A216 (where S denotes the series number, D - the effective depth 
in [cm] and A - the shear span length in [cm]). Three identical specimens 
were prepared for each beam size (the specimen number is attached at 
the end of the beam symbol e.g. S3D36A54_1). In total, 9 RC beams were 
tested in the series ‘3’. The beams in the series ‘3’ had a significantly 
higher longitudinal reinforcement ratio (ρl = 4.3%) than previously 
tested beams without shear reinforcement in the series ‘2’ (ρl = 1.4%) 
[20]. This unusually high ρl was required to prevent main reinforcement 
yielding. . The value of ρl = 4.3% was analytically determined for the 
longest beam in the series ‘3’ to obtain concrete crushing (based on a 
force equilibrium in the beam cross-section) [22]. Next, the same rein-
forcement ratio was adopted for other RC beams. Furthermore, the 
beams in the series ‘3’ had the designed shear span parameters ηa 
different from the beams in the series ‘2’ to observe a varying failure 
mechanism. Another determinant for the beam geometry was the upper 
load limit of the testing machine in the laboratory (about 1800 kN). Due 

Table 1 
Dimensions of reinforced concrete beams with stirrups in series ’3’ and ‘4’ [22].  

Beam dimension D Leff a b t ηa = a/D ηL = Leff/D ηb = b/D 
[mm] [mm] [mm] [mm] [mm]    

Series 3 
S3D36A54 

360 1620 540 540 250  1.5  4.5  1.5 

Series 3 
S3D36A108 

360 2700 1080 540 250  3.0  7.5  1.5 

Series 3 
S3D36A216 

360 4860 2160 540 250  6.0  13.5  1.5 

Series 4 
S4D22A108 

220 2700 1080 540 150  5.0  12.3  2.5 

Series 4 
S4D43A108 

430 2700 1080 540 150  2.5  6.3  1.25 

Series 4 
S4D72A108 

720 2700 1080 540 150  1.5  3.75  0.75  

Fig. 3. Experimental vertical force–deflection F = f(u) curves of RC beams with 
stirrups of series ‘3’(a) and series ‘4’ (b) with different parameter ηa = a/D [22] 
(D - effective depth and a - shear span). 
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to that limit, the shortest beam with stirrups in the series ‘3’ had the 
parameter ηa = 1.5 instead of ηa = 1.0 (as the shortest beam without 
stirrups in the series ‘2’ [20]. The area of the loading/supporting plates 
was 100 × 250 mm2. 

2.1.2. RC beams of series ‘4’: Varying effective beam depth D 
The RC beams in the series ‘4’ had the varying effective depth D =

220, 430 and 720 mm but the constant shear span a = 1080 mm (Fig. 2, 
Table 1) [22]. The shear span parameter ηa = a/D changed from 1.5 
through 2.5 up to 5. The beams were denoted as S4D22A108, 
S4D43A108 and S4D72A108. The thickness of all beams in series ‘3’ was 
reduced from t = 250 mm down to t = 150 mm due to the load limit of 
the testing machine (the effect of a beam thickness is usually negligible 
[22,23]). The beam S4D72A108 compromised 3 identical prismatic trial 
specimens (denoted as S4D72A108_T1 - S4D72A108_T3) and 2 speci-
mens with additional strengthening pilasters in the axes of external 
forces (S4D72A108_1 - S4D72A108_2) to avoid local concrete crushing 
at all loading/supporting points. Each of the beams S4D22A108 and 
S4D43A108 were represented by 3 identical specimens. In total, 9 RC 
beams were tested in the series ‘4’. The area of the loading/supporting 
plates was 100 × 150 mm2. The shear span parameters ηa = 2.5 and 5 in 
the beams from the series ‘4’ slightly differed from the beams in the 
series ‘3’ with ηa = 3 and 6. This unintended discrepancy came out from 

Fig. 4. Crack patterns at failure typical for RC beams with stirrups (series ‘3’) [22]: a) beams S3D36A54 (ηa = 1.5), b) S3D36A108 (ηa = 3.0) and c) S3D36A216 (ηa 
= 6.0). 

Fig. 5. Crack patterns at failure typical for RC beams with stirrups (series ‘4’) 
[22]: a) beam S4D22A108 (ηa = 5.0), b) S4D43A108 (ηa = 2.5), and c) 
S4D72A108 (ηa = 1.5). 
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a faulty performance of beam heights H (and D) in a prefabrication 
factory. The longitudinal reinforcement consisted of steel ribbed bars of 
diameter 10, 16 and 25 mm (Fig. 2) while the shear reinforcement was 
made of two-legs closed stirrups of diameter 8 mm. Due to the incorrect 
beam effective depths D, the main reinforcement ratio diverged from the 
assumed one. The beam S4D72A108 had again the high longitudinal 
reinforcement ratio ρl = 4.3% (similar to beams in the series ‘3’) whereas 
the beams S4D22A108 and S4D43A108 had ρl = 3.5%. This slightly 
lower main reinforcement ratio did not affect the expected experimental 
failure mode since it was still sufficient to prevent steel yielding. The bar 
diameter was mainly 25 mm and also 10 mm. The shear reinforcement 
ratio was always ρs = 0.4%. 

2.2. Experimental results on strength and fracture 

The experimental load–deflection diagrams F = f(u) are shown in 
Fig. 3 (F - vertical force and u - deflection) [22]. Figs. 4 and 5 show the 
crack patterns in RC beams and Table 2 includes the failure forces Fmax 
= 2Pmax and the corresponding shear failure stresses ν = Pmax/(tD) from 
the experiments [22]. The shear span parameter ηa = a/D was germane 
for the beam strength, brittleness and failure mode. 

2.2.1. RC beams of series ‘3’: Varying shear span (ρl = 4.3%, ρs = 0.4%) 
The longest beams S3D36A216 with ηa = 6 always failed due to 

concrete crushing (C) in the constant bending moment zone (Fig. 4) 
since both flexural and shear reinforcement was sufficient to resist the 
critical bending and shear stresses [22]. The averaged ultimate vertical 
force for S3D36A216 beams was 473.7 kN (Fig. 3a, Table 2). All beams 
of this type had similar normalized load–deflection paths including the 
registered post-peak brittleness resulting from the compressive concrete 
behaviour in the softening regime (Fig. 3a). The beams S3D36A108 with 
ηa = 3 constituted a transitional geometry between two different failure 
mechanisms. The beam S3D36A108_1 failed in shear-compression (SC) 

Table 2 
Experimental failure force Fmax = 2Pmax and shear failure stress ν = Pmax/(tD) for 
two failure modes with RC beams including stirrups of series ‘3’ and series ‘4’ 
[22] (CC - concrete crushing in compressive zone and SC - shear-compression 
failure).  

Beam no ‘1’ ‘2’ ‘3’ Mean 
value 

Mean 
value 

Fmax 

[kN]/ 
failure 
mode 

Fmax 

[kN]/ 
failure 
mode 

Fmax 

[kN]/ 
failure 
mode 

Fmax[kN] ν[MPa] 

Series 3 
S3D36A216 
ηa = 6.0, ηb 

= 1.5 

544/CC 411/CC 469/CC 475  2.64 

Series 3 
S3D36A108 
ηa = 3.0, ηb 

= 1.5 

802/SC 601/CC 954/CC 878*  4.88* 

Series 3 
S3D36A54 
ηa = 1.5, ηb 

= 1.5 

1574/SC 1165/SC 1271/SC 1423*  7.43* 

Series 4 
S4D22A108 
ηa = 5.0, ηb 

= 2.5 

227/CC 204/CC 191/CC 207.4  3.17 

Series 4 
S4D43A108 
ηa = 2.5, ηb 

= 1.5 

694/SC 808/SC 732/CC 744.4  5.76 

Series 4 
S4D72A108 
ηa = 1.5, ηb 

= 0.75 

1420/SC 1416/SC 1423/SC 1420  6.52  

* Average value without beams made of weaker concrete. 

Fig. 6. Average ultimate shear stress in beams with shear reinforcement (series 
‘3’ and series ‘4’, [22]) and without shear reinforcement (series ‘1’ and series 
‘2’, [20]) with varying parameter ηa = a/D (D - effective depth and a - 
shear span). 

Fig. 7. Regions of failure modes of RC beams with/without stirrups of varying 
geometry (a, D) and reinforcement ratios ρl and ρs [22] (Y - reinforcement 
yielding, DT - diagonal tension, SC - shear-compression, CC - concrete crushing 
and N –support zone crushing, a - shear span, D - beam depth, ρl - longitudinal 
reinforcement ratio and ρs - vertical reinforcement ratio). 
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for Fmax = 802 kN. The beams S3D36A108_2 and S3D36A108_3 were 
damaged due to concrete crushing (C) in the constant bending moment 
zone for Fmax = 601 kN and Fmax = 954 kN (Table 2), respectively. 
Furthermore, the beams S3D36A108_2 and S3D36A108_3 (Fig. 3) had 
the relatively higher normalized deflection u/D and showed more 
ductility after reaching the peak load comparing to the beam 
S3D36A108_1. Note that beam S3D36A108_2 was made of weaker 

concrete. All deep beams S3D36A54 with ηa = 1.5 failed in shear- 
compression with a significant increase of the shear strength sup-
ported by an internal arch action (Fig. 4). The beam S3D36A54_2, which 
was made of weaker concrete, reached Fmax = 1165 kN. For the other 
two beams the failure force was Fmax = 1574 kN and Fmax = 1271 kN 
respectively, (Table 2, Fig. 3a). The beams S3D36A54_1 and 
S3D36A54_3 had similar load–deflection curves that demonstrated a 
very stiff beam response connected with the high vertical load and small 
deflection. In contrast, the beam S3D36A54_2 due to weaker concrete 
possessed a relatively low ultimate force and large deflection (Fig. 3a). 
The post-peak behaviour was brittle (all beams lost their carrying ca-
pacity in a sudden failure). 

2.2.2. RC beams of series ‘4’: Varying effective beam depth D (ρl = 4.3% 
and ρl = 3.5%, ρs = 0.4%) 

Similar to series ‘3’, for series ‘4’ it was observed that ηa had a great 
effect on the beam strength, brittleness and its failure mode [22]. The 
lowest beams S4D22A108 with ηa = 5.0 failed due to concrete crushing 
(CC) in the constant bending moment zone (Fig. 5), similarly to the 
beams with ηa = 6.0 in the series ‘3’. The average ultimate vertical force 
for the lowest beams was 207.3 kN (Table 2). The load–displacement 
curves (Fig. 3b) had similar shapes and pronounced post-peak structural 
softening. For the medium–high beams ηa = 2.5, two beams failed in the 
shear-compression (SC) with the Fmax = 694 kN and Fmax = 806 kN for 
S4D43A108_1 and S4D43A108_2 respectively. However, the beam 
S4D36A108_3 failed due to concrete crushing (CC) in the constant 
bending moment zone (Fig. 4b) at Fmax = 732 kN (Table 2). The force-
–deflection curves (Fig. 3b) had similar shapes up to the peak load but 
later the post-peak behaviour was different. The beams S4D36A108_1 
and S4D36A108_2 failed in a brittle way and the beam S4D36A108_3 in 
a quasi-brittle way. The highest beams S4D72A108 with ηa = 1.5 were 
first designed as prismatic beams with the rectangular cross-section 
(‘trial beams’). The highest ‘trial’ beams denoted as S4D72A108_T1 
and S4D72A108_T2 failed due to local concrete crushing at the sup-
porting plate for Fmax = 1375 kN. The third trial beam S4D72A108_T3 
was strengthened by increasing its thickness locally at supports thus, it 
failed due to shear-compression at Fmax = 1423 kN. The beams 
S4D72A108_1 and S4D72A108_2 had, however, 4 symmetric pilasters at 
all loading/supporting points (Fig. 2). Those beams also failed in shear- 
compression for a similar load, i.e. Fmax = 1418 kN. The entire force-
–deflection curves of the beams S4D72A108_1, S4D72A108_2 and 
S4D72A108_T3 (Fig. 3b) were of a similar shape. 

2.2.3. RC beams of series ‘3’ and ‘4’ as compared to previous tests by 
authors [20] 

Fig. 6 presents the comparative results from current and previous 

Table 3 
Material constants assumed in FE calculations for concrete.   

Material constants for concrete 

Elasticity Modulus of elasticity E (GPa) 34  
Poisson’s ratio ν (–) 0.2 

Plasticity Internal friction angle ϕ (o) 14  
Dilatancy angle ψ (o) 8  
Plastic hardening modulus (GPa) 18 

Damage Initial yield stress (tension) σyt
0 (MPa) 3.1  

Initial yield stress (compression) σyc
0 (MPa) 58  

State variable κ0 (–) 8.6 × 10-5  

Damage parameter (tension) α (–) 0.95  
Damage parameter (tension) β (–) 85  
Damage parameter (compression) η1 (–) 1.15  
Damage parameter (compression) η2 (–) 0.15  
Damage parameter (compression) δc (–) 150  
Splitting factor ac [–] 1  
Splitting factor at [–] 0  

Fig. 8. Bond stress-slip relationship τb = f(δ) by CEB-FIP assumed in FE 
simulations. 

Fig. 9. Boundary conditions and FE mesh for RC beams (diameter of yellow circle is related to influence range of non-locality equal to 3 × lc). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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experiments on the RC beams without shear reinforcement [20,22]. The 
RC beams with shear reinforcement in series ‘4’ had higher strength than 
those in series ‘1’ (Fig. 6a), in particular for the lower parameter ηa (up 
to 300% for ηa = 1.5). The presence of stirrups and a higher longitudinal 
reinforcement ratio also changed the failure mode. The slender beams 
with ηa = 6 without stirrups failed due to steel yielding in contrast to 
beams with stirrups for ηa = 5 that failed due to concrete crushing. The 
beams of transitional geometry for ηa = 2.5 without stirrups failed in 
diagonal tension mode whereas the beams with stirrups for ηa = 3.0 
failed due to shear-compression/concrete crushing. The deep beams 
with ηa = 1.0–1.5 regardless of stirrups behaved similarly and failed 
under shear-compression conditions. In the beams without (series ‘2’) 
and with stirrups (series ‘3’), a similar trend referring to the beam 
strength dependence on ηa was obtained when the parameter ηa ≤ 3 
(Fig. 6b). The ultimate shear stress did not change proportionally with 
ηa. The most pronounced increase of the ultimate shear stress was 
observed for ηa = 1 as compared to ηa = 2 in the series ‘2’ [20]. The 
presence of the shear reinforcement in the beams with the varying shear 
span had a similar effect as in the beams with varying depth. The stirrups 
in the beams with ηa = 3 changed the failure mode from diagonal tension 
(series ‘2’) into shear-compression/concrete crushing (series ‘3’). 

2.3. Transitional failure modes in experiments 

The changes of the failure mode with the varying geometry param-
eter ηa and reinforcement ratios ρl and ρs. are shown schematically in 
Fig. 7. The slender beams with the high ηa  and without shear 

reinforcement failed due to steel yielding (symbol ‘Y’). With decreasing 
parameter ηa, the failure mode changed from diagonal tension (symbol 
‘DT’) for beams with a transitional geometry ηa to shear-compression 
(symbol ‘SC’) for deep beams . When the main reinforcement ratio 
increased (the steel yielding was eliminated), the slender beams failed in 
diagonal tension and the beams of a transitional geometry were 
damaged by either diagonal tension or shear-compression failure while 
the deep beams influenced by an arch action failed in shear-compression 
. Adding a sufficient amount of shear reinforcement ρs in slender beams 
(to suppress a shear failure mode) contributed to concrete crushing 
(symbol ‘CC’) in a constant bending moment zone . The ‘CC’ failure 
occurred before the main and shear reinforcement strength was ach-
ieved. The beams of a transitional geometry with shear reinforcement 
were damaged due to shear-compression or concrete crushing. The 
further increase of the shear reinforcement ratio might change the 
failure mode in deep beams from shear-compression to the damage of 
the support zone . The support zone failure in deep beams (symbol ‘N’) 
was due to insufficient nodal zone strength which was weaker than both 
the strut and tie strength. 

3. FE modelling of concrete, reinforcement and bond-slip 

3.1. Concrete 

Different pure damage (e.g. [24–26]) and coupled elasto-plastic 
damage formulations (e.g. [27–34]) are used for describing the con-
crete fracture behaviour under various loading conditions,. The 

Fig. 10. Stress–strain curves for concrete from element tests using local elasto-plastic-damage model. a) cyclic uniaxial compression, b) cyclic uniaxial tension and c) 
cyclic simple shear. 
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formulations present a simplified isotropic (e.g. [24–26]) or a more 
realistic anisotropic damage concept (e.g. [27,28,30,31,34]). 

The coupled isotropic elasto-plastic-damage approach formulated by 
the authors for concrete under monotonic and cyclic loading combines 
isotropic elasto-plasticity with scalar isotropic damage with the aid of a 
strain equivalence hypothesis [35,36]. Two variables control the dam-
age growth in tension and compression for simulating crack closing and 
crack re-opening effects [21]. The constitutive model was successfully 
used in investigations of RC concrete beams under mixed shear-tension 
failure [37,62], composite RC-EPS slabs and walls under shear failure 
[38,39], and RC tanks under positive bending moments [40]. The di-
rection of localized shear zones was realistically reproduced in simula-
tions (due to the presence of plasticity in the constitutive formulation) 
despite the assumption of a simplified isotropic damage response in 
cracking. The performance of the constitutive formulation was also 
compared with other continuum constitutive laws including isotropic 
softening [41]. The constitutive model was described in detail in [21] 
and [40]. However, for the sake of paper clarity, the most important 
equations of the approach were listed below. Elasto-plasticity was 
defined in the effective stress space 

σeff
ij = Ce

ijklεkl.

A linear isotropic Drucker-Prager criterion with a non-associated 
flow rule in compression and a Rankine criterion with an associated 
flow rule in tension defined by the effective stresses were used within 
elasto-plasticity 

Fig. 11. Experimental [22] and calculated force–deflection F = f(u) diagrams for RC beams of series ‘3’ (ρl = 4.3%): a) S3D36A216 (ηa = 6), b) S3D36A108 (ηa = 3.0) 
and c) S3D36A54 (ηa = 1.5). 

Table 4 
Failure vertical force F in experiments [22] and FE simulations (CC - concrete 
crushing in compressive zone, SC - shear-compression failure).  

Beam type Failure 
mode 

Mean failure 
vertical force F 
(experiments) 

Failure 
vertical 
force F 
(FEM) 

Difference 
between FEM 
and 
experiments 

[kN] [kN] [%] 

Series 3 
S3D36A216 
(ηa = 6) 

CC 
CC 
CC 

473.7  511.7 +8.0 

Series 3 
S3D36A108 
(ηa = 3) 

SC 
CC 
CC 

878.0*  902.4 +2.8 

Series 3 
S3D36A54 
(ηa = 1.5) 

SC 
SC 
SC 

1422.0*  1623.9 +14.2 

Series 4 
S4D22A108 
(ηa = 5) 

CC 
CC 
CC 

207.3  213.8 +3.1 

Series 4 
S4D43A108 
(ηa = 2.5) 

SC 
SC 
CC 

744  797.7 +7.2 

Series 4 
S4D72A108 
(ηa = 1.5) 

SC 
SC 

1418.5  1546.6 +9.0 

*Average value without beam made of weaker concrete. 
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Fig. 12. Experimental [22] and calculated force–deflection F = f(u) diagrams for RC beams of series ‘4’ (ρl = 3.5% and ρl = 4.3%): a) S4D22A108 (ηa = 5.0), b) 
S4D43A108 (ηa = 2.5) and c) S4D72A108 (ηa = 1.5). 

Fig. 13. Contours of non-local equivalent strain measure ε as compared with experimental crack pattern for RC beams of series ‘3’ (ρl = 4.3%): a) S3D36A216 (ηa =

6.0), b) S3D36A108 (ηa = 3.0) and c) S3D36A54 (ηa = 1.5) (experimental critical diagonal crack is marked by yellow arrow, numerical critical localization zone is 
marked by red arrow, note that beams are not proportionally scaled and steel bars are not shown). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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f1 = q+ ptanφ −

(

1 −
1
3

tanφ
)

σc(κ1),

f2 = max{σ1, σ2, σ3} − σt(κ2),

g1 = q+ ptanψ ,

where q is the Mises equivalent deviatoric stress, p - the mean stress, φ - 
the internal friction angle, σc(κ1) - the uniaxial compression yield stress, 
κ1 – the hardening/softening parameter, σi – the principal stress, σt(κ2) – 
the tensile yield stress and κ2 – the hardening/softening parameter equal 
to the maximum principal plastic strain εp

1 , g1 - the flow potential and ψ - 

the dilatancy angle (ψ ∕= φ). The development of plasticity is governed 
by standard Kuhn-Tucker conditions. 

The material degradation was calculated within isotropic damage 
mechanics, independently in tension and compression using one 
equivalent strain measure ̃ε by Mazars (εi - principal strains), defined in 
terms of total strains [25] 

ε̃ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

i
〈εi〉

2
√

. (5) 

The stress–strain relationship was represented by the following 
formula 

σij = (1 − D)σeff
ij , (6)  

where 

(1 − D) = (1 − scDt)(1 − stDc), (7)  

Dt = 1 −
κ0

κt

(
1 − α+ αe− β(κt − κ0)

)
, (8)  

Dc = 1 −
(

1 −
κ0

κc

)(

0.01
κ0

κc

)
η1 −

(
κ0

κc

)
η2 e− δc(κc − κ0), (9)  

st = 1 − atω
(
σeff

ij
)

and sc = 1 − ac
(
1 − ω

(
σeff

ij
) )

, (10)  

κt = κω
(
σeff

ij
)

and κc = κ
(
1 − ω

(
σeff

ij
) )

, (11)  

ω
(
σeff

ij
)
=

⎧
⎪⎪⎨

⎪⎪⎩

0 if σeff
i = 0

∑
〈σeff

i 〉
∑⃒
⃒σeff

i

⃒
⃒

otherwise.
(12) 

The variable κ is the maximum equivalent strain attained in the 
loading history 

Fig. 14. Contours of non-local equivalent 
strain measure ε as compared with experi-
mental cracks pattern for beams of series ‘4’ 
(ρl = 3.5% and ρl = 4.3%): a) S4D22A108 
(ηa = 5.0), b) S4D43A108 (ηa = 2.5) and c) 
S4D72A108 (ηa = 1.5) (experimental critical 
diagonal crack is marked by yellow arrow, 
numerical critical diagonal localization zone 
is marked by red arrow, note that beams are 
not proportionally scaled and steel bars are 
not shown). (For interpretation of the refer-
ences to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   

Table 5 
Spacing of cracks in experiments [22] and localization zones in FEM simulations 
(CC - concrete crushing in compressive zone, SC - shear-compression failure).  

Beam type Failure 
mode 

Average spacing of 
cracks in experiments 

Distance of localization 
zones in FE analyses 

CC or SC [mm] [mm] 

Series 3 
S3D36A216 (ηa 

= 6) 

CC 98 91 

Series 3 
S3D36A108 (ηa 

= 3) 

CC/SC 114 100–110 

Series 3 
S3D36A54 (ηa 

= 1.5) 

SC 110 98–127 

Series 4 
S4D22A108 (ηa 

= 5) 

CC 79 84–91 

Series 4 
S4D43A108 (ηa 

= 2.5) 

CC/SC 118 109–120 

Series 4 
S4D72A108 (ηa 

= 1.5) 

SC 124 121–170  
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κ(t) = max
τ≤t

ε̃(τ). (13) 

The damage initiation and growth is described by the Kuhn-Tucker 
conditions: 

f ≤ 0, κ̇ ≥ 0, κ̇f = 0, (14)  

where 

f = ε̃ − κ. (15) 

The tensile and compressive damage functions Dt and Dc consider the 
damage evolution under tension [42] and compression [43] by the 
following material constants: α, β, η1, η2 and δc. The damage under 
tension was here separately controlled in FE simulations by the 
threshold parameter κt and the damage under compression by the 
threshold parameter κc. In the case of a linear hardening model, the 
following 16 material constants are required: E, υ, κ0, α, β, η1, η2, δc, at, 
ac, φ, ψ , initial yield stresses σ0

yt (tension) and σ0
yc (compression) and 

plastic hardening moduli Hp (in compression and tension) (Table 3). The 
constitutive law is similar to the model by Lee and Fenves [44] that was 
proved to not violate thermodynamic principles (lack of the spurious 
energy dissipation) [45]. The constitutive law consists of two main steps. 
First, the elasto-plastic strain rate decomposition is performed in the 
effective stress space, described by a combination of both the Drucker- 

Prager and Rankine criteria. Second, the damage is introduced; the 
equivalent strain measure (Eq.5) is calculated concerning a strain 
decomposition from the first stage (assuming the strain equivalence 
hypothesis [36]). Next, the material degradation is separately computed 
in tension and in compression (Eqs.8 and 9). Finally, the total stress is 
updated (Eq.6) with the component (1-D) by Eq.7. Two independent 
simple monotonic tests (uniaxial compression and uniaxial tension or 
three-point bending) for the already fixed damage splitting factors at and 
ac can be used for calibration purposes [21]. 

For properly reproducing strain localization and to capture a deter-
ministic size effect (dependence of the nominal strength on the structure 
size) [46–49], an integral-type non-local theory was used as a regula-
rization technique that does not violate thermodynamic principles [50]. 
The damage part was solely made non-local since the elasto-plastic part 
of the model produced no softening. It was modified in softening by 
replacing the local equivalent strain measures with its non-local coun-
terpart according to the formula 

ε(x) =
∫

V w(‖x − ξ‖)ε̃(ξ)dξ
∫

V w(‖x − ξ‖)dξ
(16)  

where x – a considered point and ξ – neighbour points. As a weighting 
function w Gauss distribution function was used 

Fig. 15. Beam deflections u according to FE-calculations and analytical formula 
from EC2 and ACI versus ηa for Fmax as compared to experiments [22]: a) series 
‘3′ (S3) and b) series ‘4’ (S4). 

Fig. 16. Average normalized calculated compressive zone height hc/D as 
compared to measure values [22] in RC beams of series ‘3’ (a) and beams of 
series ‘4’ (b). 
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w(r) =
1

lc
̅̅̅
π

√ exp

(

−

(
r
lc

)
2

)

(17)  

where lc denotes the characteristic length of the microstructure. The 
averaging is restricted to the small area around the considered point (the 
influence of neighbor points at the distance of 3 × lc is only 0.01%). The 
function in Eq.17 satisfies the normalizing condition [47]. The numer-
ical results indicate that the greater lc, the higher are both the strength 
and ductility of elements [51]. An inverse identification process of 
experimental data is usually used to determine a characteristic length lc 

[52,53]. The characteristic length lc of micro-structure, assumed for 
concrete within isotropic elasto-plasticity and isotropic damage me-
chanics as about lc = 1.2–1.5 mm. To obtain mesh-independent results, 
the element mesh size se should be smaller or equal to se ≤ 2 × lc [51]. 
The calculations with lc = 1.2–1.5 mm lengthen the computation time 
without an insignificant effect on the results [40]. We assumed lc = 2 
mm in the FE analyses as in [21,40]. The FE results with lc = 2 mm were 
proved to be mesh-objective [40]. The important effect of non-linearity 
in the compressive region which counteracts a shortcoming of the 
constitutive model caused by an isotropic response in cracking was 
discussed in detail in [21]. On the other hand, the calculations within 
pure elasto-plasticity with a failure surface described by Drucker-Prager 
and Rankine criteria provided an unrealistic solution for the shear- 
compression failure in RC beams [41]. 

3.2. Reinforcement and bond-slip law 

For simulating the behaviour of steel bars, an elastic-perfectly plastic 
constitutive model was assumed with the modulus of elasticity of Es and 
yield stress σy. All longitudinal and transverse bars were modelled as 
one-dimensional truss elements. For describing the interaction between 
concrete and reinforcement, a bond-slip law was defined for longitudi-
nal bars only. The interface with a zero thickness was chosen along a 
contact line where a relationship between the shear traction and slip was 
introduced. The contact elements may be, thus, treated as cohesive el-
ements with a law defined in a tangential direction. In the current paper, 
a bond-slip law after CEB-FIB code [54] was assumed, thus the rela-
tionship between the bond shear stress and slip was as follows (Fig. 8): 

τb =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τmax

(
δ
δ1

)
α 0 < δ ≤ δ1

τmax δ1 < δ ≤ δ2

τmax −
(
τmax − τf

) δ − δ1

δ3 − δ2
δ2 < δ ≤ δ3

τf δ3 < δ

(18) 

This bond-slip law describes 4 different phases by taking hardening/ 
softening into account in the relationship. We assumed the following 
bond values in FE simulations: τmax = 10 MPa, τf = 3 MPa, δ1 = 1 mm, δ2 
= 2 mm, δ3 = 5 mm and α = 0.2 [21], based on pull-out tests in the 
concrete block with steel bars of the diameter ϕ = 12 mm [14,55] (the 
pull-out tests with steel bars of ϕ = 20 mm were not carried out). Since 
the calculated bond stresses τb were clearly below τmax, the effect of ϕ on 
τmax was neglected. The perfect bond was adopted between concrete and 
stirrups. 

The constitutive model for concrete was implemented into the 
commercial finite element code Abaqus Standard [56]. To introduce the 
constitutive models for concrete and reinforcement, bond-slip law and 
non-local averaging, the user constitutive law definition (UMAT) and 
user element definition (UEL) subroutines were introduced (see the 
details in [40]). 

Table 6 
Experimental and theoretical shear strengths/ultimate stresses according to various analytical models of Section 4 (νC

Exp – experimental average shear stress of beams 
failing due to concrete crushing, νSC

Exp – experimental average shear strength of beams failing due to shear-compression, C - concrete crushing in compressive zone, SC - 
shear-compression failure) [22].  

Beam ηa Failure mode νC
Exp νSC

Exp νEC 

(Eqs. A1/A2) 
νFl 

(Eq. A12) 
νSTM (Eq. A4) νMSTM (Eq. A7) νCSTM (Eq. A9/A10) 

S3D36A216 6 C  2.64  –  2.03  2.86  –  –  – 
S3D36A108 3 C/SC  5.30  4.46  2.03  5.72  4.52  5.91  3.63 
S3D36A54 1.5 SC  –  7.90  2.03  –  8.22  10.43  8.43 
S4D22A108 5 C  3.14  –  2.11  3.38  –  –  – 
S4D43A108 2.5 C/SC  5.67  5.82  2.11  6.84  4.97  6.78  4.65 
S4D72A108 1.5 SC  –  6.52  2.11  –  6.83  10.11  5.19  

Fig. 17. Average experimental ultimate shear strength τc [22] as compared to 
FE calculations and analytical solutions based on STM, MSTM, CSTM and EC2 
for: a) RC beams of series ‘3’ and b) RC beams of series ‘4’ (b) (note that STM 
and MSM are valid for ηa ≤ 2 and CSTM for ηa ≤ 2.5). 
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4. FE analyses of experimental RC beams with stirrups 

4.1. FE input data 

The FE analyses were mainly conducted under plane stress condi-
tions due to the small thickness of beams (as in [21]). Assuming out-of- 
plane stress components equal to zero was a natural choice for 2D nu-
merical modelling. In addition, one full 3D calculation was also per-
formed for the smallest beam (S3D36A54, ηa = 1.5) for comparison 
purposes. In the FE calculations, some further simplifications were 
assumed. First, the half part of beams was analyzed only (Fig. 9) to 
reduce the computation time (as in [21]). Thus, a symmetric failure 
mode was taken into account in contrast to the experimental results. The 
effect of a statistical distribution of the concrete tensile strength [57] on 
the location of the critical diagonal crack was also neglected. In the 
present 2D FE simulations, the meshes consisting of 72,500–224,200 
plane stress four-node rectangular elements with selectively reduced 
integration were used to avoid locking (Fig. 9). The size of quadrilateral 
elements, se = 2 mm, was equal to se = lc = 2 mm (Fig. 9). 

The material constants (Table 3) were fitted to the experimental 
modulus of elasticity of E = 34 GPa, uniaxial compressive strength of 
concrete fc = 58 MPa and experimental tensile strength of concrete 
cylinders during splitting tension ft = 3.2 MPa (as in [21]. Due to the 
lack of laboratory full stress–strain curves during uniaxial compression 
and uniaxial tension, the tensile Gf and compressive fracture energy Gc 
were assumed, based on the literature data. Using the assumed material 
constants (Table 3), the tensile fracture energy was Gf = 100 N/m and 
compressive fracture energy Gc = 4000 N/m (Gc/Gf = 40). The calcu-
lated uniaxial compressive strength was fc = 58 MPa, the uniaxial tensile 
strength was ft = 3.05 MPa and the shear strength was τmax = 10 MPa 
(τmax≈

̅̅̅̅̅̅̅
fcft

√
) (Fig. 10). For reinforcement: the elastic modulus was Es =

200 GPa and the yield stress was fy = 560 MPa. 

4.2. Numerical results and discussion 

The calculated force–displacement curves for RC beams with stirrups 
were compared to the experiments in Fig. 11 (series ‘3)’ and Fig. 12 
(series ‘4’). The same failure mode occurred in experiments and nu-
merical calculations. The experimental ultimate vertical forces were 
satisfactorily reproduced in the FE analyses. The difference between the 

numerical and experimental results was 3–14% for the RC beams of 
series ‘3’ and 3–9% for the RC beams of series ‘4’ (Table 4). The curve 
inclination in a hardening/softening phase was properly reflected. The 
discrepancies increased with decreasing parameter ηa. 

Figs. 13 and 14 show the contours of the non-local equivalent strain 
measure ε as compared with the experimental crack pattern (marked as 
lines). For the sake of clarity, the longitudinal and transverse steel bars 
were not shown. The calculated strain localization zones were sym-
metric in contrast to the experimental cracks (Figs. 13 and 14). How-
ever, the overall characteristics of failure modes, i.e. concrete crushing 
(C) and shear-compression failure mechanism (SC) were correctly 
reproduced in the FE simulations. In general, the geometry of localized 
zones from FEM satisfactorily matched the experimental crack pattern 
(Figs. 13 and 14), although some differences existed, especially for the 
RC beams with the low parameter ηa = 1.5. For the RC beam S3D36A54 
(ηa = 1.5), a too diffused shear localized zone was calculated in the 
shear-span region (Fig. 13c). For the RC beam S4D72A108 (ηa = 1.5), 
the inclination of the calculated critical localized zone was too low (by 
about 7◦) (Fig. 14c). For the beam S3D36A108 (ηa = 3.0), the critical 
localized zone was located at a certain distance (0.17 m) from the right 
support (Fig. 13b) in contrast to the experiment wherein it was located 
at the right support. In general, the total number of localized zones in RC 
beams in FE simulations was slightly higher than in experiments 
(Fig. 14a). The average distance of all calculated localization zones 
(including main and secondary zones) along the beam span was smaller 
by about 2.4–12% as compared with the experimental average crack 
spacing (main and secondary cracks) (Table 5). The highest difference of 
37% occurred for the RC beam S4D72a108 (ηa = 1.5) (Fig. 14c) when 
considering solely major localization zones propagating through all 
longitudinal rebar layers. For the RC beam S3D36A54 (ηa = 1.5) 
(Fig. 13c), the difference was 15.5% without considering a diffused 
shear localization zone. 

As in the experiments, the calculated mid-length deflections of RC 
beams (measured at the beams’ mid-span) increased with increasing ηa 
(Fig. 15). They were lower by 1.0–23.5% (series ‘3’) and higher by 
3.8–19.5% (series ‘4’) than in the experiments. In addition, the beam 
deflections were calculated with the formulae by EC2 [58] and ACI [59] 
by neglecting creep. For all tested beams, the experimental mid-length 
deflections were underestimated by about 15–70% as compared to the 
design code formulae (Fig. 15). 

The experimental mean normalized height of the compressive zone 

Fig. 18. Geometry of the 3D FEM model and an exemplary fragment of FE mesh for RC beam S3D36A54 (ηa = 1.5) (diameter of yellow circle is related to influence 
range of non-locality 3 × lc). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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in the pure bending b and shear zone a against ηa prior to the failure [22] 
as compared to the numerical results is described in Fig. 16. The 
agreement between experimental and numerical results is good. The 
height of the calculated compressive zone in the pure bending part was 
nearly independent of ηa. The height of the calculated compressive zone 
in the shear span proportionally increased with increasing ηa. Similar 
trends were observed in experiments (Fig. 16). 

5. Comparison of shear strength between experimental, 
numerical and analytical results 

The experimental (Fig. 3) and numerical (Figs. 11 and 12) results of 
the shear strength of RC beams with stirrups were compared with the 
simplified analytical predictions used in engineering practice. The 
model based on the truss analogy in Eurocode [58], the strut-and-tie 
model (STM) in ACI [60], the modified strut-and-tie model (MSTM) 
proposed by Zhang and Tan [16] and the cracking strut-and-tie model 

(CSTM) derived by Chen et al. [61] were chosen. The models MSTM and 
CSTM were taken as an example. Note that all analytical formulae 
described in the literature consider a failure pattern in a simplified way 
and are not able to distinguish between two different failure modes in 
shear (diagonal tension and shear compression) which affect the beam 
strength to a different degree. The analytical formulae were described in 
Appendix. Table 6 includes the experimental and theoretical shear 
strengths/ultimate stresses according to the various analytical models. 

Fig. 17 compares the experimental, numerical and analytical shear 
strengths τc = Pmax/(tD) (where Pmax = 0.5Fmax) for the RC beams of 
series ‘3’ and ‘4’. For the beams of a transitional geometry (beam 
S3D36A108 with ηa = 3.0 and S4D43A108 with ηa = 2.5), the shear 
strength was calculated using both the beam theory and strut-and-tie 
models for ηa = 1.5, 2.5 and 3.0 (even though it is postulated that the 
parameter ηa ≤ 2.0 in [60] and [16] and ηa ≤ 2.5 in [61]. 

According to the simple strut-and-tie model (STM) from ACI 318–14 
(Eq.A4) (valid for ηa ≤ 2.0), the predicted shear strengths of deep beams 

Fig. 19. Calculated force–deflection curves and distributions of non-local equivalent strain measure from FE analyses as compared to experiments (beam S3D36A54, 
ηa = 1.5) in: a) 2D and b) 3D FE simulations. 
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with ηa = 1.5 were very close to experimental results in both the series 
‘3’ and ‘4’ (higher solely by 5–10%) (Table 6 and Fig. 17). With respect 
to the beams with a transitional geometry, the predicted shear strength 
was the same as the experimentally obtained value for ηa = 3 with the 
shear-compression failure mode. The analytical solution provided for ηa 
= 2.5 (close to the application range) the lower shear strength by 15% as 
compared to the experimental beams that failed due to shear- 
compression (Fig. 17). The calculated beam strength resulting from 
the nodal zone strength was higher in all beams by 7% (CCT node) and 
33% (CCC node) than the theoretical strut nominal strength (for the 
beam S4D72A108 the difference further increased up to 80% and 130% 

accordingly with the pilaster thickness of 250 mm). The measured ul-
timate vertical forces of beams with ηa = 2.5–3.0 were by 1–8% lower 
than estimated based on the CCT node strengths. In contrast, the high 
beams with ηa = 1.5 were stronger by 10–12% with respect to the 
theoretical beam strengths resulting from the CCT node failure. 

Referring to the model by Zhang and Tan [16] (Eq.A7) (MSTM) 
(valid for ηa ≤ 2.0), the calculated shear strengths of beams with ηa 
between 1.5 and 2.5 were generally higher than the experimental re-
sults: by 40%-55% (a/D = 1.5) and by 15% (a/D = 2.5). Note that MSTM 
was successfully verified by Zhang and Tan [16] against the deep beams 
with ηa = 1.1 that indicated this model had limited applicability. Based 

Fig. 20. Calculated force–deflection curves and distributions of non-local equivalent strain measure from FE analyses as compared to experiments (beam S3D36A54, 
ηa = 1.5) for different longitudinal reinforcement ratio: a) initial amount (ρl = 4.3%), b) 0.75, c) 0.5, and d) 0.25 of initial amount. 
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on the cracking strut-and-tie model (CSTM) by Chen et.al. [61] (valid for 
ηa ≤ 2.5), the estimated shear strength related to the experimental re-
sults νSTM/νExp varied between 0.80 and 1.05 for the beams with ηa = 1.5 
and was 0.80 with ηa = 2.5. The highest difference of 25% was obtained 
for the beam with ηa = 3.0 that was however beyond the model appli-
cation range. The CSTM predicted the lowest ultimate shear strength 
(for ηa ≤ 3.0) among all analyzed strut-and-tie models. The shear stresses 
of the beams with ηa = 3.0–6.0 failing due to concrete crushing were 

estimated with the 8%-error using a simple equilibrium condition of 
plane section. However, the beams’ strength with ηa = 2.5 was over-
estimated by 20%. The formula recommended by EC2 [58] obviously 
strongly underestimated the ultimate shear strength of all beams failing 
in shear-compression (the difference was exceeded by 100% for ηa =

2.5–3.0). 
The theoretical strut width ws was obviously 2.5–4 times wider than 

the experimental crack spacing sI
EXP since, in an idealized truss model, a 

Fig. 21. Calculated force–deflection curves and distributions of non-local equivalent strain measure from 2D FE analyses as compared to experiments (beam 
S3D36A54, ηa = 1.5, ρl = 4.3%) for different shear reinforcement ratio ρs: a) ρs = 0.4% (basic value), b) 0.75ρs, c) 0.5ρs, and d) 0.25ρs. 
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single strut represented several real struts between cracks. The theo-
retical inclination of the strut θs in STM [60] was always lower than the 
critical shear crack inclination θS

EXP by 20–50% for ηa = 2.5–3.0 and 
10–25% for ηa = 1.5. MSTM [16] and CSTM [61] further reduced the 
strut inclination that were by 40–60% and 30–40% lower than the 
critical shear crack inclination for ηa = 2.5–3.0 and ηa = 1.5, respec-
tively. This observation confirmed that the presented STMs should not 
be used for the beams with ηa = 2.5–3.0 due to an incorrect assumption 
of a single strut connecting a loading and bearing plate. In the case of 
beams with ηa = 1.5, the simple ACI model [60] provided an acceptable 
difference between the calculated strut inclination and critical shear 
crack inclination. 

In summary, the best prediction of the shear strength was obtained 
with the simple strut-and-tie model following ACI [60] (5%-error for ηa 
= 1.5, 15%-error for ηa = 2.5 and 1%-error for ηa = 3.0). In the RC beams 
without stirrups [20], ACI [60] offered, however, very incorrect results 
for ηa = 1.5–2.0 (error of 20–100%) and realistic results for ηa = 1.0 

(error of 5%). STMs were very sensitive to a different number of rein-
forcement layers. The increasing number of layers affected the height of 
the support nodal zone (CCT node), the strut width and its inclination. 
The more reinforcement layers, the higher was the beam strength even 
with the same reinforcement ratio. The discrepancies between the 
experimental and theoretical results were mainly caused by the varying 
strut widths and strut inclinations for all high beams for ηa = 1–2 and the 
different shapes of compressive struts in beams with ηa = 2. 

The numerical effect of different material constants of concrete and 
bond-law stiffness on FE results was shown for RC beams without shear 
reinforcement [21]. The numerical shear strength of RC beams became 
higher with increasing tensile and compressive fracture energy, tensile 
and compressive strength and slip-bond stiffness. During the diagonal 
tension failure, the effect of tensile parameters was stronger and during 
shear compression failure, the effect of compressive parameters was 
more pronounced. 

Fig. 22. Calculated force–deflection curves and distributions of non-local equivalent strain measure from 2D FE analyses as compared to experiments (beam 
S3D36A108, ηa = 3.0, ρs = 0.4%) for different longitudinal reinforcement ratio ρl: a) ρl = 4.3% (basic value), b) 0.75ρl, c) 0.5ρl, and d) 0.25ρl. 

I. Marzec and J. Tejchman                                                                                                                                                                                                                   

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Engineering Structures 252 (2022) 113621

19

6. Parametric numerical studies (based on beam series ‘3’) 

6.1. Comparison between 2D and 3D simulations 

Since the differences between the numerical and experimental re-
sults were the worst for the beam S3D36A54 (D = 360 mm, a = 540 mm, 
Leff = 1620 mm, ηa = 1.5, ρl = 4.3%, ρs = 0.4%), some additional sim-
ulations were performed to improve the accordance between the results. 
Since the 2D simulations were not able to fully reflect the 3D effects 
expressed by e.g. concrete spalling due to the high horizontal 
compressive force, the 3D FE calculations were performed. The geom-
etry of the 3D beam FE model is presented in Fig. 18. Similarly, as in 2D, 
the half part of the beam was taking into account to reduce the 
computational time. Approximately 3 million tetrahedral elements with 
linear shape functions were used with the maximum size about of se = 4 
mm (Fig. 18). Assuming lc = 3 mm (se ≤ 2lc), the material parameters 
used in 3D calculations were slightly modified to obtain similar values of 
fracture energies in both calculation types. The computation time 
increased by factor 10. 

The calculated force–deflection curves and distributions on the non- 

local equivalent strain measure in 2D and 3D calculations are shown in 
Fig. 19. An evident improvement was observed in 3D simulations. The 
difference in the calculated ultimate vertical force dropped from 14% 
(2D conditions) down to 6% (3D conditions) (Fig. 19a). An improvement 
of the curve inclination in a hardening regime was also observed in 3D 
simulations. Instead of a diffused shear zone, a pronounced inclined 
localized zone was obtained at the shear-span (Fig. 19b). The location, 
shape and inclination of the critical diagonal shear localization zone 
were also closer to the experiment as compared with the 2D numerical 
approach. In summary, the 3D FE results provide more realistic results 
(in particular for higher RC beams), however, due to immense compu-
tation efforts, the 3D simulations are hardly applicable now for large RC 
beams. The 2D simulations are sufficiently realistic and hence they were 
used in the next section to perform a detailed parametric study. 

6.2. Effect of reinforcement ratios for different shear span parameter 

For investigating the influence of longitudinal and shear reinforce-
ment ratios on the beams’ strength, an additional series of numerical 
calculations were performed (Figs. 20-26). The simulations in the 

Fig. 23. Calculated force–deflection curves and distributions of non-local equivalent strain measure from 2D FE analyses as compared to experiments (beam 
S3D36A108, ηa = 3.0, ρl = 4.3%) for different shear reinforcement ratio ρs: a) ρs = 0.4% (basic value), b) 0.75ρs, c) 0.5ρs, and d) 0.25ρs. 
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number of 24 were carried out for all beams of series ‘3’ with ηa = 1.5, 
3.0 and 6.0 (D = 360 mm, t = 0.25 m). In FE calculations, a different 
longitudinal ratio ρl or transverse reinforcement ratio ρs was systemat-
ically reduced below ρl = 4.3%, i.e. 0.75ρl, 0.50ρl and 0.25ρl (with the 
experimental value ρs = 0.4%) and below ρs = 0.4%, i.e. 0.75ρs, 0.50ρs 
and 0.25ρs (with the experimental value ρl = 4.3%). 

The reduction in the longitudinal reinforcement ratio contributed to 
a decrease of the ultimate vertical force and overall stiffness for all 
beams of series ‘3’ (Fig. 20, 22, 24 and 26A). The ultimate vertical forces 
decreased up to 50%-60% between ρl = 4.3% and ρl = 0.25 × 4.3%=

1.075% (Fig. 26A); the effect of the longitudinal reinforcement ratio ρl 
was more pronounced for the lower ηa. The failure type changed from 
shear-compression to reinforcement yielding for ρl = 0.25 × 4.3%=

1.075% with ηa = 1.5 (Fig. 20), from shear-compression to diagonal 
tension for ρl = 0.75 × 4.3%=3.22% and to reinforcement yielding for ρl 
≤ 0.50 × 4.3%=2.15% with ηa = 3.0 (Fig. 22) and from concrete 
crushing to reinforcement yielding for ρl ≤ 0.50 × 4.3%=2.15% with ηa 
= 6.0 (Fig. 24). Consequently, for the beams with ηa = 1.5 and 3.0, the 
decay of major critical shear localized zones took place connected with 
the development of bending localized zones of a pronounced height in 
the beam mid-part (Fig. 20d and 22d). For the beams with ηa = 6.0, the 
decay of a concrete crushing zone in the central upper beam region 
happened, followed by the development of more pronounced but less 
numerous bending localized zones (Fig. 24d). The rate of softening was 
similar in all failure mechanisms excluding reinforcement yielding; it 
was the highest for ηa = 3.0. The numerical results in Fig. 26A indicate 
that the reinforcement ratio might be decreased in experiments (Section 
2) by 25% (ηa = 3 and ηa = 6) and 50% (ηa = 1) to avoid reinforcement 
yielding. 

The effect of the shear reinforcement ratio ρs on shear strength was 
solely visible for the beams with ηa = 3.0 (Fig. 26B), wherein the ulti-
mate vertical force decreased by 25% for ρs = 0.1% as compared to ρs =

0.4%. The effect of the shear reinforcement ratio ρs on a failure mode 
and rate of softening was insignificant with ρl = 4.3%. A reduction of the 
shear reinforcement ratio ρs influenced the position of a major critical 
inclined localized zone. For the smaller shear reinforcement ratio ρs, the 
larger distance from support was obtained (Fig. 23). The failure type 
changed from shear-compression (ηa = 1.5 and ηa = 3.0) to concrete 
crushing (ηa = 6.0) for ρl ≤ 4.3% (Fig. 26B). 

In summary, the structural strength should be related to a specific 
failure mode dependent on geometric parameters. The specification of 
the failure mode is fundamental in assessing the dependence of the limit 
load on design or redesign variables. The numerical FE calculations will 
be continued to find a full quantitative relationship between the shear 
strength related to a specific failure mode and parameters such as D, L, t, 
a, b, ρl, ρs, fc and ft (about 100 numerical simulations are foreseen). 

7. Conclusions 

The following basic conclusions can be derived from the experiments 
and FE analyses on the behaviour of RC beams with shear reinforcement 
which were scaled along with the height or length:  

- The shear strength of experimental beams decreased with increasing 
parameter ηa = a/D. It also decreased with increasing parameter ηb 
from 0.75 to 2.5 in beams with varying effective depth and constant 
effective length. 

Fig. 24. Calculated force–deflection curves and distributions of non-local equivalent strain measure from 2D FE analyses as compared to experiments (beam 
S3D36A216, ηa = 6.0, ρs = 0.4%) for different longitudinal reinforcement ratio ρl: a) ρl = 4.3% (basic value), b) 0.75ρl, c) 0.5ρl, and d) 0.25ρl. 
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- Two different basic failure modes were observed in RC beams with 
longitudinal and shear reinforcement during laboratory tests [22]. 
First, the concrete crushing in a compressive zone occurred in 
slender beams for ηa = 5–6 with the global quasi-brittle post-peak 
behaviour. As the reinforcement remained elastic, the compressive 
zone enlarged transversely and interacted with the cracked tensile 
zone in the final failure stage. Second, the brittle shear-compression 
failure was registered in beams for ηa = 1.5–3.0 where the critical 
diagonal crack developed with normal and tangential displacements 
of similar values. In the RC beams without stirrups [20], the rein-
forcement yielding occurred for ηa = 6, diagonal tension failure for 
ηa = 2–3 and shear-compression failure for ηa = 1–2. The presence of 
stirrups increased the beam strength by 130% for ηa = 1.5 (stirrups 
did not affect the failure mode) and 280% for ηa = 3.0 (stirrups 
changed the failure mode). A decrease of ηa due to the varying shear 
span a with the constant beam depth D had a slightly stronger effect 
on the beam shear strength than a decrease of ηa due to the varying D 
with a = const. 

- The experimental results concerning strength, brittleness and frac-
ture were realistically reproduced in FE calculations using a coupled 
elastic–plastic-damage model for concrete enhanced by a charac-
teristic length of micro-structure within a non-local theory. The 
material constants were calibrated with accompanying standard 
laboratory tests. The differences between numerical and experi-
mental outcomes grew with diminishing parameter ηa. The 3D sim-
ulations improved the numerical results concerning a 
load–deflection diagram and failure mode for high beams.  

- The best prediction of the experimental shear strength of deep beams 
with a/D = 1.5 was obtained with the simple strut-and-tie model 
following ACI [60] (5%-error). The beam shear strengths of a tran-
sitional geometry a/D = 2.5–3.0 were also satisfactorily described 
with the same model (error of 1–15%) despite a different inclination 
of the critical diagonal shear crack. The strut-and-tie model proposed 
by Chen et al. [61] underestimated the shear strength of most beams 
(except the beam S3D36A54) by ca. 20%. The modified strut-and-tie 
model by Zhang and Tan [16] overestimated on the other hand the 
shear strength of all RC beams with ηa = 1.5–3 by 10–55%.  

- The numerical beam strength and stiffness strongly increased with 
the growing longitudinal reinforcement ratio, in particular for the 
lower shear span parameters. The failure type changed from shear- 
compression to reinforcement yielding for ηa = 1.5, from shear- 
compression/diagonal tension to reinforcement yielding for ηa =

3.0 and from concrete crushing to reinforcement yielding for ηa =

6.0.  
- The numerical beam strength increased with the growing transverse 

reinforcement ratio solely for the shear span parameter equal to 3 
during shear-compression failure. The failure type changed from 
shear-compression (ηa = 1.5 and 3.0) to concrete crushing for ηa =

6.0. 
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Fig. 25. Calculated force–deflection curves and distributions of non-local equivalent strain measure from 2D FE analyses as compared to experiments (beam 
S3D36A216, ηa = 6.0, ρl = 4.3%) for different shear reinforcement ratio ρs: a) ρs = 0.4% (basic value), b) 0.75ρs, c) 0.5ρs, and d) 0.25ρs. 
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the work reported in this paper. 
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Appendix A 

In Appendix, the analytical formulae used in Section 5 were summarized [22]. 

EN 1992-1-1 (2008) [58] 

The shear strength of RC beams with stirrups is calculated based on the variable inclination truss analogy. The shear resistance for non-prestressed 
members should be taken to be less than: 

VRd,s =
Asw

s
zfywdcotθ (shear reinforcement yielding) (A1) 

or 

Fig. 26. 3D diagrams showing the effect of shear span ratio, main (A) and secondary reinforcement (B) ratio on strength and failure mode of RC beams (C - concrete 
compression, SC - shear-compression, DT - diagonal tension and RY - reinforcement yielding). 
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VRd,max =
tzν1fcd

(cotθ + tanθ)
(concrete crushing), (A2) 

where the recommended strut inclination is 1 ≤ cotθ ≤ 2.5, Asw - the cross-section area of one stirrup, fywd - the yield strength of stirrups, s denotes 
the stirrup spacing, fcd - the design concrete compressive strength, ν1 - the empirical coefficient of the cracked concrete shear strength (ν1 = 0.6 for the 
characteristic concrete strength fck < 60 MPa) and z - the internal lever arm (z ≅ 0.9D for bending). 

ACI 318-14 (2014) [60] 

The shear strength of deep RC beams according is calculated by applying a simple strut-and-tie model with the strut inclination angle θs defined as 
tanθs = D/a. The formula is applicable for the ratio ηa ≤ 2.0. The shear strength of beams is governed by the minimum from the strut compressive 
strength Fns, the tie tensile strength Fnt and the compressive strength of the nodal zone Fnn. Generally in deep beams, the strut is the weakest component 
and the resultant ultimate vertical force Vn and corresponding shear strength τc = Vn/Ac are calculated as 

Vn = Fnssinθs (A3) 

and 

τc = (fceAcs)sinθs/Ac, (A4)  

where fce - the effective strut compressive strength and Acs = wst - the cross-sectional area at the strut end, Ac = tD – the effective cross-sectional area of 
a beam. The strut width ws depends on the supporting plate geometry and longitudinal reinforcement arrangement: 

ws = lccosθs + lbsinθs. (A5) 

where lb - the supporting plate length and lc - the height of the CCT node depending on the concrete cover and number of reinforcement layers. The 
presence of stirrups is taken into account by modifying the effective compressive strength of concrete in the strut fce = 0.85βsf’c with βs = 0.75 (in the 
beams without transverse reinforcement βs = 0.6). Equation A(4) can be transformed (by substituting lb = lctgθs) as 

τc = 2fceηc/ηa = 1.7βsfc’ηc/ηa. (A6) 

The shear strength in Eq.A6 is affected by two size parameters ηa and ηc (the shear strength increases with decreasing ηa and increasing ηc) and one 
material parameter fce that takes into account the concrete strength and presence of stirrups. The nominal strength of the nodal zone was calculated as 
Fnn = fceAnz with fce = 0.85fc’βn (βn = 0.8 for the CCT node and βn = 1.0 for the CCC node) wherein Anz - the node face area perpendicular to the strut 
direction. 

Formulae by Zhang and Tan [16] 

Zhang and Tan [16] improved a strut-and-tie model by taking into account the Mohr-Coulomb failure condition in a tension–compression stress 
state and a contribution of the bottom reinforcement to the strut compression. The formula again remains valid as long as ηa ≤ 2.0. The ultimate force 
Vn in RC beams may be determined from the formula: 

Vn[
4sinθscosθs

ftAc
+

sinθs

fcAstr
] = 1, (A7)  

where Ac = dct is the effective cross-sectional area of a beam (dc = D-0.5ld), Astr = wst is the cross-sectional area of the strut. The width of strut ws is 
calculated in the same way as in ACI but with a slightly modified strut inclination angle θs defined as tanθs = dc/a. The maximum tensile strength ft of 
the bottom nodal zone is calculated as the sum of three components: 

ft =
4Asfysin2θs

Ac
+

fywdAswsin(θs + θw)

Ac/sinθs
+ 0.31

̅̅̅̅
fc

√
(
εcr

ε1
)

0.4 (A8) 

The first component in Eq.A8 results from the main longitudinal reinforcement action, the second part takes into account the effect of shear 
reinforcement (θw - the inclined angle of shear reinforcement with respect to the horizontal line) and the third component considers the cracked 
concrete tensile strength (εcr - the concrete strain during cracking taken as 0.00008, ε1 - the principal tensile strain of the concrete strut (ε1 = εs+(εs +

ε2)ctg2θs, εs and ε2 - the tensile strain of longitudinal reinforcement and peak compressive strain of the concrete strut at crushing). The tensile strain εs 
depends on the compressive zone height and is calculated in an iterative procedure. Thus, the ultimate force resulting from Eq.A8 (or the corre-
sponding shear strength) cannot be expressed in a straightforward manner by the size parameters ηa, ηb and ηc as it in the case of Eq.A7. The ultimate 
force in Eq.A8 depends on six geometric parameters (D, t, c’, As, Asw, θs, and ld) and five material parameters (fy, fywd, fc, εcr, and ε1). 

Formulae by Chen et al. [61] 

The strut-and-tie model applies to deep beams with ηa ≤ 2.5. It assumes the strut of the width ws consisting of a cracked and un-cracked part that 
transfer the following ultimate forces: 

Fsi = σciwsit = κcβsif
’
c wsit (A9)  

Fsc = σccwsct = βscf ’
c wsct (A10) 

The non-cracked part of the width wsi and cracked part of the width wsc have the effective compressive strengths σsi = κcβsif’c and σsc = βscf’c, 
respectively (f’c is the cylindrical concrete compressive strength, κc = 1-f’c/250 and βsi = 0.85). The strut efficiency coefficient βsc takes into account 
the aggregate interlocking, dowel action of longitudinal bars and shear reinforcement strength. The value of βsc is found through an iterative procedure 
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with the initial value of βsc = 0.85. The ultimate force of deep beams is obtained as the sum of Fsi and Fsc: 

Vn = (Fsi + Fsc)sinθs (A11)  

where the strut angle tanθs=(D-c/2)/a is the function of the effective beam depth D, shear span a and nodal CCC zone height c. The compression zone 
depth c can be found using the linear flexural theory (the concrete compressive strength in the compression zone at the mid-span does not reach its 
ultimate strength). The solution of equation c2 + 2nρDc-2nρD2 = 0 (with n = Es/Ec) derived from the equilibrium condition of a plane section provides 
the compression zone height c. The ultimate force (or corresponding shear strength) in Eq.A11 cannot be presented as an explicit function of the size 
parameters ηa , ηb and ηc due to an iterative procedure used to determine the strut efficiency coefficient βsc. The ultimate shear strength of deep beams 
in Eq.A11 depends on ten geometric parameters (D, t, b, c, lbt, θs, α, ρ, ρv and ϕs) and five material parameters (κc, βsi, f’c, Es and Ec). 

Flexural strength 

The ultimate flexural strength of beams with ηa ≥ 2.5 failing due to concrete crushing in the compression zone was estimated from the equilibrium 
conditions in the beam section. Assuming a simplified rectangular stress distribution in the compression zone, the lever arm is z = D(1–0.5ξeff,lim) with 
ξeff,lim = 0.8 × 0.0035/(0.0035 + Ec/Es). The ultimate vertical force reads as follows: 

Vn,flex =
αfctD2μeff ,lim

a
(A12) 

with μeff,lim = ξeff,lim(1–0.5ξeff,lim) and α = 0.85. 
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strength and failure mechanisms in RC beams with stirrups scaled along with 
height or length. Internal Report, Gdansk University of Technology 2020. 

[23] Kani GNJ. The basic facts concerning shear failure. Proc ACI J 1966;63(7):675–92. 
[24] Krajcinovic D, Fonseka G. The continuous damage theory of brittle materials. 

J Appl Mech ASME 1981;48(4):809–24. 

[25] Mazars Jacky. A description of micro- and macroscale damage of concrete 
structures. Eng Fract Mech 1986;25(5-6):729–37. 

[26] Simo JC, Ju J. Strain- and stress-based continuum damage models. Int J Solids 
Struct 1987;23(7):821–40. 
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