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Minimal informationally complete positive operator-valued measures (MIC-POVMs) are special kinds of measurement
in quantum theory in which the statistics of their d2-outcomes are enough to reconstruct any d-dimensional quantum
state. For this reason, MIC-POVMs are referred to as standard measurements for quantum information. Here, we report
an experiment with entangled photon pairs that certifies, for what we believe is the first time, a MIC-POVM for qubits
following a device-independent protocol (i.e., modeling the state preparation and the measurement devices as black
boxes, and using only the statistics of the inputs and outputs). Our certification is achieved under the assumption of
freedom of choice, no communication, and fair sampling. © 2020 Optical Society of America under the terms of the OSA Open

Access Publishing Agreement

https://doi.org/10.1364/OPTICA.377959

1. INTRODUCTION

A minimal informationally complete positive operator-valued
measure (MIC-POVM) [1,2] is a measurement on a d -
dimensional quantum system that: (i) is informationally complete
(IC) (i.e., its statistics determine completely any quantum state
and allow for a simple state reconstruction) and (ii) is minimal,
since it has the minimum number of outcomes a measurement
must have to be IC, namely, d2 [3]. MIC-POVMs are fundamen-
tal in quantum information. For example, they are crucial for
optimal quantum state tomography [4,5], quantum key distribu-
tion with an optimal trade-off between security and key rate [6],
device-independent certification of optimal randomness from
one bit of entanglement [7,8], and optimal entanglement detec-
tion [9]. Arguably, MIC-POVMs are the standard measurements
in quantum information [10] and thus have a privileged role in
information-theoretic reconstructions of quantum theory [10].

Experimentally, MIC-POVMs have been aimed at in photonic
experiments of qubit [11], qutrit [12,13], and two-qubit [14]
tomography; quantum key distribution [11]; and generalized

measurements using quantum walks [14,15]. However, all these
experiments made assumptions about the state preparation and the
functioning of the measurement devices and therefore have limited
applicability to cryptographic scenarios.

Here, we address the problem of experimentally certifying a
MIC-POVM for qubits following a device-independent (DI)
protocol [7,8,16,17]. That is, modeling the state preparation and
the measurement devices as black boxes and using only the statis-
tics of the inputs and outputs obtained within a Bell inequality
experiment. The idea behind the experiment is to integrate the
MIC-POVM within a Bell inequality experiment and use it to
produce correlations that, according to quantum theory, are only
attainable with a MIC-POVM for qubits. Our results not only
allow us to certify a MIC-POVM for qubits in a DI protocol, but
also constitute what we believe is the first experimental observation
of “qubit correlations that can only be explained by four-outcome
nonprojective measurements.” [18]
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2. CERTIFICATION METHODS

To certify a four-outcome MIC-POVM in a DI way, we use the
bipartite Bell scenario shown in Fig. 1. There, in the middle, is
a source emitting pairs of particles. One of the particles is mea-
sured by one party, Alice, and the other particle is measured by
the other party, Bob. Alice chooses her measurement from a set
of four measurements: three two-outcome measurements Ax ,
with x ∈ {1, 2, 3}, and one four-outcome measurement A4. Bob
chooses his measurement from a set of four two-outcome mea-
surements By , with y ∈ {1, 2, 3, 4}. The possible outcomes of
the two-outcome measurements are +1 and −1, and the possible
outcomes of the four-outcome measurements are 1, 2, 3, and 4.
The outcomes of Ax and By are denoted by a and b, respectively.
From the experimental results, we obtain the set of conditional
probabilities {P (a , b|x , y )}.

In our experiment, we are interested in the conditional
probabilities appearing in the Bell inequality introduced in
Ref. [7] as

βm
el = βel − k

4∑
i=1

P (a = i, b =+1|x = 4, y = i), (1)

where βel is the Bell operator of the so-called “elegant Bell
inequality” [7,8,19]; namely,

βel = E11 + E12 − E13 − E14 + E21 − E22 + E23 − E24

+ E31 − E32 − E33 + E34, (2)

where Exy =
∑

a ,b ab P (a , b|x , y ). For local hidden variable the-
ories,βel is upper-bounded by 6. In contrast, in quantum theoryβel

is upper-bounded by 4
√

3≈ 6.928. The quantum maximum can
be achieved with pairs of qubits in state |8+〉 = 1

√
2
(|00〉 + |11〉),

and the following projective measurements,

A1 = σx , B1 =
1
√

3
(σx − σy + σz),

A2 = σy , B2 =
1
√

3
(σx + σy − σz),

A3 = σz, B3 =
1
√

3
(−σx − σy − σz),

B4 =
1
√

3
(−σx + σy + σz),

(3)

whereσi are the Pauli matrices.
According to quantum theory, our target Bell operator βm

el

is also upper-bounded by 4
√

3. This quantum maximum can
be attained with state |8+〉 and the measurements in Eq. (3).
However, in this case, the second term in Eq. (1) is zero if and
only if A4 is a qubit symmetric MIC-POVM whose elements are

Fig. 1. Scenario considered in our experiment consists of two parties,
Alice and Bob, who perform local measurements on maximally entangled
pairs of qubits. See further details in the text.

anti-aligned with Bob’s measurements By in Eq. (3). That is, if A4

is the four-outcome POVM that is defined by

A4,1 =
1

2

(
α −β(1+ i)

β(−1+ i) 1− α

)
,

A4,2 =
1

2

(
1− α β(−1+ i)
−β(1+ i) α

)
,

A4,3 =
1

2

(
1− α β(1− i)
β(1+ i) α

)
,

A4,4 =
1

2

(
α β(1+ i)

β(1− i) 1− α

)
, (4)

where α = 3−
√

3
6 and β =

√
3

6 . In this case, the extremes of the four
unit vectors associated to the elements of A4 define a regular tetra-
hedron within the Bloch sphere.

Any measurement different than the one defined in Eq. (4) will
produce a smaller value for βm

el . Although certifying a symmetric
MIC-POVM requires ideal conditions, we can use the property
above to test whether a genuine, four-outcome MIC-POVM
has indeed been realized in the experiment by computing the
maximum of βm

el that can be obtained using three-outcome mea-
surements. To do this, let us consider the following generalization
ofβm

el ,

3∑
x=1

4∑
y=1

γxy Exy − k
4∑

y=1

4∑
a=1

∑
b=±1

γbxy P (a , b|4, y ). (5)

We compute the maximum value of Eq. (5) that can be obtained
using three-outcome measurements; i.e., the maximum value of

max
j=1,2,3,4

 3∑
x=1

4∑
y=1

γxy Exy − k
4∑

y=1

∑
a 6= j

∑
b=±1

γbxy P (a , b|4, y )

 .

(6)

Each of the maximizations within Eq. (6) are taken with a con-
straint that the j th outcome of Alice’s A4 measurement has
probability 0. The larger the gap between the experimental value
of Eq. (5) and the maximum possible value of Eq. (6), the more
confident we can be that indeed a genuine four-outcome POVM
has been performed.

Most crucially, as we show in Supplement 1, four irreducible
outcomes in Dimension 2 imply information completeness, which
is arguably the most important feature of a quantum measurement.

Finally, while Bell scenarios can generally be useful for mea-
surement certification, it is important to point out that the Bell
inequality in the protocol above is tailored to the specific measure-
ment targeted in our certification. To use the same procedure for an
arbitrary measurement, a different Bell inequality would usually be
required. In fact, finding the optimal Bell inequality for certifying
in a device-independent protocol a given generalized measurement
is, in general, a difficult problem.

3. EXPERIMENT

A. Experimental Setup

A type-I spontaneous parametric down-conversion source
is used to generate entangled photon pairs in state |8+〉 =

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.6084/m9.figshare.11343947
http://mostwiedzy.pl


Research Article Vol. 7, No. 2 / February 2020 / Optica 125

1/
√

2(|H H〉 + |V V 〉), where H and V denote horizontal
and vertical polarization, respectively. Pairs of entangled photons
at 780 nm are produced in two orthogonally oriented 2 mm thick
beta barium borate (BBO) crystals, pumped with a femto-second
laser at 390 nm. As shown in Fig. 2, these photons go through
1 nm spectral bandpass filters (SF), and are then coupled into
single-mode fibers (SMF) to have a perfect spatial mode over-
lap between the two polarizations. These SMFs then bring the
photons to Alice’s and Bob’s measurement stations. Whenever
projective measurements are performed on both sides (i.e., when-
ever x ∈ {1, 2, 3} and y ∈ {1, 2, 3, 4}), the two measurement

βIC = 0.9541E11 + 0.9917E12 − 0.9767E13 − 1.0064E14

+ 0.9514E21 − 0.9921E22 + 0.8211E23 − 1.0237E24

+ 1.0641E31 − 1.0044E32 − 1.0579E33 + 1.1563E34

− 3[1.2068P (1, 1|4, 1)− 0.0374P (1, 2|4, 1)− 0.0034P (2, 1|4, 1)+ 0.0140P (2, 2|4, 1)

+ 0.0006P (3, 1|4, 1)+ 0.0268P (3, 2|4, 1)− 0.0163P (4, 1|4, 1)− 0.0155P (4, 2|4, 1)

− 0.0033P (1, 1|4, 2)+ 0.0184P (1, 2|4, 2)+ 1.1156P (2, 1|4, 2)− 0.0046P (2, 2|4, 2)

− 0.0125P (3, 1|4, 2)+ 0.0401P (3, 2|4, 2)− 0.0175P (4, 1|4, 2)− 0.0240P (4, 2|4, 2)

− 0.0108P (1, 1|4, 3)+ 0.0153P (1, 2|4, 3)− 0.1195P (2, 1|4, 3)+ 0.1752P (2, 2|4, 3)

+ 0.6201P (3, 1|4, 3)+ 0.0149P (3, 2|4, 3)− 0.0399P (4, 1|4, 3)+ 0.0527P (4, 2|4, 3)

+ 0.0058P (1, 1|4, 4)− 0.0149P (1, 2|4, 4)+ 0.0025P (2, 1|4, 4)+ 0.0205P (2, 2|4, 4)

+ 0.0150P (3, 1|4, 4)+ 0.0212P (3, 2|4, 4)+ 0.9565P (4, 1|4, 4)− 0.0023P (4, 2|4, 4)]. (7)

stations are identically composed by a lambda half-wave plate
(HWP), a lambda quarter-wave plate (QWP), and a polarization
beam splitter (PBS). Multimode fibers (MMF) finally collect the
photons at the four outcomes and bring them to the single-photon
avalanche photodiodes (APDs). In addition, Bob’s station includes
a phase plate (PP).

To implement the four-outcome POVM, Alice’s measurement
station couples the two-dimensional polarization space with a
counter-propagating two-path Sagnac interferometer, which
makes transformations in an effectively four-dimensional space
possible using two HWPs. At the two outputs of the interferom-
eter, PPs, HWPs and QWPs are used in combination with PBSs
to perform the POVM (see Supplement 1). MMFs connected
to APDs again gather photons at the four outcomes. Detection
counting is performed with a coincidence unit (CU) using 1.6 ns
coincidence windows.

A two-photon rate of about 150 coincidences per second was
maintained throughout the experiment. Each measurement set-
ting lasted 30 s, and all measurements were repeated a total of
23 times. This was done to decrease the repeatability error of the
motorized wave plate mounts.

B. Results

The maximization of Eq. (6) for fixed coefficients γxy and γbxy

should be made over the set of probabilities allowed by quantum

theory. To obtain an upper bound on its value, we use the semidefi-
nite programming method of Navascués, Pironio, and Acín (NPA)
[20] implemented in the Python package Ncpol2spda [21].

To identify the values of γxy and γbxy that provide the largest
gap between the experimental value of Eq. (5) and the maximum
possible value of Eq. (6), we performed a series of numerical opti-
mizations using the Nelder–Mead method [22], with the target
function defined as the difference between the experimental value
of Eq. (5) and a bound of Eq. (6), with variable coefficients γxy and
γbxy and fixed values of k. As a result, we obtained the following
Bell operator,

The upper bounds on the maximum possible value of βIC in
Eq. (7), obtained using the third level of the NPA method, in
the case of three-outcome measurements and in the case of any
quantum measurement are

βIC
3−outcome
≤ 6.8782

Quantum
≤ 6.9883, (8)

whereas our experimental result is

β
exp
IC = 6.960± 0.007 (9)

(more detailed results are provided in Tables 1 and 2). Therefore,
the experimental value violates the three-outcome bound by more
than 11 standard deviations, certifying that Alice’s A4 measure-
ment was indeed an irreducible four-outcome measurement, under
the assumption that the system at Alice’s laboratory is a qubit. To
remove this assumption, we used the SWAP method [23] to calcu-
late the two-qubit state fidelity with the maximally entangled Bell
state |8+〉 certified by the experimental data contained in Table 1
for βel in Eq. (2). To this end we employed the level 3+ A AB B of
the NPA hierarchy [20]. The resulting fidelity was 0.947.

This means that a qubit measurement occurs at least 94.7% of
the time. The only alternative to a qubit MIC-POVM is that in
0.947 of the cases, a three-outcome measurement on a qubit was
used; in the remaining 0.053 of the cases, a four-outcome measure-
ment on a higher-dimensional system was used. However, in such a
case, the maximal possible value to be observed is not greater than

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.6084/m9.figshare.11343947
http://mostwiedzy.pl


Research Article Vol. 7, No. 2 / February 2020 / Optica 126

Fig. 2. Experimental setup. The following components are used: a beta-barium borate nonlinear crystal (BBO), 3 nm narrow spectral filters (SF), single-
mode optical fibers (SMF), phase plates (PP), lambda half-wave plates (HWP), lambda quarter-wave plates (QWP), polarizing beam splitters (PBS), multi-
mode optical fibers (MMF), and single-photon detectors (DET).

Table 1. Experimental Values for the Combinations of
Settings Needed to Test the Elegant Bell Inequality

Setting Theory Experiment

E11 1/
√

3≈ 0.577 0.553± 0.002
E12 0.577 0.573± 0.002
E13 −0.577 −0.581± 0.002
E14 −0.577 −0.543± 0.002
E21 0.577 0.589± 0.002
E22 −0.577 −0.599± 0.002
E23 0.577 0.529± 0.002
E24 −0.577 −0.579± 0.002
E31 0.577 0.584± 0.002
E32 −0.577 −0.557± 0.002
E33 −0.577 −0.621± 0.002
E34 0.577 0.601± 0.002
βel 4

√
3≈ 6.928 6.909± 0.007

Table 2. Experimental Values for the Probabilities of
the Outcomes of the MIC-POVM that are Most Relevant
to the DI Certification Protocol [See Eq. (1)]

P(a = i, b = +1|x = 4, y = i) Theory Experiment

P (1,+1|4, 1) 0 0.0021± 0.0001
P (2,+1|4, 2) 0 0.0020± 0.0001
P (3,+1|4, 3) 0 0.0025± 0.0001
P (4,+1|4, 4) 0 0.0025± 0.0001
Sum 0 0.0091± 0.0002

0.947× 6.8782+ 0.053× 6.9883≈ 6.8840, which is smaller
than the experimental value; namely, 6.960. Similarly, one can cal-
culate that the critical fidelity ηcrit to the two-dimensional state for
MIC-POVMs is (6.9883− βexp)/(6.9883− 6.8782)≈ 0.257.

Even though our DI protocol relies on this method, we can
provide additional, non-DI arguments, which suggest that the
actual state fidelity was considerably higher. First, we tested the
quality of the polarization entanglement by performing a complete
nine-measurement state tomography of the Alice–Bob system.
The tomography of the joint state is shown in Fig. 3. The experi-
mental fidelity with state |8+〉was near optimal at (99.6± 0.1)%.
Second, our measured value of the Bell operator of the elegant Bell
Inequality was βel = 6.909± 0.007, which corresponds to 99.7%
of the quantum bound and is less than three standard deviations

away from it. As mentioned above, a result equal to the quantum
bound would imply that the joint state is a maximally entangled
qubit–qubit state [7,8].

As a final remark, although our protocol is DI, we have assumed
freedom of choice, fair sampling, and no communication in our
experiment. As we show in Supplement 1, closing the detec-
tion loophole would require overall system efficiencies above
94%, which is outside the reach of state-of-the-art photonics
experiments.

C. State Tomography with the MIC-POVM

To test the tomographic capabilities of our certified MIC-POVM
against the standard tomographic methods based on projective
measurements, we reconstructed eight different Alice’s local qubit
states (those naturally occurring in our Bell scenario when we con-
dition Alice’s state to Bob’s measurements and results) using both
methods: first, a standard tomographic analysis from the exper-
imental statistics of three projective measurements (in our case,
A1, A2, and A3; that is,σx , σy , andσz), and second, using only the
experimental statistics of our single four-outcome measurement.
The resulting reconstructed local states should be identical for both
methods and, ideally, must point to the corners of a regular tetrahe-
dron in the Bloch sphere. In the case of the MIC-POVM, a simple
formula connects the four experimental frequencies produced by
the single measurement with the tomographic reconstruction, so

Es = 3
4∑

j=1

f j EA j , (10)

where Es is the unknown Bloch vector, each EA j is one of the four ele-
ments of the symmetric MIC-POVM set [see Eq. (4)], and f j is its
corresponding measured frequency [5]. On the other hand, the six
experimental frequencies provided by the three projective measure-
ments were used, through linear inversion [24], to reconstruct the
same states. The results of both methods are presented in Fig. 4.

The fidelity between corresponding vectors was, in all eight
cases, equal to or greater than 99.5%, indicating that the two tomo-
graphic methods yielded near optimally overlapping results, and
the four-outcome POVM is informationally complete and effec-
tively symmetric. More detailed results are provided in Supplement
1.
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Fig. 3. Tomography of the prepared maximally entangled state. Real (left) and imaginary (right) parts.

Fig. 4. Reconstruction of eight of Alice’s local qubit states, con-
ditioned on Bob’s setting and outcome, as obtained from standard
projective tomography (left) and MIC-POVM tomography (right).

All the experimental uncertainties reported were calculated
with a priori evaluation of known sources of error and subsequent
propagation in the results. The sources of error included in our
analysis were photon counting statistics, the precision of wave plate
rotation, detector dark counts, and higher order down-conversion
events (see Supplement 1).

4. CONCLUSIONS

Quantum information identifies MIC-POVMs as the standard
quantum measurements for information processing tasks because
they are informationally complete and optimal for tomographic
and cryptographic purposes. On the other hand, the device-
independent paradigm provides the arguably optimal way to test
quantum devices since it reduces the assumptions to the mini-
mum. Device-independent tests are especially important within
cryptographic scenarios and constitute, in a sense, the highest
level of certification attainable with quantum theory. Here, we
have reported the results of an experiment certifying for the first
time a MIC-POVM for qubits following a device-independent
protocol. For that, we have produced correlations between sep-
arated photons that, as we have proven, are only attributable to
an informationally complete four-outcome measurement on
qubits. Our results pave the way toward realistic applications that
require device-independent certification of MIC-POVMs, and
show how very refined concepts of quantum information are now
experimentally attainable and can transform communication and
information processing technologies.
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