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Abstract
One of the striking properties of quantum mechanics is the occurrence of the Bell-type
non-locality. They are a fundamental feature of the theory that allows two parties that share an
entangled quantum system to observe correlations stronger than possible in classical physics. In
addition to their theoretical significance, non-local correlations have practical applications, such as
device-independent randomness generation, providing private unpredictable numbers even when
they are obtained using devices delivered by an untrusted vendor. Thus, determining the quantity
of certifiable randomness that can be produced using a specific set of non-local correlations is of
significant interest. In this paper, we present an experimental realization of recent Bell-type
operators designed to provide private random numbers that are secure against adversaries with
quantum resources. We use semi-definite programming to provide lower bounds on the generated
randomness in terms of both min-entropy and von Neumann entropy in a device-independent
scenario. We compare experimental setups providing Bell violations close to the Tsirelson’s bound
with lower rates of events, with setups having slightly worse levels of violation but higher event
rates. Our results demonstrate the first experiment that certifies close to two bits of randomness
from binary measurements of two parties. Apart from single-round certification, we provide an
analysis of finite-key protocol for quantum randomness expansion using the Entropy
Accumulation theorem and show its advantages compared to existing solutions.

1. Introduction

Randomness is one of the basic resources in information processing. Randomly generated numbers find
applications in areas such as cryptography, where they are one of the key elements of protocols such as data
encryption standard (DES) or advanced encryption standard (AES). The standard document RFC 4086 -
Randomness Requirements for Security [1] lists such fields of application as creating private keys for
algorithms used in digital signatures, keys and initialization values for encryption, generating secure PINs
and passwords, keys for MAC (Message Authentication Code) algorithms or nonces, i.e. numbers that are
being used just once in cryptographic communication and cannot be further reused.

It is a known fact that using classical computers, which operate on deterministic algorithms, it is not
possible to generate truly random numbers, but only sequences of pseudo-random values, which at first
glance resemble truly random numbers, but are not able to guaranteed to be unpredictable. Anyone who
knows the algorithm used to create them and its input parameters, i.e. the so-called seed, can determine all
the numbers that will ever be obtained using the deterministic generator.

The situation is conceptually different in quantum mechanics since its essence is processes that behave in
a non-deterministic way. Thus, many quantum phenomena have intrinsic randomness. The so-called
coherence of quantum states can be shown to be directly related to the complete unpredictability of certain
quantities [2].
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Nevertheless, verifying that a quantum device works as expected is much more difficult than checking the
correctness of deterministic algorithms. Typically, we cannot tell if a quantum device behaves exactly as
designed, and imperfections in both quantum states and measurements can cause the entire process to lose
quantum characteristics, such as Bell inequality violation [3]. The situation is even worse due to the
complexity of quantum devices and their finesse, as we are often unable to even check whether the
components we use have not been intentionally manipulated by a malevolent adversary.

An important milestone towards solving this problem was the emergence of the so-called
device-independent approach [4], which allows the assessment of the fidelity of a quantum device based on
its visible external behavior. The early works containing experimental implementations of quantum
randomness protocols presented a proof of concept [5], but they were not very efficient in terms of the
generation ratio. Recently, a new result called the entropy accumulation theorem (EAT) was introduced and
proven [6–8]. This theorem allowed for a determination of the amount of randomness that is certified to be
generated by a particular quantum device with finite statistical description.

The results contained in our work concern two tightly related concepts within the realm of
device-independent quantum cryptography, viz. quantum randomness certification and randomness
expansion [9]. Quantum randomness certification primarily aims to verify the genuineness and quality of
random outcomes generated by a quantum process, ensuring that they are not influenced by hidden variables
or predictable patterns. The first implementations of the concept [5, 10, 11] were able to provide a guarantee
that the numbers obtained from a quantum device are not possible to be pre-determined or predicted with
certainty. On the other hand, the execution of the protocols itself consumes a certain amount of randomness
for choosing the settings used by involved parties. Thus, the protocols were not providing a net gain, i.e. they
used for their executions more randomness than they generated. For this reason, these protocols were
providing only certification of randomness of the generated number, but no increase in its amount.

A trial to overcome this drawback was a distinction between generation and test rounds and the use of
biased settings distributions which consumed less input randomness. Protocols that employ a particular
setting for randomness generation are called spot-checking protocols [12]. This approach aimed to reduce
the use of the randomness below the amount that is generated as the output of the device, thus providing a
positive net gain. Since in the course of running a protocol the total amount of randomness increases, such
protocols are called randomness expansion protocols [13–16]. In other words, randomness expansion goes
beyond mere verification; it strives to extract additional random bits from a limited source of randomness,
effectively expanding the available pool of random data.

While both concepts are vital in quantum cryptography and information processing, randomness
certification focuses on the quality assurance of a single event, not taking into account the net gain of the
amount of randomness. Randomness certification is particularly relevant for quantum randomness
amplification scenarios and theoretical considerations [17, 18]. On the other hand, randomness expansion
explores methods to maximize the number of random bits obtained from uncertain sources. These
complementary approaches play crucial roles in enhancing the security and efficiency of quantum
cryptographic protocols and applications. In this work, we cover both of them.

The basis for device-independent randomness certification and expansion is quantum entanglement
between separated systems. This suggests that the more entangled quantum systems, up to a certain
entanglement measure [19], the more randomness one could expect. In [20] this natural expectation was
shown not to hold. For instance, protocols obtaining the maximal violation of the
Clauser-Horne-Shimony-Holt (CHSH) Bell expression [21] certify 1.23 bits of min-entropy, and it is
possible to certify arbitrarily close to 2 bits of min-entropy with almost unentangled states using the so-called
tilted CHSH expressions. The protocols using the original CHSH are robust as even a tiny violation of the
Bell inequality leads to a positive amount of certified randomness. For this reason, this expression has been
used in a couple of physical implementations of randomness expansion protocols [15, 22]. The tilted CHSH
has the drawback that when using states close to being unentangled, the protocols are not robust, since even
tiny imperfections possibly lead to correlations possible in classical physics, and in consequence fail to certify
randomness. The problem of non-trivial relation between non-locality, randomness, and entanglement has
been further investigated in [23–27].

Thus, one of the important problems is how to obtain the largest possible amount of certified
randomness in terms of individual rounds by using a given device with the simplest configuration of settings
and outcomes which is at the same time robust. It is easy to see that a device involving two components, A
and B, each generating one output bit, allows for a maximum of two random bits generation per round. The
first protocols allowing certification of the maximal amount of two bits with the maximally entangled state
where one of the parties uses three measurement settings are presented in [28]. Simpler protocols that use
non-maximally entangled states but the maximal Bell violation for certification of 2 bits of randomness in
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setups with two binary measurements by the introduction of novel Bell expressions were given in [29] and
were shown to be more robust than the tilted CHSH expressions. In this work, we present an experimental
implementation of these protocols, along with the analysis of certified randomness using numerical
techniques to provide a lower bound on the randomness generated per round [13, 14]. We consider
min-entropy as in [20, 22] and also the von Neumann entropy, where the latter quantity is always lower
bounded by the former, and is also more relevant for randomness extraction protocols.

2. Methods

For a given behavior of a quantum device, our task is to specify lower bounds on the generated randomness.
To this end, it is necessary to perform a complex optimization taking into account all devices implementing
this behavior allowed by the laws of quantum physics. This optimization is essentially a consideration of the
set of all possible probability distributions obtainable by quantum devices that satisfy certain observable
constraints. There are no known tools to optimize accurately over such sets of probability distributions.

Fortunately, there are approximate techniques that determine the so-called relaxations of the sets of all
possible constrained distributions of quantum probabilities. It turns out that if the optimization over
probability distributions is allowed to cover a set slightly wider than that allowed by quantum mechanics, the
optimization problem can be dealt with efficiently using convex optimization techniques, in particular,
semi-definite programming (SDP) [30–32], e.g. using the Navascués-Pironio-Acin (NPA) [33, 34] in the
variant we discuss in section 2.1. Next, in section 2.2 we describe the Bell expressions that we use as
certificates for the randomness certification and expansion. In section 2.3 we mention a technique that
allows us to evaluate the amount of the certified for practical applications involving finite statistics.

Min-entropy and von Neumann entropy are measures of uncertainty in different contexts within
quantum information theory. The classical min-entropy, denoted as H∞ quantifies the minimum amount of
unpredictability associated with a probability distribution by taking the negative logarithm of the largest
probability, i.e. the guessing probability, within that distribution, viz. H∞[{pi }i] =− log2 (maxi pi ). It is
often used in the context of privacy amplification and randomness extraction, emphasizing security-critical
applications [35–38].

The other quantity, i.e. von Neumann entropy, denoted asH, measures the overall mixedness or impurity
of a quantum state. It is defined for density matrices and captures the degree of entanglement and
information encoded within a quantum system. For a state ρA in a space QA the von Neumann entropy is
given by H(QA)ρ ≡−Tr [ρ log2(ρ)]. For multipartite states, e.g. on space QA and QE with a state ρAE, the
conditional von Neumann entropy is defined as H(QA|QE)ρAB ≡H(QAQE)ρAE −H(QE)ρAE . Pure states have
zero von Neumann entropy and maximally mixed states have it equal to the logarithm of the dimension of
the Hilbert space. Von Neumann entropy is used in EAT. While min-entropy is concerned with single-shot
predictability of the classical probability distribution of the measurement results, von Neumann entropy
describes the global properties of quantum states, emphasizing their entanglement and quantum
correlations [39]. It can be shown that the min-entropy is a lower bound on the Shannon entropy of a given
random variable.

2.1. Numerical calculation of von Neumann entropy
The NPA hierarchy is used to formulate SDPs which after being solved provide an upper bound on the
probability of guessing the value of a random number by an adversary [36]. Thus, the values obtained using
this method are suitable for certification of the generated randomness from quantum devices. The technique
is limited only to optimizing functions that are linear expressions of probabilities. Let us consider the set of
all conditional probability distributions {P(a,b|x,y)}, where a and b are the outcomes of the measurements
performed by Alice and Bob, when their measurement settings are x and y, respectively. The general form of
a Bell expression, which is a linear functional of the conditional probability distributions, is∑

a,b,x,y

ca,b,x,yP(a,b|x,y) , (1)

where the coefficients {ca,b,x,y} are real numbers. One of the proposed protocols from [28] used the
following Bell operator as a randomness privacy certificate:

C(0,1)+C(0,2)+C(1,0)+C(1,1)−C(1,2) , (2)

where the correlators are defined as follows:

C(x,y)≡ P(0,0|x,y)+ P(1,1|x,y)− P(0,1|x,y)− P(1,0|x,y) . (3)
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One may note that (2) consists of a well-known CHSH expression [21] plus an additional term. The maximal
value allowed in quantum mechanics, i.e. the Tsirelson bound, of (2) is 1+ 2

√
2. When the Tsirelson bound

is achieved, then the quantum state and all measurement operators are uniquely determined [40], and for the
pair of settings x= 0, y= 0, the measurement results are uniformly distributed, ∀a,bP(a,b|0,0) = 0.25. A
full analysis of the protocol of randomness generation using (2) including randomness accumulation and
extraction aspect has been presented in [14].

In a recent work [41] SDP was used to produce an approximation of the matrix logarithm function,
resulting in a numerical method for efficient optimization of expressions on the quantum relative
entropy [42]. Furthermore, this method has been used to determine the lower bounds of the conditional
von Neumann entropy certified in the device-independent approach [43] using the extended NPA [44] with
the NCPOL2SDPA tool [45].

Let QA, QB, and QE be the Hilbert spaces of devices of Alice, Bob, and adversary, respectively, and
ρQA,QB,QE their shared tri-partite quantum system. The numerical technique can be applied to calculate a
lower bound on the conditional von Neumann entropy

H(QA,QB|x= x∗,y= y∗,QE)ρQA,QB,QE
. (4)

Let {{Ma|x}a}x and {{Nb|y}b}y denote operators of the positive operator valued measurements performed by
Alice and Bob, respectively. This employs the Gauss–Radau quadrature rule to lower bound (4). Let wi and ti
be the nodes and weights defined by this quadrature. A lower bound on (4) can be obtained from [46]:∑

i

ci
∑

a,b=0,1

inf
Za,b∈B(QE),
cond(P)

(
1+ F

[
Ma|x∗ ,Nb|y∗ ,Za,b, ti

])
, (5)

where F[Ma|x∗ ,Nb|y∗ ,Za,b, ti] is defined as Tr [ρQA,QB,QE (O1 +O2)]. In (5) cond(P) expresses that the
probability distribution P(a,b|x,y)≡ Tr[ρQA,QBMa|x∗ ⊗Nb|y∗ ] satisfies a certain, specified by the protocol, set
of linear constraints. The operators O1 and O2 are defined by

O1 ≡Ma|x∗ ⊗Nb|y∗ ⊗
(
Za,b +Z†

a,b +(1− ti)Za,bZ
†
a,b

)
, (6a)

O2 ≡ ti
(
1QAQB ⊗Za,bZ

†
a,b

)
. (6b)

ci are coefficients calculated from the Gauss–Radau quadrature as ci ≡ wi /(ti log(2)). The index i in the
summation (5) takes the values indexing the nodes in the quadrature, omitting the last one.

2.2. Bell certificates
To certify the randomness, we employed the recently announced two families of Bell expressions [29]. First of
them is, parametrized by δ ∈ (0,π/6], defined as

Iδ ≡ C(0,0)+
1

sinδ
(C(0,1)+C(1,0))− 1

cos2δ
C(1,1) . (7)

The members of this family have self-testing properties, use two settings for each party, and can certify two
bits of randomness for the measurement settings x∗ = y∗ = 0.

The second family, parametrized by γ ∈ [0,π/12] defines the Bell expressions:

Jγ ≡ C(0,0)+
(
4cos2 [γ+π/6]− 1

)
(C(0,1)+C(1,0)−C(1,1)) . (8)

These Bell expressions also use two settings and have self-testing properties, yet in most cases do not certify
two bits of randomness.

The Tsirelson bounds for (7) and (8) are IQδ ≡ 2cos3 δ/(cos(2δ) sinδ), and JQγ ≡ 8cos3 [γ+π/6],

respectively. The relative Bell value is defined as Iexpδ /IQδ and Jexpγ /JQγ , where I
exp
δ and Jexpγ are the values of the

Bell expressions (7) and (8) obtained in the experiment, respectively. The relative Bell value attains the value
of 1 in the noiseless cases. For correlation-based Bell expressions, like those analyzed in this paper, if η is the
relative value of the Bell expression, and the relative value η is attained with the noised state:

ηρ
optimal
QA,QB

+(1− η)ρwhiteQA,QB
, (9)

where ρoptimal
QA,QB

and ρwhiteQA,QB
are the quantum state providing the Tsirelson bound and the maximally mixed

state, respectively.
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2.3. Randomness expansion with finite statistics
In real-world applications, one needs to consider the case when the observed quantities, like the values of the
certificates, are known only with some limited certainty, due to a finite number of statistics gathered to
estimate them. This is to be contrasted with the asymptotic case, valid in the idealized situation of an infinite
number of repetitions of the experiment. One of the methods to cover such uncertainties is based on the
concept of smooth entropies [47, 48]. In this work we apply the EAT method [6–8], which we recapitulate
here in a limited scope; we refer to [14] for a detailed discussion.

In the performed experiments, ith step can be viewed as an application of a completely positive
trace-preserving channelNi acting on a quantum register Ri−1, and transforming its state on a quantum
register Ri, and, at the same time, preparing states of classical registers Ai, Bi, Xi, and Yi, which store the
measurement results a and b together with the measurement settings x and y of the ith round of the
experiments. The following form of the Markov chain condition holds: I(Ai−1Bi−1 : XiYi |Xi−1Yi−1E), where
the superscript notation means a vector containing the values of given registers in subsequent steps up to the
step specified in the superscript value, and E is an arbitrary quantum system possibly entangled with the
registers {Ri }. A collection of such channels in the framework of EAT is called EAT channels. For the
measurement settings x and y and results a and b we define the score function U of the Bell expression (1) as

U(a,b,x,y)≡
∑
a,b,x,y

ca,b,x,yχ(a,b,x,y)/P(x,y) , (10)

where χ(·, ·, ·, ·) is the indicator of a given measurement event, and P(x,y) is the probability of the given pair
of settings.

For given EAT channels and fixed i, a joint quantum state σRE on the register Ri−1 and the space E is
called feasible if cond(P) holds for a= Ai, b= Bi, x= Xi and y= Yi. For a given EAT channel, their
min-tradeoff function f is any real function affine in P≡ {P(a,b|x,y)} such that for all i for any feasible joint
quantum state σRE on the register Ri−1 and the space E it holds f[P]⩽H(QA,QB|x,y,QE). These definitions
using the EAT theorem allow to provision of explicit warranties on the quality of the generated random
numbers [49]. We provide such analysis of our experiments in section 3.3.

3. Results

In this section, we describe the experimental setup and report regarding the analysis of the randomness
generated in the series of experiments.

3.1. Experimental setup
Ultraviolet light centered at a wavelength of 390 nm is focused onto two 2mm thick β barium borate
nonlinear crystals placed in interferometric configuration to produce photon pairs emitted into two spatial
modes (a) and (b) through the second order degenerate type-I spontaneous parametric down-conversion
process. The spatial, spectral, and temporal distinguishability between the down-converted photons is
carefully removed by coupling to single-mode fiber, passed through narrow-bandwidth interference filters
(F) and quartz wedges respectively. We have realized these quantum protocols by using polarization
entangled pairs of photons |ϕ+⟩= |HH⟩+ |VV⟩.

The measurements for Alice are performed by a half-wave plate (HWP) oriented θA0 or θA1, and the
measurements for Bob are performed by an HWP-oriented θB0 or θB1. The polarization measurement was
performed using PBS and single-photon detectors (D) placed at the two output modes of the PBS. Our
detectors are actively quenched Si-avalanche photodiodes. All single-detection events were registered using a
VHDL-programmed multichannel coincidence logic unit, with a time coincidence window of 1.7 ns.

We performed the experiment for the Bell expressions (7) at a low rate (approximately 675 two-photon
coincidences per second). At these low rates, the multi-photon pair emissions are small, and accidental
events can be neglected. We benchmark the state preparation by measuring the average visibility in the
diagonal polarization basis of 99.07. Each of the measurement runs was taken 180 times with each run with a
collection time of 250 s. We have also performed a state tomography to estimate the fidelity of the state and
obtained 99.63± 0.04.

For the Bell expressions (8), the rate was around 780 two-photon coincidences per second with 160
measurements of 250 s and the visibility in the diagonal polarization basis of 99.13%. We were able to
increase the rate slightly while maintaining visibility above 99%. The fidelity of the state obtained by state
tomography is 99.75± 0.02. For these two experiments, the total average number of events is around 120
million.

We have also performed an experiment for the Bell expressions (7) at a higher rate of 2000 two-photon
coincidences per second, the visibility was on average 98.73 in diagonal polarization basis. For this
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Figure 1. Experimental setup. Entangled photon pairs are generated through the SPDC process. The emitted photons in modes (a)
and (b) are coupled to single mode fiber (SMF) and signal is filtered (F). Each of the two stations’ measurements is composed of a
halfwave plate (HWP), a polarization beam splitter (PBS) and single photon detectors (D+ and D−). (See main text for details).

measurement, we have opted to work at a higher rate to send more information per second. However,
increasing the rate has the effect of increasing the multi-photon pair emission and therefore reducing
visibility. Each of the measurement runs was taken 100 times with each run with a collection time of 250 s.
For this experiment, the total average number of events is around 200 million.

To reduce experimental errors in the measurements, we used computer-controlled high-precision
motorized rotation stages to set the orientation of wave-plates with repeatability precision 0.02◦. The error
was estimated for each of the experiments by taking the standard deviation of the measurements.

The experimental setup is illustrated in figure 1. The angles of the HWPs for the experiments are
provided in the appendix.

3.2. Certified randomness in asymptotic case
To calculate the guessing probability, we reflected the experimental results by imposing on the maximization
a constraint that the value of the Bell expression is equal to the one observed in the experiment.

To calculate the conditional von Neumann entropy, we have considered two different sets of constraints
for the certification of the von Neumann entropy using the optimization (5). The standard approach [5] is to
impose a constraint that the value of the relevant Bell expression is equal to the one from the experiment. A
more involved method [28, 50–52] is to constrain the optimization with more than one parameter. The
purpose of this is to increase the amount of the certified randomness, at a price of more demanding error
analysis for finite data sets, and complicated numerical calculations. We imposed a constraint that each of the
correlators C(0,0), C(0,1), C(1,0), and C(1,1) are equal to those from the experiment. Note that the latter
constraints are stronger than the former one, as the Bell expressions (7) and (8) are functions of correlators.

To be more precise, we have further relaxed the above constraints. We formulated the single parameter
constraint in a form that the value of the relevant Bell expression is not smaller than the one from the
experiment. The constraints for more parameters we formulated in a manner that each of the correlators
C(0,0), C(0,1) and C(1,0) are not smaller than the one obtained in the experiment, and C(1,1) is not
greater than the one from the experiment. It is easy to see that the minimization of the conditional
von Neumann entropy with equalities as a constraint will be lower bound by the minimization with
inequalities. The reason behind this relaxation is that this improves the stability of the numerical
optimization, as the feasible region has a wider interior than with equality constraints. Similarly, for the
guessing probability calculations, we relaxed the equality with an inequality imposing a constraint of the
optimization that the value of the Bell is not smaller than the one obtained in the experiment. The relaxation
of the equality constraints by replacing them with inequalities does not weaken the security proofs. Indeed,
the proofs employ the lower bounds on the entropies, and relaxing the constraints of minimization
procedures will only decrease the resulting values. Thus the conclusions we draw about the certified
randomness are even more cautious than if we had not used these relaxed constraints.

As mentioned, the method [43] requires specifying the number of nodes in the quadrature. We calculated
both variants of constraints with 6 nodes, and the optimization with the correlation constraints also with 8
nodes. To improve the certification of entropy, one can increase the number of nodes, but this comes with
the price of a longer optimization time.

3.2.1. Iδ Bell expressions and high relative violation
Firstly, we performed the experiment for the Bell expressions (7). We concentrated on the quality of the
source, at the cost of the generated events rate. The experiment has been performed for δ = 0.45,0.5,0.52.
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Table 1. Randomness certified by Bell expressions (7) for the experiment concentrated on high relative violation of the Bell inequality in
the asymptotic case.

von Neumann entropy

δ Cor. (8 Radau) Cor. (6 Radau) Bell viol. (6 Radau) H∞

0.52 1.88 1.87 1.77 1.50
0.5 1.77 1.76 1.64 1.33
0.45 1.77 1.76 1.61 1.28

Table 2. The experimental values of the Bell expression (7) for the experiment concentrated on high relative violation of the Bell
inequality.

δ IClassiqueδ IQuantiqueδ IExperimental
δ

0.52 5 5.2 5.179± 0.006
0.5 5.022 5.218 5.187± 0.006
0.45 5.207 5.4 5.366± 0.007

Table 3. Randomness certified in the experiment by Bell expressions (8) in the asymptotic case.

von Neumann entropy

γ Cor. (8 Radau) Cor. (6 Radau) Bell viol. (6 Radau) H∞

0 1.81 1.80 1.72 1.43
π
24 1.76 1.75 1.68 1.21
π
12 1.55 1.54 1.39 0.98

Table 4. The experimental values of the Bell expression (8).

γ JClassiqueγ JQuantiqueγ JExperimental
γ

0 5 5.19 5.174± 0.007
π
24 3.55 3.99 3.968± 0.005
π
12 2 2.83 2.811± 0.003

The obtained relative Bell values were 0.994, 0.994, and 0.997, respectively, and the certified randomness is
shown in table 1.

We observed 675 events per second, and thus the randomness generation rate for δ= 0.52 is 1270 bits of
von Neumann entropy or 1012 bits of min-entropy, per second.

If only finite statistics are taken into account, one should consider also the uncertainty in evaluation
e.g. the Bell expression value. In the case of the considered experiment, the values are shown in table 2 with
theoretical boundaries for comparison, for δ = 0.45,0.5,0.52, respectively. The Gauss–Radau approximation
with six nodes showed that this Bell violation allows certifying 1.54, 1.58, and 1.72 bits of von Neumann
entropy, respectively, thus slightly less than the asymptotic case of table 1.

3.2.2. Jγ Bell expressions
Secondly, we investigated the Bell expressions (8). We considered the value γ = 0,π /24,π /12. The obtained
relative Bell values are 0.996, 0.993, and 0.994, respectively. The certified randomness is shown in table 3.

The observed event rate was 780 per second, giving the randomness generation rate 1300 bits of
von Neumann entropy or 1030 bits of min-entropy, per second.

The violation of Bell’s inequality is given in table 4.

3.2.3. Iδ Bell expressions and high event rate
The third of the performed experiments concerned also the Bell expressions (7). We performed it for values
δ = 0.5,0.4,0.3 observing the relative Bell values 0.987, 0.991, and 0.991, respectively. We show the certified
randomness in table 5.

The rate of observed events was 2000 per second, so the randomness generation rate, when taking δ= 0.4
is 3180 bits of von Neumann entropy or 2120 bits of min-entropy, per second.

The violation of Bell’s inequality is given in table 6.
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Table 5. Randomness certified by Bell expressions (7) in the asymptotic case for the experiment concentrated on the high rate of the
observed events.

von Neumann entropy

δ Cor. (8 Radau) Cor. (6 Radau) Bell viol. (6 Radau) H∞

0.5 1.50 1.50 1.26 0.89
0.4 1.59 1.58 1.41 1.06
0.3 1.52 1.51 1.21 0.85

Table 6. The experimental values of the Bell expression (7) for the experiment concentrated on the high rate of the observed events.

δ IClassiqueδ IQuantiqueδ IExperimental
δ

0.5 5.02 5.22 5.15± 0,01
0.4 5.57 5.76 5.71± 0,01
0.3 6.98 7.15 7.09± 0.01

3.3. Finite statistics analysis for randomness expansion with Iδ
Let us now concentrate on the case of the Iδ Bell expression (7) for δ= 0.52 and high relative violation, as
presented in section 3.2.1. Recall that the Bell value was in that case IExperimental

0.52 = 5.179 with the standard
deviation σI,0.52 = 0.006, whereas the Tsirelson bound is 5.1967. Let us assume that close to the observed
value the error distribution is near to Gaussian.

For the confidence interval of one standard deviation, we perform numerical optimization with the
constraint that the Bell value is equal at least w1 = IExperimental

0.52 −σI,0.52. We note that this constraint is weaker
than the one stating that the Bell value is within the range[

IExperimental
0.52 −σI,0.52, I

Experimental
0.52 +σI,0.52

]
, (11)

so in fact the actual confidence interval can be expected to be higher than 68%. The certified von Neumann
entropy for the violation equals at least w1 calculated at level 2 of NPA with 6 noded of the quadrature is
r1 = 1.7162. To calculate the properties of the min-tradeoff function for EAT channels we calculated the
certified entropy in the neighborhood of the violation value w1, viz. at points w1 −∆ and w1 +∆ for
∆= 0.001, and we obtained the values r1− = 1.7060 and r1+ = 1.7265, respectively. This means, by the
convexity of the bounding function, that the line tangent to the von Neumann entropy lower bound is of the
form g1(x)≡ r1 + b1 · (x−w1) with a certain, specified but unknown precisely, value of b1 in the set[
r1−r1−

∆ , r1+−r1
∆

]
≈ [10.239,10.259].

Now, for the EAT theorem, we need to specify the range of the min-tradeoff function, see lemma III.1
in [14]. The minimal value of I0.52 allowed in quantum mechanics is equal to the negation of the Tsirelson

bound, viz.−IQ0.52. The algebraic bound on IAlg0.52 is obtained with C(0,0) = C(1,0) = C(0,1) =−C(1,1) = 1
in (7) and is equal 7.0005. Thus the range of g1 is within the set[

r1 +
r1+ − r1

∆
·
(
−IQ0.52 −w1

)
, r1 +

r1+ − r1
∆

·
(
IAlg0.52 −w1

)]
, (12)

which has a diameter equal

d1 ≡
r1+ − r1

∆
·
(
IAlg0.52 + IQ0.52

)
≈ 125.13. (13)

A crucial parameter describing spot-checking protocols that use EAT is the probability of a test round,
denoted usually by γ. We follow the EAT formulation of theorem II.1 in [14] and define:

ϵV (β,γ,d)≡
β · ln(2)

2
·
[
log2

(
2 · 42 + 1

)
+
√
d2/γ+ 2

]2
, (14a)

ϵK (β,d)≡
β2 ·

(
2β·(log2(4)+d)

)
6(1−β)

3 · ln(2)
· [ln(2) · (log2 (4)+ d)+ 2]3 , (14b)

ϵΩ (β,pΩ, ϵS)≡ (1− log2 (pΩ · ϵS))/β. (14c)
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Figure 2. Plot of the dependence of net gain rate on the values of β and γ parameters from (14) in logarithmic scale for the
protocol using the certificate (7) with δ= 0.52 and one standard deviation confidence interval. We note that the optimal values
are on a constant ratio between log2(β) and log2(γ).

The value d correspond to the difference Max[g]−Min[g] in lemma III.1. We used a slightly modified
formula for εK compared to [14], viz. we first used the identity ∀x ln(2x) = x ln2, and then concavity of
logarithm, to split the expression into a sum of two logarithms, to avoid numerical round-off errors. The
entropy consumption is 2ntest bits for choosing settings for test rounds and h2(γ) bits for selecting which
rounds are used for testing, where h2 is the binary entropy.

In the experiment, we performed ntest ≈ 120000000 rounds testing the value of the score function. In the
experiment, we did not perform the actual series of generation rounds, and thus our work aims to test the
feasibility of the novel certificates in near future implementation. Let n denote a hypothetical number of
generation rounds performed by a device of similar quality as the one presented in this paper. For the sake of
comparison with an approach involving a high rate of rounds with low violation of CHSH inequality, we
juxtapose our results with the ones given in [15].

The parameter describing the quality of the raw randomness obtained in a random numbers generator is
the soundness error ϵS reflecting the probability of distinguishing the generated sequence from the uniform
one. In [15] the value ϵS = 3.09× 10−12 was reported, with the total time of running the experiment was
19.2 h, taking as the input 6.778× 108 bits and returning the output containing 9.350× 108 bits of certified
randomness. This resulted in a net gain of 2.57× 108 bits or a net gain rate of 3718.2bit s−1. The ratio
between entropy consumption to production is 0.72.

In our experiment, the ntest rounds were performed in 180000 s. We consider hypothetical generation
rounds performed with the same device, intertwined with the test rounds occurring with probability given
by some value of γ which we establish below, where we consider the parameters range providing the same
soundness error as in [15] and compare the net gain rates.

First, let us consider the confidence interval of one standard deviation. In theorem II.1 of [14] we use
t= r1, pΩ = 0.68, d= d1 and assume the same event rate as in the test rounds. We consider a wide range of
parameters β and γ, as shown in figure 2. For instance β = 10−7 and γ= 0.01 would provide net gain rate of
1033.3bit s−1 when about 1.2× 1010 rounds would be needed; the ratio of entropy consumption to
production is 0.06.

For a confidence interval of three standard deviations, the Bell value is equal to at least
w3 = IExperimental

0.52 − 3σI,0.52 ≈ 5.161, certifying at least r3 = 1.5943 bits of von Neumann entropy. The tangent
line is g3(x)≡ r3 + b3 · (x−w3) with b3 ∈ [10.09,10.102]. The diameter of the range set of g3 is d3 ≈ 123.22.
The optimal net gain rate in that case would be about 1013.4 bit s−1; the ratio of entropy consumption to
production is about 0.07. Even though it is lower than the net gain rate obtained in the case with one
standard deviation confidence interval, this case provides a success probability of the protocol much higher
(0.997) than the other one (0.68).

For the higher rate experiment from section 3.2.3 with δ= 0.5 we have ntest ≈ 2000000000 obtained in
100000 s. For three standard deviations confidence interval, we get the randomness lower bound
wh = 1.1743, and diameter dh = 121.34, resulting in a net gain rate of about 1951.5bit s−1; the ratio of
entropy consumption to production is 0.09. We show the parameter dependence in figure 3.
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Figure 3. Plot of the dependence of net gain rate on the values of β and γ parameters from (14) in logarithmic scale for the
protocol using the certificate (7) with δ= 0.5 and three standard deviation confidence interval for the experiment with increased
rate of events (see section 3.2.3).

4. Discussion

The protocol used in the experiments presented in this work was shown to be able to achieve the
performance of device-independent randomness expansion secure against a quantum adversary with the rate
of about 1.0kbps net gain with high violation and 2.0kbps for slightly lower violation of the Bell
expression (7) but higher source rate. This is less than another device-independent protocol based on a high
rate source and low violation of CHSH where the net gain rate of 3.7kbps was achieved [15]. Another recent
protocol [16] achieved 5.0 kbps in a semi-device independent scenario, where the quantum state preparation
was trusted. Earlier works presenting device-independent randomness expansion using a low violation of
CHSH include [53] obtaining a net gain rate of about 0.1kbps, and the work [22] where the net gain rate was
0.24kbps. Our result shows that using a lower rate source with high violation of Bell inequalities other than
CHSH can provide a net gain rate of von Neumann randomness of similar performance. One can expect that
an effort to increase the source rate in our experiment would potentially lead to significantly more efficient
protocols. The version of the experiment that operates with slightly lower, but still very high, Bell violation
but a higher source rate revealed to be more efficient. This indicates a clear engineering tradeoff between
violation and source frequency in the high-fidelity regime. The proposed protocols have a much better ratio
between entropy consumption and production than, for instance, the protocol of [53], which can also serve
as an advantage.

An important aspect of Bell’s expressions are the possible loopholes [54], primarily the
freedom-of-choice loophole, the detection efficiency loophole, and the communication loophole;
see [55–57] for experiments closing these loopholes. The freedom-of-choice loophole arises when the
assumption that the choice of measurement settings is independent of the properties of the entangled
particles is not valid. The detection efficiency loophole stems from the fact that in real-world experiments, it
is difficult to achieve perfect detection efficiency for all particles involved. If some particles are not detected
or their properties are not accurately measured, it can introduce biases in the results, which can be exploited
by the malevolent constructor.

The communication, or locality, loophole refers to the possibility of information exchange between
entangled particles during the measurement process. This loophole is addressed in experiments by a
space-like separation between events occurring in the parties measuring the entangled states. For instance in
two randomness expansion experiments presented in [58, 59] the parties Alice and Bob were separated by
about 200m. A novel method for overcoming the locality loophole is given in [60] where a method of
quantifying the amount of crosstalk was estimated. A complementary approach exhibiting crosstalk in
experiments, but not considered in the framework of randomness certification was delivered by some of us
in [61]. In this work, we do not address the problem of closing the loopholes, and leave them for future work.

5. Conclusions

We have presented an experimental setup aiming to generate close to the maximum amount of randomness
possible in the binary measurement setup with two parties. We have realized experiments for two different
families of Bell expressions and obtained up to 1.88 bits per round, which is close to the theoretical maximum
of two bits. We have also performed a comparison of different approaches to randomness, the von Neumann
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and min-entropy. The min-entropy is smaller than the von Neumann entropy, whereas some applications
take advantage of the latter one. Finally, we have shown, that it may be beneficial for the randomness
generation rate, to increase the events rate at the cost of decreasing the quality of the quantum realization.
We expect that having close to two bits per elementary event will simplify the randomness extraction
procedure, in terms of both requirements for the extractor’s seed, and the extraction processing time.
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Table 7.HWP’s angle for the expression (7) for different values of δ.

δ 0.3 0.4 0.45 0.5 0.52

HWPA1 0 0 0 0 0
HWPA2 −63.20 −61.77 −61.05 −60.34 −60.05
HWPB1 22.5 22.5 22.5 22.5 22.5
HWPB2 85.70 84.27 83.55 82.84 82.55

Table 8.HWP’s angle for the expression (8) for different values of δ.

γ 0 π
24

π
12

HWPA1 0 0 0
HWPA2 30 26.25 22.5
HWPB1 22.5 16.88 11.25
HWPB2 82.5 80.63 78.75

Appendix. Angles

Experiments 1 and 3 are based on the expression (7), which has 4 terms for each δ value. These four terms
correspond to the four possible combinations for two HWPs with two angles each. Table 7 shows the angles
of these HWPs for each δ value used in our experiments.

The second experiment is based on expression (8). As with the previous expression, four combinations of
two HWPs are required for each γ value. Table 8 groups these angles for each gamma used.

For these two equations, several values of each angle were possible, we have chosen to present only those
used.

The value of the angles has been rounded to two digits, as we used computer-controlled high-precision
motorized rotation stages to set the orientation of wave-plates with repeatability precision 0.02◦.
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