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Experimental test of nonclassicality with arbitrarily low detection efficiency
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We theoretically introduce and experimentally demonstrate the realization of a nonclassicality test that allows
for arbitrarily low detection efficiency without invoking an extra assumption of independence of the devices.
Our test and its implementation is set in a prepare-and-measure scenario with an upper limit on the classical
communication capacity of the channel through which the systems are communicated. The essence for our test
is the use of two preparation and two measurement devices, which are randomly paired in each round. Our work
opens the possibility for experimental realizations of nonclassicality tests with off-the-shelf technology.
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I. INTRODUCTION

Quantum information processing utilizes nonclassical re-
sources for processing information encoded into physical
systems, which are subjected to quantum mechanical laws.
These quantum resources have many applications in quantum
information processing ranging from cryptography [1,2] to
communication complexity reduction [3].

Device-independent quantum information processing
schemes have shown great promise in the estimation of
critical parameters, without making any assumptions about
the inner functionality of these devices. This approach comes
in two main variants: fully device independent (FDI) [4] and
semi device independent (SDI) [5]. FDI protocols mean that
the working principles of the devices do not matter and the
protocols work without assuming any internal mechanism
of the devices. On the other hand, SDI protocol means that
the protocols require some assumptions on the devices to be
realized. In this paper, we consider the SDI approach. The
assumption we make is an upper bound on the classical com-
munication between parts of devices involved in the scenario.

No control over the communicated system renders tasks as
cryptography and randomness generation impossible. There-
fore, we suppose that we can find at least one parameter which
describes the communication: an upper bound on the classical
capacity of the channel. This assumption is the reason why the
scenario is SDI.

The implementation of FDI or SDI protocols requires a
test of nonclassicality to be performed, a result of which
indicates that the description of the experiment is impossible
through classical means. This is a necessary although not
always sufficient condition. These tests include estimation
of violations of Bell inequality [6], dimension witnesses [7],
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or success probability in a communication complexity task
[8]. The important requirement, however, is that the involved
parties must give a conclusive result without any additional
assumptions. It is difficult in practice, mainly due to the so-
called detection efficiency loophole [9], which in a nutshell
states that device-independent tests of nonclassicality can
only be conclusive if the detectors used in an experiment
provide a detection efficiency above a certain threshold. These
thresholds have been found for a variety of tests [10–15].
Unfortunately, the required efficiencies are very high and
therefore difficult to obtain in practice. To our knowledge,
only a few DI tests of nonclassicality have been performed
thus far [16–20].

The issue can be addressed by adding extra constraints
on the resources that are available to the devices. One such
constraint is the requirement that the parties have no access to
shared randomness. With this added assumption, it was shown
[21,22] that any experimental setup with a nonzero detection
efficiency can be used to prove nonclassicality. Experimental
realization of protocols based on these ideas has been shown
recently [23,24]. However, lack of shared randomness is a
strong assumption, difficult to justify in practice. On the other
hand, is seems to be relatively easy to check the classical
channel capacity. It suffices to establish the type and range of
parameters accessible to the sender’s device and the classical
capacity is bounded by the number of orthogonal states which
can be prepared. This can be done by a close inspection of
the hardware. Such an inspection is not trivial but overwhelm-
ingly easier than full characterization of the device.

Here we propose a method for modification of the existing
communication-based protocols, which enables us to relax
this assumption. The modified protocols retain their poten-
tial to provide conclusive results for any positive detection
efficiency and do not require any additional constraints. This
leads to a huge increase in reliability of the tests of nonclassi-
cality.

2469-9926/2020/102(3)/032621(6) 032621-1 ©2020 American Physical Society

https://orcid.org/0000-0002-2560-7162
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.032621&domain=pdf&date_stamp=2020-09-21
https://doi.org/10.1103/PhysRevA.102.032621


ALLEY HAMEEDI et al. PHYSICAL REVIEW A 102, 032621 (2020)

Note that the assumption we need for our proposal to
work is limited to classical capacity. This is important, as the
quantum capacity is by far more difficult to be verified. The
aim of the proposed protocol is to show an experimentally
feasible way of testing that the transmitted system is quantum,
no matter what its dimension.

The idea behind the method is quite simple. Consider a
standard nonclassicality test involving one-way communica-
tion between two parties. We assume this test cannot be passed
using classical resources with detectors of arbitrarily low ef-
ficiency, if the parties are not using shared randomness. Now,
we want to provide a way for the test to remain conclusive
even if the parties use shared randomness.

To this end, suppose we run this test with two pairs of
parties performing it in parallel. However, in every round of
the test, we randomly choose the pairing between senders
and receivers. If the devices rely on shared randomness in
their behavior, then both senders should be correlated with
both receivers as they do not know to whom they are sending
their messages. Yet, if this is the case, there might appear
correlations in the outputs of receivers, which should not be
there. If we penalize such correlations, we might end up in
a situation where using shared randomness does not give any
advantage.

We note that access to a source of random variables (pos-
sibly public) which are not correlated sender and receiver
devices is crucial for working of the protocol. Within the
paper, we use such randomness as a resource to create an
experimentally feasible setup resistant to a detection effi-
ciency loophole. This seems to be reasonable as, unless a
paranoid level of certainty is assumed, it is impossible for
an eavesdropper, e.g., to correlate with all publicly available
sources of randomness. On the other hand, the threat that
devices exploit the detection efficiency loophole is quite real.

This is, obviously, only intuitive reasoning that leads us to
introducing our method. In the rest of the paper, we will show
that the method indeed works for the simplest example of a
communication protocol and how it can be applied in practice.
We will also report the realization of a proof of principle
experiment for our test of nonclassicality. We believe that this
method could be applied as easily to even complex protocols,
however, their study is beyond the scope of the paper. Neither
do we consider the straightforward application of our method
in cryptography as our aim; here is a proof of principle.

II. SEMI-DEVICE-INDEPENDENT SCENARIO

An ordinary SDI scenario involves two black boxes repre-
senting state preparation and measurement devices, see Fig. 1.
The former prepares a physical system based on the input re-
ceived and communicates it, via an external channel, to the lat-
ter. The measurement device returns an output after receiving
the communication and an additional classical input. There are
no assumptions on the internal working of the preparation and
measurement devices but we do assume an upper bound on the
information capacity of the system communicated between
them. Here the classical information capacity of our system is
one bit. We prove that the systems sent through it, necessarily,
have nonclassical properties and this is realized by using a

FIG. 1. Semi-device-independent implementation in a prepare-
and-measure scenario. Preparation device communicates a system
depending on its inputs. The message is encoded in a system with
an upper bound on the dimension. The measurement device’s output
depends on its inputs and the received message.

method based on a RAC. We’d like to note that these two
devices are placed in a shielded laboratory, meaning they
don’t receive any external synchronization signals. They may
share correlated classical variables but these are assumed to
be uncorrelated with the inputs.

The assumption on the upper bound of the communication
capacity might seem difficult to justify. It is, however, much
easier to inspect the components of the device responsible
for encoding the information in a physical system to find its
dimension, then to check if every logical circuit and bit of
software does what it is supposed to do. Moreover, the SDI
case has been well studied. Our method would probably work
just as well with other possible constraints but as introduced
here, we have chosen to analyze it in a setting which makes it
easiest.

III. RANDOM ACCESS CODES

Random access code (RAC) is a communication complex-
ity problem. In its simplest case, the sender (Alice) is given an
input a consisting of two bits: a0 and a1. She is only allowed
a single use of a communication channel which transmits
systems of one classical bit capacity to send a message to the
receiver (Bob). This means that the communicated system is
a single bit (qubit) of information in the classical (quantum)
case. The receiver, apart from the message, also receives an
input y ∈ {0, 1} and his task is to return one of the bits that the
sender received specified by this input, i.e., ay. If we denote
the output of the receiver by b, then the success of the task is
measured by the probability P(b = ay|a, y).

The use of RACs in quantum information was mentioned
already in Ref. [25] and the interest in them has been present
ever since [26–28]. In fact, most SDI protocols are based on
RAC [5,29,30] and, depending on the targeted application,
different figures of merit can be used, e.g., average suc-
cess probability Sav = 1

8

∑
a,y P(b = ay|a, y) [5,29,30]; worst

case Swc = mina,y P(b = ay|a, y) [26]; or even the whole set
{P(b = ay|a, y)}a,y [23]. Regardless of the chosen figure of
merit, quantum communication allows us to reach values that
are not possible for classical resources, thereby making RACs
a good choice for a test of nonclassicality. For example,
the maximum average success probability when one bit is
communicated is 0.75 while with one qubit it can reach 0.85.

Like other tests of nonclassicality, RACs are also vulner-
able to the detection efficiency loophole [9], which leaves
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them inconclusive if the detectors frequently fail to register
incoming particles. The critical detection efficiency depends
on the particularities of the test: the choice of the figure of
merit and the corresponding treatment of the experimental
rounds with no particle registered. In our work, we choose
the most generic approach for the latter case where we make
our devices return a random number whenever a detector fails
to register a particle. This artificially makes the effective effi-
ciency to be 100% as we observe an outcome in every round.
This does, however, lead to a decrease in the maximal success
probability for the quantum case. For a given maximum Q
of the quantum theory, the detectors registering particles in η

fraction of the rounds can yield the largest success probability,

Qη = ηQ + (1 − η)
1

2
, (1)

tending to 1
2 as η → 0. The classical value does not increase,

allowing us to find the η required for the quantum theory to
be able to provide an advantage. However, the critical η is
usually very high and extremely difficult to reach in practice.
Our goal is to propose a test with η arbitrarily close to 0. From
(1), we see that it is possible if we can design a test with the
maximal classical value reduced to 1/2. This is the bound for
the worst-case success probability if no shared randomness is
available to the communicating parties [21]. As mentioned,
we need tasks with such a property as a starting point for
our method. This, together with its simplicity, makes RAC a
perfect candidate.

IV. PROBABILITY POLYTOPES

The considerations above are specific to RACs. However,
they can be generalized to different tests of nonclassicality
using the framework of probability polytopes [7]. Consider
a set of conditional probability distributions p(�x|�y) arising
in an experiment, where �x denotes the set of outcomes of
all the devices in a single round of the experiment and �y
the inputs. Let �p be a vector whose elements correspond to
conditional probabilities for every combination of �x and �y.
�p can characterize the behavior of any devices employing
any strategy. While testing these devices, e.g., if they violate
Bell inequalities, we often look at the linear combinations of
probabilities p(�x|�y). Such tests can also be represented by
a vector, �t , living in the same space as �p. The quantitative
outcome of the test is the scalar product �t · �p.

The average success probability of a RAC, Sav =
1
8

∑
a,y P(b = ay|a, y), is an example of such a test. The vector

�tRAC corresponding to it has 16 elements because there are that
many combinations of a, b, and y. These elements are equal to
1
8 whenever the corresponding variables satisfy b = ay and 0
otherwise. When a single bit is communicated, then for every
possible classical protocol we have Sav = �tRAC · �pcl � 0.75.

For classical devices, the set of allowed probability distri-
butions �pcl is a polytope. Its vertices correspond to determin-
istic strategies. Every other strategy can be considered as a
convex combination of deterministic ones and corresponds to
a point inside this polytope. The set of quantum distributions
is much harder to characterize and, instead of faces, usually
is bounded by smooth curved surfaces. This set is, typically,
strictly larger than the classical polytope but their dimensions

are usually the same. However, it is not always true [31] and
these are the cases that we find the most interesting. Whenever
this happens, there exists a vector �t0 perpendicular to the
subspace spanned by classical probabilities, i.e., ∀�pcl

�t0 ·
�pcl = 0, and there exists a quantum probability distribution
�pqm such that �t0 · �pqm = Q �= 0.

Consider again the case with an experiment reaching �pqm

if we had perfect detectors. If no particles are registered, we
again assign a random outcome. Since returning a random
outcome is also a classical strategy, the vector corresponding
to the probability distribution observed in the experiment is
�pη = η �pqm + (1 − η) �pcl and for η > 0 the outcome of the
test will be equal to ηQ > 0, since by assumption �pqm > 0
and �pcl = 0. Therefore, it pays off to look for experimental
setups which have different dimensions of the corresponding
quantum and classical sets.

We will see that the two approaches, looking for a game
with classical success probability 1

2 and for setups with differ-
ent classical and quantum set dimensions, are complementary.
The former provides us with an intuitive candidate in the
form of a parallel RAC that we describe in the next section.
However, what we need from it is only the structure of the
experiment, i.e., the number of parties and their inputs and
outputs, communication paths, and the quantum protocol. The
proof that the experiment with the given structure provides
us a robust test given by the latter and in the test itself no
reference to RACs is necessary.

V. PARALLEL RANDOM ACCESS CODING

We define parallel RAC as a task in which two pairs of
senders and receivers perform RAC in parallel but in each
round they are paired randomly. Additionally, the devices
do not have access to information about the pairing in any
given round. This situation is illustrated in Fig. 1. The inputs
to preparation device Pi are denoted by ai and yi for the
measurement devices, Mi, i = 0, 1. The choice of pairing is
denoted by a random variable x. If x = 0, information from
P0 goes to M0 and from P1 to M1. Whereas for x = 1, P0

communicates with M1 and P1 with M0. We state that the
nth receiver (i.e., measuring device) is successful if bn = an⊕x

yn ,
where n is either 0 or 1.

There exist 216 = 65 536 different deterministic strategies.
Because of symmetries between some of them (e.g., joint
negation of messages of both Alices connected with negation
of the reaction of both Bobs), these strategies relate to 30 496
different points in conditional probability space,

P
(
bout

0 , bout
1

∣∣a0,0, a0,1, a1,0, a1,1, c, b0, b1
)
, (2)

where bout
i refers to the outcome of ith Bob, ai, j to jth bit of

ith Alice, c determines which Alice is sending to which Bob,
and bi is the input of i th Bob.

Since there are four different possible outcomes,
(bout

0 , bout
1 ), and 27 = 128 different possible inputs

(a0,0, a0,1, a1,0, a1,1, c, b0, b1), the points in this probability
space can be represented as vectors forming a simplex in
4 × 128 = 512 dimensional linear space. It reveals that this
simplex is embeded in 125 dimensional subspace (i.e., there
are only 125 linearly independent vectors among 30 496
points). Let Psub be the projector onto that subspace.
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Let Pmax be the vector in 512 space related to the opti-
mal quantum strategies maximizing the probability of correct

guesses of both Bobs. If we project the vector Pmax on Psub,
then we obtain a Bell operator B2s2r

1,1 given by

B2s2r
k,l ≡

∑
a0,0, a0,1
a1,0, a1,1

b0, b1

=0,1

δb0⊕b1,kδa0,0⊕a0,1⊕a1,0⊕a1,1,l ×
⎡
⎣ ∑

bout
0 ,bout

1 =0,1

(−1)s0+s1 P
(
bout

0 , bout
1

∣∣a0,0, a0,1, a1,0, a1,1, c, b0, b1
)
⎤
⎦, (3)

where si is the binary indicator success of ith Bob. Let p =
1
2 (1 +

√
(2)
2 ) be the maximal probability of success of a 2 to

1 quantum random access code. It is easy to see that for
each nonzero term in the outer summation, the maximum
value is p2 + (1 − p)2 − 2p(1 − p) = 0.5, and there are 32
such terms, giving Tsirelon bound 16. The values obtained in
the experiment are B2s2r

0,0 = 0.1797, B2s2r
0,1 = 0.1792, B2s2r

1,0 =
0.1728, and B2s2r

1,1 = 0.1721.
In the deterministic model, each Alice receives a four-

dimensional input (a setting) and returns a binary output, so
each Alice has 24 = 16 deterministic strategies. Similarly,
each Bob get a four-dimensional input (message and setting)
and outputs a binary result. Thus, in our setting, there exist 216

deterministic strategies. They are spanning a 125-dimensional
subspace. Now we need to choose a vector corresponding to
the test that we are going to perform. We choose it to be
parallel to the line connecting the point �pqm corresponding
to the probabilities that would arise in the perfect quantum
experimental realization of RAC and its projection onto the
classical subspace. It gives rise to the following figure of
merit:

T =
∑

a0
0⊕a1

0⊕a0
1⊕a1

1=1

∑
y0 �=y1

∑
b0,b1,x

× s0s1 p(b0, b1|a0, a1, y0, y1, x), (4)

where s0 and s1 are success indicators of the two receivers.
sn = 1 when bn = an⊕x

yn and −1 otherwise. Note there is no
obvious relation between T and average or worst case success
probability in RAC. This code was only a step necessary to
find the number of inputs and outputs for each of the parties,
defining the space and point �pqm. However, it is still quite
straightforward to turn T into a game with classical average
success probability of 1

2 simply by changing each coefficient
in T from −1 to 0, i.e., we replace s0s1 with Kronecker’s delta
δs0,s1 and get

T ′ ≡
∑

a0
0⊕a1

0⊕a0
1⊕a1

1=1

∑
y0 �=y1

∑
b0,b1,x

× δs0,s1 p(b0, b1|a0, a1, y0, y1, x). (5)

T ′ describes average success probability in a game in which
success is defined by having s0 = s1. If T = 0, then T ′ = 1

2 ,
therefore it is a game with classical average success probabil-
ity 1

2 .
One way to view T ′ is as a parallel RAC with a promise

on the distribution of the inputs, expressed by the fact that the
sums in T ′ do not include every possible combination of input
variables. Another important aspect is that the parties win a
round of the game not if they successfully guess the desired

bit as in a typical RAC but when their successes are correlated,
i.e., they either both guess correctly or both fail. However,
it’s easy to see that using the same states as measurements as
in a standard RAC, the parties can beat the classical bound.
It suffices to notice that the optimal strategy in that protocol
gives success probability ps = 1

2 + 1
2
√

2
for every input. If the

same states and measurements are used in this game, one will
obtain T ′ = p2

s + (1 − ps)2 = 3
4 .

From now on, one can stop thinking about RACs and
consider only T . Its classical value is 0 and the theoretical
maximal quantum value is 16 corresponding to the point �pqm.
Therefore, our result is a general property of a probability
space corresponding to a parallel test with a certain number
of inputs and outcomes rather than of RACs.

We leave as an open question whether the same (i.e., that
classical polytope has lower dimension than the quantum
region) holds for spaces corresponding to tests with different
than binary numbers of inputs and outcomes. This seems
plausible and it is this conjecture which is behind our opti-
mism regarding the possibility of applying the same method
in different scenarios. Now we describe our experimental
realization to obtain an experimentally measured value of T .

The experiment requires three assumptions:
(1) The system that leaves the laboratory of each sender

has information encoded in the Hilbert space dimension of 2.
(2) The devices don’t have the access to the information

about the party they are communicating with in the given
round of the experiment.

(3) The inputs of all the parties are chosen at random.
In our experiment, we measured each combination of

settings for 20 seconds before moving to the other, therefore
the final assumption was not satisfied. This is because it was
intended as a proof of principle and choosing random settings
for each round would considerably extend the already long
measurement time. In practical applications based on this
setup, that assumption cannot be omitted.

VI. EXPERIMENTAL DEMONSTRATION

Our experimental realization is shown in Fig. 3. Any qubit
state can be prepared by a suitably oriented half-wave plate,
HWP(θ0) and HWP(θ1) for P0 and P1, respectively. We used a
heralded single photon source from a spontaneous parametric
down-conversion process at 780 nm. For the four experimen-
tally prepared qubit states, the HWP settings for both θ0 and
θ1 correspond to 0◦, 45◦, and ±22.5◦. We have also added an
extra HWP in each device to assure the same polarization in
both paths.

The choice of the two communication paths is made in a
region R, which consists of two polarization beam splitters
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FIG. 2. Parallel RAC scenario consisting of two preparation de-
vices, P0 and P1, and two measurement devices, M0 and M1. The
pairing choice between the senders and receivers devices depends on
the value of random variable x. Here, the solid line corresponds to
x = 0, and the dotted line to x = 1.

(PBSs) and six HWPs, and by properly adjusting the HWP
orientation angles, we choose the pairing of the devices. Note
that we do not consider the region R a device for the purposes
of our analysis. Another option would be simply to connect
senders and receivers by fibers randomly each round. This
would leave R empty but greatly increase the duration of the
experiment.

The measurement devices consist of an interferometric
setup, one adjustable HWP(ϕ0) and HWP(ϕ1) for M0 and
M1 respectively along with twoPBSs and two single-photon
detectors (Di j , i = 0, 1; j = 1, 2) for each device Mj . The suc-

FIG. 3. Experimental setup. Information is encoded into two
spatial-photonic modes. The preparation devices Pi (i = 0, 1) consist
of a heralded single photon source that emits horizontally polarized
photons which, after passing through a half-wave plate (HWP)
oriented at an angle θi, can be prepared in the required protocol states.
The measurement devices Mi consist of a HWP oriented at an angle
ϕi, polarization beam splitter (PBS), single photon detectors Di j . The
pairing of the preparation and measurement devices is performed
with help of adjustable HWP plates and PBSs.

cess probabilities are estimated from the number of detections
in the detectors Di j , after properly adjusting the orientation ϕ j

of the HWP in each of the measurement devices M0 and M1.
In our experiment, the two used HWP settings are 11.25◦ and
78.75◦, respectively.

Considering the parallel RAC scenario in Fig. 2, when
x = 0, the state prepared in P0 (P1) is measured in the
receiver M0 (M1), whereas for x = 1, the state prepared in
P0 (P1) is measured in the receiver M1 (M0). In this proof-of-
principle experimental demonstration, the values of HWP(θ0)
and HWP(θ1) on the preparation sides and HWP(ϕ0) and
HWP(ϕ1) on the measurement sides were preselected rather
than a randomized selection. However, a randomized selection
between the setting choice can be implemented by mounting
all the corresponding wave plates on motorized stages.

Our single-photon detectors (Di j , i = 0, 1; j = 1, 2) were
fiber-coupled silicon avalanche photodiodes (APDs) with ef-
fective detection efficiency ηd = 0.55 (with 0.85 fiber cou-
pling and 0.65 for APD efficiency) and dark count rate
Rd � 300 Hz. The detectors Di j produced output transistor-
transistor logic signals of 4.1 V (with duration of 41 ns). The
dead time of the detectors was 50 ns. All single counts were
registered using multichannel coincidence logic with a time
window of 1.7 ns.

For each choice of settings a0, a1, y0, y1, x, we regis-
tered an average of 222 528 clicks, where 3104 have the
four-photon coincidence, meaning that both photon sources
in P0 and P1 were heralded. Only the runs that have
both photons heralded together contribute for the value
of T , for all other (when one or no photon is heralded)∑

b0,b1 s0s1 p(b0, b1|a0, a1, y0, y1, x) = 0, where we consid-
ered that for these rounds a random value was assigned to
the outcomes. If we consider only the run when we measured
four-photon coincidence and fair sampling, we have T =
14.74 ± 1.56. Now, considering the detector efficiency and
all runs, we obtain T = 3.16 ± 0.33 × 10−3, witnessing the
system nonclassicality.

VII. CONCLUSION

The nonclassicality test that we have introduced and ex-
perimentally demonstrated allows for arbitrarily low detection
efficiency without invoking extra assumptions such as inde-
pendence of the devices. This opens up the possibility for
constructing SDI protocols based on this test, which can be
easily realized with today’s technology.
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