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A B S T R A C T   

Plasmonic nanostructures based on AuAg nanoalloys were fabricated by thermal annealing of metallic films in an 
argon atmosphere. The nanoalloys were chosen because they can extend the wavelength range in which plasmon 
resonance occurs and thus allow the design of plasmonic platforms with the desired parameters. The influence of 
initial fabrication parameters and experimental conditions on the formation of nanostructures was investigated. 
For the surface morphology studies, chemical composition analysis and nanograin structure, Scanning Electron 
Microscopy (SEM), X-Ray Photoelectron Spectroscopy (XPS), Energy Dispersive X-Ray Spectroscopy (EDS) and 
High-Resolution Transmission Electron Microscopy (HR TEM) measurements were performed. The position of 
the resonance band was successfully tuned in the 100 nm range. The EDS together with the XPS analysis 
confirmed the formation of an alloy with the aspect ratio of individual metals in a single nanoisland similar to the 
ratio of the thicknesses of the initially sputtered layers. The experimental research was complemented by the 
neural network model, which enables the calculation of the absorbance peak depending on the thickness of Au 
and Ag layers and the annealing time. The proposed model of machine learning makes it possible to fine-tune the 
desired position of the plasmon resonance.   

1. Introduction 

Metallic nanoparticles have been attracting the attention of scientists 
for over a decade. It is caused by their unique catalytic and optical 
properties. In particular, collective oscillations of conductive electrons, 
known as localised surface plasmon resonance (LSPR), enable many 
applications in various fields, such as photocatalysis [1,2], photovoltaic 
devices [3,4], surface-enhanced Raman scattering [5,6] and even anti- 
cancer therapy [7]. This group includes bimetallic nanoparticles, 
which are currently very popular. They are nanomaterials composed of 
two different metal elements. Their uniqueness is evidenced by the at-
tributes that are typically a combination of properties derived from 
metal amalgams [8]. These properties, and thus applicability of such 
nanoparticles, are related not only to their size and shape, as in the case 
of monometallic nanoparticles, but also to their chemical composition 
and structure [6,9–11]. Hence, proper control over the fabrication of 

such systems poses a significant experimental challenge. 
In the case of bimetallic materials, noble metals play a key role. Due 

to full filled d-orbitals and relatively low cohesive energy, gold and 
silver nanoalloys are mainly investigated [12]. Their resonance band 
typically occurs at wavelengths around 420 and 530 nm for Ag and Au, 
respectively [13]. In addition, from an optical properties point of view, 
Ag is distinguished by the largest extinction cross section, but on the 
other hand, its LSPR application is restricted by poor chemical stability 
and low corrosion resistance [13,14]. Au, in turn, apart from being an 
effective plasmonic material, is distinguished by physical and chemical 
stability [15]. Due to alloying of these metals, the synergistic effects 
induced by the hetero-junction charge transfer between them not only 
solve the problem of Ag corrosion but also make it possible to tune the 
LSPR frequency in the range from 420 to 530 nm [16,17]. 

Since physical and chemical properties of these nanoalloys are 
composition and order-dependent, a complete understanding of the 
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mechanisms involved in fabrication is essential to gain full control over 
the fabrication of desired nanostructures. For this purpose, a phase di-
agram is required [18]. However, in the nanoscale regime, where the 
number of atoms is very small, alloys cannot be described by classical 

thermodynamics. As a perfect complement to the experimental kinetic 
considerations, many efforts have been made to find an extension of 
classical theory to the nanoscale, which gave rise to a new interdisci-
plinary theory named nanothermodynamics [19]. Its advantage over 
other predictive methods, such as Metropolis Monte Carlo or Molecular 
Dynamics results from the possibility predicting phase diagrams of al-
loys in the entire composition range, which in turn translates into 
solving some fundamental problems concerning the behaviour of 
nanoalloys [20,21]. 

The ability to control the position of the plasmon resonance seems to 
be the most important reason for creating nanoalloy plasmonic plat-
forms. Such platforms may find application in a wide range of nano-
sensors operating in a wide frequency range. Of course, the best solution 
would be to include artificial neural networks (ANN) in their design. 

In recent years, artificial neural networks have found applications in 
various engineering problems. ANN, as an alternative to classical ap-
proaches using of continuum mechanics, are computer models that are 
able to show dependence of free parameters on responses obtained from 
the external environment [22,23]. Since each of the multiple fabrication 
parameters used to control the process of the formation of alloy nano-
structures has an immense influence on the optical properties of the 
obtained structure [24], ANN can be extremely useful not only to pre-
sent the influence of each parameter on the obtained results, but also to 

Fig. 1. Schematic illustration of the fabrication process of alloy nanostructures.  

Fig. 2. Topology of the neural network used to build the model (3–5–1), with the activation functions of the hyperbolic tangent and sigmoid in the hidden and output 
layers, respectively. 

Fig. 3. SEM pictures of nanostructures resulting from annealing at 550 ◦C for 15 min: Au (2.8 nm) / Ag (2.8 nm) bilayer (a); Au (2.8 nm) monolayer (b); Ag (2.8 nm) 
monolayer (c) and Ag (2.8 nm) / Au (2.8 nm) bilayer (d). 
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provide a specific set of fabrication parameters needed for obtaining 
structures with specific properties. 

This work is devoted to designing plasmonic platforms based on the 
AuAg nanoalloy. In addition to how to produce them and study their 
structure, we would also like to show the effects of using artificial neural 
networks to predict the location of plasmon resonance. The position of 
the single peak shown in the plasmon resonance of the Au-Ag alloy 
nanoparticle system does not correspond to any peaks of the pure metal 
components. Then, starting from the position of the pure Ag layer 
resonance peaks, they are shifted to longer wavelengths at increased Au 
concentration. Obviously, this relationship is true when we consider 
nanoparticles of the same size and shape. If we additionally take into 
account the size of the nanostructures and their shape, the position of 
the plasmon resonance peak may change regardless of the mutual ratio 
of the amount of metals making up the nanoalloys. We intend to prove 
that changing the experimental parameters such as Au and Ag layer 
thickness and annealing time allows the optical spectra to be controlled. 
The collected experimental data is used to build a neural network model, 
which is used to adjust the experimental parameters to the desired 
plasmon resonance position. In other words, if we ask “the machine” a 

question about how to produce a sample that would lead to plasmon 
resonance at a particular wavelength, we should get an answer both in 
terms of the mutual ratio of initial layer thicknesses, as well as thermal 
conditions and the time in which the layers should be annealed. 

2. Materials and methods 

Glass and Si substrates were used for deposition of gold/silver layers. 
The substrates were cleaned with acetylacetone and then rinsed with 
ethanol. Thin Au and Ag layers were sputtered using a table-top dc 
magnetron sputtering coater (EM SCD 500, Leica) in the pure Ar plasma 
state (Argon, Air products 99,999%). Both Au and Ag targets were 
99,99% pure. The coating process was carried out with a deposition rate 
of about 0.4 nm per second and an incident power in the range of 30–40 
W. The sputtering system was equipped with a quartz crystal micro-
balance for in situ film thickness measurements. The prepared layers 
were put into a hot furnace and annealed in argon atmosphere at various 
temperatures in the range of 300–800 ◦C and time conditions (from 5 to 
60 min) in order to produce nanostructures, as schematically presented 
in Fig. 1. The structures of AuAg nanoalloys were prepared by sequential 
sputtering of metal thin layers (Au/Ag or Ag/Au) followed by annealing 
under various conditions in an argon atmosphere. The basic single layer 
thickness was usually 2.8 nm, which was again selected based on our 
previous studies of Au and Ag metallic nanostructures [25,26]. How-
ever, in order to find out how the individual nanograins are formed and 
whether they are homogeneous (and made of AuxAgy alloy), the initial 
thickness ratio of the Au and Ag layers was also changed (in addition to 
changing the order in which they were applied). For the structural 
studies, samples consisting of triple layers, Au/Ag/Au and Ag/Au/Ag 
were also prepared. In the first step, 550 ◦C was chosen as the temper-
ature for manufacturing AuAg nanoalloys, in which it was possible to 
obtain Au and Ag nanostructures giving high-intensity plasmon reso-
nance [25,26]. 

A FEI Quanta FEG 250 Scanning Electron Microscope (SEM) oper-
ating at 10 kV was used to analyse the surface morphology of the sam-
ples. The analytical Transmission Electron Microscopy (TEM) 
investigations were performed on a JOEL JEM ARM 200F HR TEM 
apparatus equipped with an EDS detector. For nanograin structure and 
chemical composition, several TEM techniques were used, including 
conventional and High-Resolution imaging (TEM/HRTEM), Selected- 
Area Electron Diffraction (SAED), EDS and Scanning Transmission 
Electron Microscopy (STEM). SEM and TEM experiments were carried 
out on samples deposited on silicon substrates. 

Fig. 4. UV–Vis spectra of nanostructures resulting from annealing at 550 ◦C for 15 
min: Au (2.8 nm) / Ag (2.8 nm) bilayer (a); Au (2.8 nm) monolayer (b); Ag (2.8 
nm) monolayer (c) and Ag (2.8 nm) / Au (2.8 nm) bilayer (d). 

Fig. 5. The influence of annealing temperature on the position of plasmon 
resonance for the nanostructures grown from: Au (2.8 nm) monolayer (orange 
dots); Au (2.8 nm) / Ag (2.8 nm) bilayer (green dots); Ag (2.8 nm) / Au (2.8 
nm) bilayer (blue dots) and Ag (2.8 nm) monolayer (grey dots). 

Fig. 6. The influence of annealing time on the position of plasmon resonance for 
nanostructures grown from: Au (2.8 nm) monolayer (orange dots) Au (2.8 nm) / Ag 
(2.8 nm) bilayer (green dots); Ag (2.8 nm) / Au (2.8 nm) bilayer (blue dots) and Ag 
(2.8 nm) monolayer (grey dots). The annealing temperature is 550 ◦C. 
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UV–vis spectra were recorded with a Thermo Fisher Scientific Evo-
lution 220 double beam spectrophotometer in the absorbance mode, in 
the range of 200 nm–1100 nm. These measurements were carried out on 
samples deposited on glass substrates. 

The quality of the obtained nanostructures and electron states of 
atoms in the AuAg nanoalloy were measured using X-ray photoelectron 

spectroscopy (XPS), an Omicron NanoTechnology spectrometer with a 
128-channel collector. XPS measurements were performed at room 
temperature under a ultra-high vacuum conditions, around 10− 9 mBar. 
The photoelectrons were excited by an Mg-Kα X-Ray source. The X-ray 
anode was operated at 15 keV and 300 W. The Omicron Argus hemi-
spherical electron analyser with a round aperture of 4 mm was used for 

Fig. 7. SEM images of nanostructures formed by annealing at 550 ◦C for 15 min of bilayers. The first layer is Au with the same thickness of 2.8 nm, the second is Ag with a 
thickness of (a) 2 nm, (b) 3 nm, (c) 4 nm, (d) 5 nm (e) 6 nm, (f) 7 nm and (g) 8 nm. 

Fig. 8. HR TEM image of a cross section of a nanoisland made of sandwich-type structure with a total thickness of 6 nm with a detailed EDS analysis of the cross 
section of the presented nanoislands. Au/Ag/Au configuration (a, b), Ag/Au/Ag configuration (c, d), annealed at 550 ◦C for 15 min. 
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the analysis of the emitted photoelectrons. The binding energies were 
corrected using the background C1s line (285.0 eV). XPS spectra were 
analysed with Casa-XPS software using Shirley background subtraction 
and Gaussian–Lorentzian curve as the fitting algorithm. 

In addition, a predictive numerical model based on machine learning 
was proposed. Its main purpose was to estimate the positions of the 
resonance peaks for a given annealing time and thickness of Au/Ag 
layers, for which no experimental data was collected. The model was 
built using the multi-layer, fully-connected, one-directional artificial 
neural network [27] and trained using the available experimental data 
(31 data points: annealing time, Au and Ag layer thickness as inputs, and 
peak resonance as output). The complete data set used for creating the 
predictive model is available to download at [28]. The topology of the 
neural network is presented in Fig. 2. The number of neurons in the 
input (3) and output (1) layers corresponds to the number of input and 
output parameters, respectively. The number of hidden layers, as well as 
the activation functions (hyperbolic tangent in the hidden layer, and 
sigmoid in the output layer) were chosen experimentally to give the best 
overall results (minimize prediction errors on validation data). 

To train the neural network, the Adam learning algorithm [29] and 

the root mean square error (RMSE) as a loss function were used. To 
avoid overfitting the model, the k-fold (k = 10) cross-validation pro-
cedure [30] was applied: the entire data set was randomly divided into 
10 parts, each consisting of (different) 28 training and 3 validating data 
points, which gave 10 different models. The method allowed to reduce 
the size of the validation data set in each model, which was important 
when the amount of data was limited [31]. The models were indepen-
dently trained using the training data points, while the validating ones 
were used to control the training process. Trained models were bench-
marked according to RMSE on validation data. The final predictive 
model was built by averaging the results from the above 10 models. All 
experimental data used for for machine learning model training (UV–vis 
spectra and SEM images), along with a list of all samples, are available at 
[28]. 

3. Results and discussion 

Fig. 3 presents exemplary SEM images of nanostructures formed as a 
result of annealing of Au/Ag (Fig. 3a) and Ag/Au (Fig. 3d) layers with a 
thickness of 2.8 nm each, at the 550 ◦C for 15 min. For comparison, SEM 

Fig. 9. XPS spectra of 4f Au and 3d Ag regions of the samples (top) and the schematic view of nanostructures (bottom). Every measured structure was achieved either 
from a single layer or bilayers with an Ag layer sputtered on top of an Au layer. The total thickness of such systems was 6 nm. The samples prepared in this way were 
then annealed at 550 ◦C for 15 min. 
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images of Au (Fig. 3b) and Ag (Fig. 3c) nanostructures made of Au and 
Ag films with thicknesses of 2.8 nm were added. 

Comparing Fig. 3a and Fig. 3d, it can be concluded, that the nano-
structures differ in both the average size and shape, which certainly 
affects their plasmonic properties. As is well known, the UV–vis spec-
trum of metallic nanostructures can be influenced by many factors, such 
as the size, shape on nanostructures and the dielectric properties of 
surrounding medium. For instance, their elongated shape may result in 
an additional maximum in the UV spectrum [32–37]. The maxima of 
plasmon resonance of the nanostructures shown in Fig. 3 are respec-
tively: 470 nm (a), 550 nm (b), 430 nm (c) and 475 nm (d), as presented 
in Fig. 4. 

As can be seen, there is not much difference between the resonance 
position of nanoalloys grown from films deposited in different config-
urations: Au/Ag and Ag/Au. Both resonances are located between the 
values characterizing pure Au and Ag. However, the resonance peak 
from nanoalloys is not as sharp as that from Au or Ag. The influence of 
the annealing temperature on the position of the plasmon resonance is 
shown in Fig. 5. Of course, it should be noted that both lowering the 
temperature in relation to the selected 550 ◦C, and increasing it, change 
the shape of nanostructures, similarly to the changes observed in 
monolayers [25,26]. 

It can be concluded that if the position of the plasmon resonance is 
taken as the reference parameter, then the sequence of the layers has no 
effect on the formation of nanoalloy. It is obvious, of course, that metals 
willingly form alloys, but on the other hand, we are dealing with thin 
layers in which the melting point strongly depends on their thickness. 
Among the solid configurations that can be potentially obtained from 
such layer systems, archetypically are either a core–shell, a fully 
segregated, so-called Janus-like or a fully mixed alloy [38]. However, it 
is well known that Au and Ag atoms begin to inter-diffuse at temperature 
as low as 100 ◦C [39]. It is quite straightforward to define what type of 
structure is achieved from their optical properties. Namely, in the case of 
the formation fully mixed nanoalloys, a single absorption peak is 
observed, while in completely separated phases, i.e. the core–shell 
structure, two characteristic absorption peaks appear [40]. 

The influence of the annealing time on the position of the resonance 
peak was also investigated. The results are shown in Fig. 6. 550 ◦C was 
again selected as the annealing temperature. Again, the conclusion is 
that there are no major differences between the samples obtained as a 
result of annealing of Au/Ag and Ag/Au bilayers. Anyway, in the 
selected interval, the annealing time seems to have little influence on the 

position of the plasmon resonance also for monolayers. However, the 
very formation of nanoalloys in the form of nanostructures is interesting. 
Fig. 7 shows SEM images of nanostructures formed by annealing at 
550 ◦C for 15 min of bilayers, in which the first layer was Au with the 
same thickness of 2.8 nm, and the thickness of the Ag layer deposited 
thereon increased. 

We believe that the annealing conditions are not suitable for such 
selected layers, however, as can be seen with a silver layer thickness of 6 
nm, a single nanostructure appears to form from smaller ones. To say 
more about the formation of nanoalloys, layers of different initial 
thicknesses as well as Au/Ag/Au and Ag/Au/Ag multilayers were pro-
posed for annealing. TEM images of samples prepared in this way are 
shown in Fig. 8. 

Each film from which presented nanostructures were made was 2 nm 
thick. Therefore, the thickness of the multilayer system was 6 nm in 
total, with aspect ratios Au to Ag 2:1 (Fig. 8a, b) and 1:2 (Fig. 8c, d). As 
can be seen, obtained nanoislands are homogeneous, which suggests 
alloy formation rather than fully separated type structures. Detailed EDS 
analysis of the nanoisland cross-section is presented in Fig. 8b and 8d. 
Interestingly, the aspect ratio of individual metals in a single nanoisland 
is similar to the ratio of thicknesses of the sputtered layers before 
annealing. 

The structure of the samples was also examined using the XPS 
method. The high-resolution spectra of 4f Au and 3d Ag regions are 
presented in Fig. 9. 

As can be seen, both the Au 4f and Ag 3d spectra consist of two peaks, 
forming doublets. The Au 4f7/2 and Ag 3d5/2 peaks are shifting relative 
to the pure metal peak towards higher energies. Changes in the Au peak 
position are usually dependent on the size of the cluster, cluster–sub-
strate interaction, cluster morphology, or a change the environment of 
atoms [41,42]. Also, the shift of Ag peak can be attributed to the 
modified electronic structure [43]. This shift of Au 4f and Ag 3d peaks in 
gold-silver systems was noticed by others and explained as a partial 
charge transfer between atoms [44–46]. Moreover, it should be noted 
that the peaks characteristic of Ag–O compounds were not observed in 
the XPS spectra, which is consistent with the EDS results. 

The idea behind the creation of such alloy plasmonic platforms was 
to obtain synergistic effects of the combined properties of metals, which 
should result in the possibility of tuning optical properties of such sys-
tems. As shown in Fig. 10, which presents the dependence of the plas-
monic band position on the gold content, a linear trend is achieved. 
However, it should be emphasized that such a linear trend applies only 
to samples with the same initial thickness (6 nm), annealed under the 
same conditions (550 ◦C for 15 min). This trend can be a great tool for 
fine-tuning the operating range of nanosensors. For this purpose, an 
artificial neural network was used. In order to build a reliable model, it 
was necessary to take into account a much wider spectrum of samples 
than those whose resonance positions are presented in Fig. 10. Of 
course, the results obtained from the model should be consistent with 
the experiment also in the linear fit shown in Fig. 10. 

For each model, the independent training of the neural network was 
successfully completed after 100,000 – 500,000 epochs, in the sense of 
minimizing the loss function (RMSE) on the validating data set. The 
RMSE for these trained models ranged from 1.66 nm to 5.26 nm. The 
final predictive model was constructed as a weighted average of all 
models, with the weights selected as 1/RMSE. The RMSE (on the com-
plete dataset) of this averaged model was found to be 1.53 nm, which is 
lower than that for any of the individual models alone. Using this model, 
we are able to estimate the positions of the absorption maxima (reso-
nance peaks) for the given annealing times, as well as the thicknesses Au 
and Ag layers, with minimized risk of overfitting. Example of the results 
of such predictions for selected annealing times are shown in Fig. 11. A 
few numerical results for different (randomly selected) combinations of 
input parameters are collected in Table 1. Let us note that these results 
are predictions only, based on the available experimental data. But, since 
the predictive model has been trained using the cross-validation 

Fig. 10. Position of the plasmonic band of AuxAg1-x nanoalloy structures 
depending on the initial Au/Ag composition. Every measured structure was 
achieved either from a single layer or bilayers with an Ag layer sputtered on top 
of an Au layer. The total thickness of such systems was 6 nm. The samples 
prepared in this way were then annealed at 550 ◦C for 15 min. 
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method, we believe that the error should not exceed 1.53 nm (the final 
RMSE). 

Since the source experimental data [28] covered the range 5–60 min 
of annealing time, 0–2.8 nm of Au layer thickness and 0–8.4 nm of Ag 
layer thickness and due to data normalization, it should be also noted 

that the most reliable in a given range of input parameters, e.g. for 
annealing times from 5 to 60 min, Au layer thickness from 0 to 3 nm, and 
Au layer thickness from 0 to 9 nm. In addition, the accuracy of the model 
is limited by the relatively small amount of training data. However, 
when new (or more accurate) experimental data becomes available, the 

Fig. 11. Machine predictions of the absorption maxima positions as a function of Au and Ag layer thickness for several annealing times.  
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model can be easily fine-tuned using the transfer-learning procedure 
[47]. 

The training dataset [28] includes a few specific cases where the 
positions of resonance peak were located above 600 nm, mainly due to 
the large size of the grains in the resulting alloy. As a consequence, the 
predictive model is also able to give predictions above 600 nm, but – as 
one read from Fig. 11 – this might occur only for very specific combi-
nations of input parameters, which are visualized by the most bright 
parts of the pictures (one of that combination is presented in Table 1). 
There is a possibility to train a new model, excluding these specific cases, 
but it would be limited to the narrower range of input parameters. In the 
present work we decided to leave the full training dataset, keeping the 
predictive model more general. 

4. Conclusions 

This work presents the synthesis of plasmonic platforms based on 
AuAg nanoalloy with the use of a time-saving and cost-effective method. 
The influence of initial fabrication parameters i.e. annealing time and 
temperature, as well as the configuration and thicknesses ratio of the 
sputtered layers, was investigated. Due to fabrication in the argon at-
mosphere, there was no corrosion of the silver, hence no major differ-
ences between the different layers ordering were observed. As shown, 
the combination of these two metals made it possible to tune the LSPR 
over the 100 nm range with a linear dependence on the Au content in the 
plasmonic platform. It has been presented that in the plasmonic platform 
fabrication regime, artificial neural networks can be successfully used to 
determine the initial fabrication parameters needed for the LSPR be-
tween the experimental results. The ability to fine-tune the position of 
the resonant peak along with quick information about the fabrication 
parameters needed for such a procedure creates exceptional opportu-
nities in the design of highly sensitive sensors. 

Our studies have shown that changes in the composition and 
annealing over time of AuAg alloys with an appropriate neural network 
model can be used to efficiently tune plasmon resonance. This property 
of AuAg nanoalloys can be applied in various types of sensors, surface 
spectroscopy, and optoelectronics. 
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[25] Marcin Łapiński, Robert Kozioł, Anita Cymann, Wojciech Sadowski, 
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Nanoalloy Plasmon Resonances Used for Machine Learning Method, Gdańsk 
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