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Recently the quantum information science community devoted a lot of attention to the theoretical and practical
aspects of generalized measurements, the formalism of all possible quantum operations leading to acquisition of
classical information. On the other hand, due to imperfections present in quantum devices, and limited thrust to
them, a trend of formulating quantum information tasks in a semi-device-independent manner emerged. In this
Rapid Communication we use the concept of quantum random access codes to construct a protocol able to certify
the presence of the generalized measurements in a semi-device-independent way without employing quantum
entanglement. We use semidefinite programming methods to show robustness of the protocol and characterize
its statistical properties. We conclude that it allows for experimental realizations using technology currently
available in laboratories.
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Introduction. Measurements lay in the heart of all physical
sciences. The formalism of quantum mechanics defines them
as projections on vectors in some abstract Hilbert space, yet
they remain one of the most mysterious notions of modern
physics.

Even though the formalism was elaborated many years
ago [1], the development of quantum information science
led to its significant enhancement, when so-called positive-
operator-valued measure (POVM) or generalized measure-
ments have been introduced [2–4], originating in the problem
of nonorthogonal states discrimination.

The importance of POVMs stems from the fact that they
formalize the most general way we can acquire information
from physical systems. Their analysis improves our under-
standing of which quantities can be potentially measured with
what accuracy and which information processing tasks can be
performed, e.g., the mentioned task of state discrimination
or state tomography [5,6]. The problem how generalized
measurements are related to projective ones supplied with
additional resources, is also closely related to fundamental
issues [7,8].

A recent trend in quantum information, related to security
and reliability issues, tries to formulate physical problems,
protocols, and experiments in a so-called device-independent
(DI) way [9], where one derives all conclusions about some
phenomenon based only on the observed results, not making
assumptions regarding the internal construction of the in-
volved setup. This approach is motivated by the limited thrust
that may be devoted to quantum apparatuses one uses. In
(almost) all physical experiments some imperfections occur,
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e.g., a quantum measurement can be conducted in a slightly
different way than assumed in theory. DI formulation often
allows for some conclusive results, even if considered devices
are not working in an entirely correct way. What is more,
with the DI approach one is sometimes able to gain positive
results even if employed devices are intended by a malevolent
vendor to work in a misleading way, as is sometimes assumed
in cryptography.

A popular relaxation of the DI approach is called semi-
device-independent (SDI) [10], where some assumptions re-
garding devices are made. The most common assumption is
a constraint on the dimension of quantum systems communi-
cated between parts of the considered setup. The motivation
is that quite often DI protocols are not suitable for practi-
cal application. This happens because they usually tolerate
only small imperfections, and require scenarios involving
resources that are difficult to be attained, like close to perfect
quantum entanglement. It revealed that when using a rela-
tively simple assumption the requirements for protocols are
significantly lessened.

From the interest in these two topics, i.e., measurements
and DI protocols, emerged a problem of SDI certification that
some of the measurements performed by devices used in an
experiment cannot be projective. Surprisingly, the problem
was revealed to be very demanding. The first experiment
certifying the presence of generalized measurements [11] was
based on a scheme involving entangled quantum states. Later
a similar approach was used to generate randomness from
POVM outcomes [12]. Yet, the way to certify the presence
of generalized measurements without entangled states is not
known.

The result of this Rapid Communication is an SDI protocol
using a prepare and measure scheme that is able to certify
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the presence of a four-outcome POVM in dimension two.
The advantage of the proposed protocol in comparison to the
one introduced in [11] is that no quantum entanglement is
required to realize it, and thus experimental implementations
are potentially easier to perform. Indeed, we show that the
robustness of the protocol makes it feasible for experimental
realizations.

The aim of this Rapid Communication is not only to show
that a POVM was implemented in an experiment,1 but to
prove that it was genuinely four-outcome, viz., not a convex
combination of measurements with less outcomes. Note, that
in order to gather a probabilistic description of a black-box
use of the device, one has to repeat experimental runs many
times and count particular events, in a form: For the settings
(x, y) the result b occurred nb,x,y times.

This way it can happen that for the measurement setting
under investigation all four outcomes b = 1, 2, 3, 4 have been
observed in some events. On the other hand, it still does
not mean that a four-outcome measurement was performed
in any of the runs. It could happen that, e.g., in even runs
only outcomes 1 and 2, and in odd runs only outcomes 3 and
4 were (potentially) possible. Thus, we cannot a priori say
that in some experiment a genuine four-outcome measurement
was performed. The aim of this Rapid Communication is to
circumvent this problem.

We note that the experiment reported in [11] was able to
certify only a (genuine) three-outcome POVM, and certifi-
cation of four outcomes would require very high visibility
(above 0.993) that is more difficult to attain with quantum
entanglement than in the prepare and measure scheme used
in this Rapid Communication. Moreover, the latter approach
is able to achieve higher generation rates, which is important
from an application point of view, such as randomness gener-
ation using generalized measurements [12].

Quantum random access codes. The key tool we use in
this Rapid Communication is so-called random access codes
(RACs). They were first introduced in the field of quantum
information as conjugate coding in 1983 by Wiesner [13], and
then reintroduced in [14,15] (see [16] for an overview). In an
nd → 1 RAC Alice is provided a uniformly distributed string
of n dits, x = x1x2 · · · xn. Her task is to encode the string into
a single dit message m(x), in such a way that Bob is able to
recover any of the n dits with high probability. Bob receives
Alice’s message m, and a referee provides him a uniformly
distributed input y ∈ [n], where [n] ≡ {1, 2, . . . , n}. After this
Bob performs classical (possibly probabilistic) computations
of some function b(y, m). We say that the protocol succeeded
when b(y, m(x)) = xy.

The quantum analogs of RACs are quantumrandom access
codes (QRACs) [13,14]. In nd → 1 QRAC Alice encodes the
n-dit input x into a d-dimensional quantum system ρx, that
is then transmitted to Bob. He afterwards performs one of
his n measurements (depending on the input y) to give his
guess b for xy. Thus he outputs b with probability given by
Tr[ρxMy

b], where the operators My
b are POVMs, i.e., positive

1This task would be trivial, as the measure of projective measure-
ments is 0, effectively meaning that all practical measurements are
POVMs.

and ∀y
∑

b My
b = 1d , and 1d is the identity operator in dimen-

sion d . In this Rapid Communication we consider degenerated
POVMs, where some of the operators are allowed to be null.

Note that Alice’s only optimal strategy is to send a state ρx
maximizing the value of Tr[ρx(

∑
y∈[n] My

xy )]. This is obtained
if the state is in the subspace of vectors with maximal eigen-
value of the operator

∑
y∈[n] My

xy .
In both RACs and QRACs we consider the probability that

Bob returns outcome b when his input is y, and Alice’s input
is x. We denote this probability by P(b|x, y). The average
success probability for RACs and QRACs is thus given by

1

ndn

∑
x∈[d]n

∑
y∈[n]

P(xy|x, y). (1)

Reduction of 32 → 1 QRAC and its self-testing. Now, let us
focus on a 32 → 1 QRAC. In [17] it has been shown that this
protocol possesses a robust self-testing property [18], mean-
ing that there exists a unique set of optimal quantum states
and measurements that maximizes it (up to some elementary
transformations), and that if the experiment is close to the
maximal value, then the states and measurements are close
to the optimal ones. Let

{ρ̃x} and
{
M̃y

b

}
(2)

be these optimal states and measurements, respectively.
To be more specific, Alice obtains here one of eight pos-

sible inputs, and prepares one of eight relevant qubits. In the
perfect case of success probability

S3 = 1

2

(
1 +

√
3

3

)
≈ 0.788 68, (3)

Bob performs a measurement in one of three mutually un-
biased bases in dimension 2, corresponding in this case to
measuring observables given by Pauli operators {σx, σy, σz}.

From our observation regarding Alice’s optimal encod-
ings, we find the unique preparation states maximizing the
success probability. One can check [16] that the Bloch
sphere representations of states {ρ̃000, ρ̃011, ρ̃101, ρ̃110} and
{ρ̃111, ρ̃100, ρ̃010, ρ̃001} are located on the edges of regular
tetrahedra, with relevant edges antipodal to each other. The
explicit representation of the former set of states is as follows:

ρ̃000 =
[

1 − α β(1 + i)
β(1 − i) α

]
, (4a)

ρ̃011 =
[

α β(1 − i)
β(1 + i) 1 − α

]
, (4b)

ρ̃101 =
[

1 − α β(−1 + i)
β(−1 − i) α

]
, (4c)

ρ̃110 =
[

1 − α β(−1 − i)
β(−1 + i) α

]
, (4d)

where α ≡ 3−√
3

6 and β ≡
√

3
6 .

Now, we apply the method of the so-called reduction of
symmetric dimension witnesses introduced by us in [19] to
show that the following expression (that is not a QRAC)
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possesses a self-testing property:

1

12

∑
x∈{000,011,101,110}

∑
y∈[3]

P(xy|x, y). (5)

Indeed, let us assume that there exists a set of measurements of
Bob {My

b} and states prepared by Alice {ρx}x=000,011,101,110 op-
timal for (5) and different from {M̃y

b} and {ρ̃x}x=000,011,101,110.
Without loss of generality we may assume that Tr My

b = 1 for
all b and y [17].

Let us now define ρ111 ≡ 12 − ρ000, ρ100 ≡ 12 − ρ011,
ρ010 ≡ 12 − ρ101, and ρ001 ≡ 12 − ρ110. One can easily check
that these states together with {My

b} maximize the expression
complementary to (5), i.e.,

1

12

∑
x∈{111,100,010,001}

∑
y∈[3]

P(xy|x, y). (6)

One can verify that the states {ρ̃x} and measurements
{M̃y

b} from (2) used for expressions (5) and (6) give for both
cases success probability S3, and the average of these game
expressions is exactly 32 → 1 QRAC. From its self-testing
property, the assumption that states {ρx} and measurements
{My

b} are not equal to these leads to contradiction, showing
the self-testing property of both games (5) and (6).

We briefly note here that an immediate consequence of
the above construction is the possibility of deriving also
the robustness of the self-testing of expressions (5) and (6)
directly from robustness of the 32 → 1 QRAC [17]. Indeed,
consider the maximal distance δ1 of states and measurements
from (2) that allows one to reach the value S3 − ε by 32 → 1
QRAC, where to express the distance an arbitrary isotropic
metric is used.

Let δ2 be the maximal distance from (2) that allows one to
reach the value S3 − ε in the reduced game (5). From isotropy
of the metric we get the same maximal distance δ2 for the
reduced game (6), and we see that the same measurements
can be used for both of these reduced games. From this and
from the fact that 32 → 1 QRAC is the average of (5) and (6)
we see that δ2 � δ1.

Robust POVM certification. Let us now consider a more
complicated task, where Alice and Bob are not only max-
imizing expression (5) (i.e., the reduced 32 → 1 QRAC),
but also minimizing probability of some other events. Let
us introduce an additional fourth input of Bob, related to a
four-outcome measurement (with outcomes labeled 1,2,3,4).
The new expression we consider is

1

12

⎡
⎣ ∑

x∈{000,011,101,110}

∑
y∈[3]

P(xy|x, y) − kG4

⎤
⎦, (7)

where k > 0, and

G4 ≡ P(1|000, 4) + P(2|011, 4)

+ P(3|101, 4) + P(4|110, 4). (8)

One can easily see that expression (7) cannot obtain a value
greater than S3, and the value would be obtained only when the
states {ρ̃x} and measurements {M̃y

b} are used, and the part G4 is
equal to 0. From this it follows that each operator {M4

i } has to
be orthogonal to relevant state {ρ̃000, ρ̃011, ρ̃101, ρ̃110}. Direct

calculation shows that the fourth measurement is a POVM
given by

M4
1 = 1

2

[
α β(−1 − i)

β(−1 + i) 1 − α

]
, (9a)

M4
2 = 1

2

[
1 − α β(−1 + i)

β(−1 − i) α

]
, (9b)

M4
3 = 1

2

[
1 − α β(1 − i)

β(1 + i) α

]
, (9c)

M4
4 = 1

2

[
α β(1 + i)

β(1 − i) 1 − α

]
. (9d)

All these considerations refer to the perfect case when the
maximal value S3 of expression (7) is observed. In real-world
experiments this will not be the case due to experimental
imperfections. Thus, to provide an experimentally feasible
certificate that a measurement is a genuine four-outcome
POVM, we need to establish the robustness of the certification
protocol. We note here, that in order to perform a conclusive
experiment one does not need to calculate full robustness
properties including distances of the states and measurements
to the perfect ones depending on the certificate value. For the
purpose of the experiment it suffices to establish the scope
of values that certifies the presence of four- or three-outcome
POVM.

In order to model the experimental imperfections we use
the visibility of quantum states. The visibility ν means that
whenever the state prepared in the perfect situation is ρ, the
state occurring in the experiment is modeled as νρ + 1−ν

d 1d .
This parameter represents the impact of the proper state in
comparison to the white noise. Let N (k) be the value of
the certificate (7) when ν = 1, i.e., for all input settings the
transmitted state is the white noise. We have

N (k) = 1
12 (12 × 0.5 − k × 4 × 0.25). (10)

Let g j (k) denote the maximal value of expression (7) when
the fourth measurement has j outcomes, j = 2, 3, 4. We have
g4(k) = S3 for all k � 0. The critical visibility ν j (k) needed to
certify that j ( j = 3, 4) outcomes are necessary to reproduce
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FIG. 1. The values of upper bounds g3(k) and g2(k) for the game
(7) possible to be obtained with three- and two-outcome POVMs,
respectively, for different values of k.
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TABLE I. The probabilities obtained using the see-saw method for the case when fourth measurement is assumed to have only two outcomes
with nonzero probabilities and k = 1. The bold values are the ones that occur in (7).

x P(0|x, 1) P(1|x, 1) P(0|x, 2) P(1|x, 2) P(0|x, 3) P(1|x, 3) P(1|x, 4) P(2|x, 4) P(3|x, 4) P(4|x, 4)

000 0.684 0.316 0.854 0.146 0.854 0.146 0.035 0.965 0 0
011 0.684 0.316 0.146 0.854 0.146 0.854 0.965 0.035 0 0
101 0.195 0.805 0.757 0.243 0.243 0.757 0.500 0.500 0 0
110 0.195 0.805 0.243 0.757 0.757 0.243 0.500 0.500 0 0

the experimental value is given by the expression

ν j (k) = g j−1(k) − N

S3 − N
. (11)

There exist a couple of methods of optimization of quantum
expression with dimension constraints. One of them is the
see-saw method [20], that optimizes within the interior of
the quantum theory, and is able to provide explicit forms of
states and measurements realizing the resulting value. The
result of a maximization provides a lower bound on the
proper quantum value. The see-saw optimizations have been
performed using OCTAVE [21] with SDPT3 solver [22,23]
and YALMIP toolbox [24]. Some other methods [19,25,26]
optimize from the exterior of the quantum theory (i.e., they
provide relaxations of the quantum formalism). They give
upper bounds on quantum values.

The results we obtained using the second level of the
Mironowicz-Li-Pawłowski (MLP) relaxation [19] for differ-
ent values of k for functions g3(k) and g2(k) are shown
in Fig. 1. Recall that the assumed dimension constraint is
two. We have g3(1) = 0.7864 and g2(1) = 0.7793, relating to
visibilities ν4(1) = 0.9938 and ν3(1) = 0.9747, respectively.
The MLP relaxation values have been calculated using the
NCPOL2SPDA package [27].

The value g2(1) is derived also in the see-saw method
giving lower bounds on the values of dimension constrained
quantum scenarios, thus this value is exact. In the see-saw
approximation of g3(1) we obtained after multiple executions
with random seeds the value 0.7856, thus establishing the
scope of the possible exact value. For the sake of completeness
the details of the probability distribution obtained using see-
saw are given in Tables I and II for k = 1.

Now, let gobs(k) be the observed value of the game (7)
for some k, and r be the ratio of runs of the experiment
using genuine four-outcome POVMs. Let g(4)

exp and g(<4)
exp be the

average values of the game in genuine four-outcome POVM
runs, and runs with measurements with less than four possible
outcomes, respectively. Obviously

gobs(k)=rg(4)
exp+(1−r)g(<4)

exp �rg4+(1−r)g3(k). (12)

From this it follows that

r � r0(k) ≡ gobs(k) − g3(k)

g4 − g3(k)
. (13)

Thus, if gobs(k) is the observed average value of expression (7)
for some k > 0, under assumption that the dimension of the
quantum system is two, then at least in the r0(k) part of runs
of the experiment a genuine four-outcome POVM occurred.

Our results mean that whenever in an experiment one
obtains the average value greater than g3(k) [g2(k)], then a
genuine four(three)-outcome POVM is certified to be used, at
least in some runs of the experiment. The main conclusion
of the Rapid Communication may be summarized in the
following way.

Corollary 1. For all k > 0, under the assumption that
qubits are sent and a three-outcome POVM is measured the
quantity (7) obeys an upper bound g3(k) that can be beaten
with a four-outcome POVM to the value g4(k) > g3(k). These
allow one to certify a presence of a four-outcome POVM in an
experiment.

Conclusions. In this Rapid Communication we have pre-
sented a prepare and measure SDI protocol able to certify the
occurrence of a genuine four-outcome generalized measure-
ment in dimension two. The robustness of the protocol allows
for using it in real-world experiments in laboratories [28]. The
special role of four-outcome POVMs in dimension two stems
from the fact that they are information complete [29].

Even though the construction of the protocol was based
on the reduction of QRACs, the resulting states and mea-
surements are closely related to the so-called elegant Bell in-
equality [30] (EBI), whose self-testing properties were shown
recently [31]. Using the methods of [19] it is possible to
convert EBI to a prepare and measure protocol and, after the
reduction operation, derive the same result as those presented
above.

The problem of how to certify generalized measurements
in different dimensions and with arbitrary number of out-
comes remains open. The above construction suggests that a
possible way to tackle this issue is related to similar QRAC

TABLE II. The probabilities obtained using the see-saw method for the case when fourth measurement is assumed to have three outcomes
with nonzero probabilities and k = 1. The bold values are the ones that occur in (7).

x P(0|x, 1) P(1|x, 1) P(0|x, 2) P(1|x, 2) P(0|x, 3) P(1|x, 3) P(1|x, 4) P(2|x, 4) P(3|x, 4) P(4|x, 4)

000 0.765 0.235 0.765 0.235 0.856 0.144 0.008 0.496 0.496 0
011 0.765 0.235 0.144 0.856 0.235 0.765 0.496 0.008 0.496 0
101 0.144 0.856 0.765 0.235 0.235 0.765 0.496 0.496 0.008 0
110 0.235 0.765 0.235 0.765 0.765 0.235 0.333 0.333 0.333 0
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constructions [32,33]. This shows the benefit of using the
above method in comparison to a simple conversion from an
existing entangled protocol using EBI.

Note added. Recently, we became aware of an independent
work [28] focused on self-testing of qubit POVMs.
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