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Serial crystallography experiments at X-ray free-electron laser facilities produce

massive amounts of data but only a fraction of these data are useful for

downstream analysis. Thus, it is essential to differentiate between acceptable

and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image

classification methods from artificial intelligence, or more specifically convolu-

tional neural networks (CNNs), classify the data into hit and miss categories in

order to achieve data reduction. The quantitative performance established in

previous work indicates that CNNs successfully classify serial crystallography

data into desired categories [Ke, Brewster, Yu, Ushizima, Yang & Sauter (2018).

J. Synchrotron Rad. 25, 655–670], but no qualitative evidence on the internal

workings of these networks has been provided. For example, there are no

visualization methods that highlight the features contributing to a specific

prediction while classifying data in serial crystallography experiments. There-

fore, existing deep learning methods, including CNNs classifying serial

crystallography data, are like a ‘black box’. To this end, presented here is a

qualitative study to unpack the internal workings of CNNs with the aim of

visualizing information in the fundamental blocks of a standard network with

serial crystallography data. The region(s) or part(s) of an image that mostly

contribute to a hit or miss prediction are visualized.

1. Introduction

Serial femtosecond crystallography (SFX) has become

popular in determining biological structures from crystal

diffraction patterns using X-ray free-electron laser (XFEL)

sources (Chapman et al., 2011; Wiedorn et al., 2018). Using

X-ray pulses, the experiments can produce strong patterns

from weakly diffracting crystals at room temperature.

However, these pulses also destroy the crystals, so diffraction

patterns need to be gathered from many crystals. This results

in large quantities of data. For example, the Coherent X-ray

Imaging instrument at the Linac Coherent Light Source

(LCLS, Menlo Park, California, USA) delivers full frames of

data at up to 120 Hz, producing 43 000 samples per hour and

data files of tens to hundreds of terabytes in size (Barty et al.,

2014).

In spite of the large data volumes produced, only a small

percentage of the data are useful for downstream analysis.

Fig. 1 illustrates a typical experimental setup at the European

X-ray Free-Electron Laser (European XFEL, Schenefeld,

Germany). Protein crystals are fired through the path of the

X-ray beam in a liquid jet, and only a small proportion of the

X-ray pulses will actually hit a crystal. For example, an early

SFX experiment at the European XFEL involving CTX-M-14

�-lactamase produced 3 215 616 images at an average rate of
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300 images per second. Of these, only 14 445 images (0.4%)

were observed to contain diffraction patterns from protein

crystals as observed in the offline analysis (Wiedorn et al.,

2018). In this early experiment, both the accelerator and

detector were operated below their maximum rates; at full

speed, up to 3520 images per second can be taken. Further-

more, new free-electron laser facilities such as LCLS-II will

handle experiments with continous repetition rates up to

1 MHz, resulting in even higher data volumes (Galayda, 2018).

Considering these data challenges, sophisticated tools have

been developed to process data and provide feedback during

experiments (Barty et al., 2014; White et al., 2012; Daurer et al.,

2016; Winter et al., 2018). In a typical SFX experiment, the

detector may register Bragg peaks from crystal ‘hits’, other-

wise missing in empty shots. Given the nature of SFX

experiments, it is obvious that only samples with Bragg peaks

are useful for downstream analysis (Wiedorn et al., 2018). Fig. 2

shows ‘miss’ and ‘hit’ samples randomly selected from a

Rayonix detector (Ke et al., 2018).

Current methods utilize statistical peak finding to identify

and discriminate between samples (Hadian-Jazi et al., 2017,

2021). For example, the Cheetah software tool (Barty et al.,

2014) finds and counts the Bragg peaks in an image and keeps

it if the counts exceed a certain threshold based on the

Peakfinder8 algorithm. The threshold mechanism finds Bragg

peaks with a size of more than nmin but fewer than nmax

connected pixels with intensity values above a radially

dependent threshold, which is calculated from the averaged

background intensity. If the number of Bragg peaks with an

adequately high signal-to-noise ratio surpasses a certain

minimum number npeaks, the image is classified as a hit class.

Finally, the reduced data are output in a facility-independent

HDF5 format, enabling downstream analysis. For example,

CrystFEL (White et al., 2012) is employed to view, index,

integrate, merge and evaluate diffraction data. Likewise, the

DIALS software (Winter et al., 2018) is extensively employed

to detect Bragg peaks and index them. Other tools such as

OnDA (Mariani et al., 2016) and Hummingbird (Daurer et al.,

2016) provide real-time monitoring of data along with

experimental conditions.

Over the past decade, machine learning has produced

unprecedented breakthroughs in various computer vision

tasks (LeCun et al., 2015). With these advancements, the

crystallography community has also made use of machine

learning for various applications (Sullivan et al., 2019; Park et

al., 2017; Ryan et al., 2018; Wang et al., 2020). Specifically, the

serial crystallography community has experimented with these

methods to achieve data reduction (Becker & Streit, 2014; Ke

et al., 2018; Souza et al., 2019; Rahmani et al., 2023; Chen et al.,

2021). Machine learning, or more specifically deep learning

methods including convolutional neural networks (CNNs),

encode experimental data to classify it into hit or miss cate-

gories. While these networks can achieve superior perfor-

mance on image classification tasks, their lack of

decomposability into individually intuitive blocks makes them

hard to understand or interpret (Lipton, 2018). Previous work
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Figure 1
A typical SFX experiment at the European XFEL. The laser produces ten trains of X-ray pulses per second, with a pulse repetition rate within each train
that can vary from 1.1 to 4.5 MHz. The diffraction from the protein sample is measured using an adaptive gain integrating pixel detector (AGIPD), which
is capable of measuring up to 352 images from each bunch train at frame rates up to 4.5 MHz (Wiedorn et al., 2018).
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with CNNs for serial crystallography has inherited these

limitations (Ke et al., 2018). For example, there is no

mechanism to explain how CNNs make decisions while clas-

sifying samples into hit or miss categories. Generally, input

data in a CNN pass through several layers of multiplication

with learned weights and through nonlinear transformations
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Figure 2
Representative diffraction patterns randomly selected from the Rayonix detector. We have cropped the central region of the diffraction patterns to
enhance the visibility of the Bragg peaks in miss and hit categories. Ke et al. (2018) used human annotators to label data sets LN83 and LN84.

Figure 3
An overview of the proposed methodology to evaluate a deep neural model with interpretation and evaluation metrics. Visual interpretation provides
useful information for experts to understand how a CNN classifies a sample into a certain class, while the evaluation metric helps to understand its
quantitative performance. For illustration, the figure shows an example with a natural image, where discriminative regions in an image from the ‘cat’ class
are highlighted.
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in order that a prediction can be made. Therefore, a prediction

may involve millions of mathematical operations depending

on the network configuration. This process makes it challen-

ging for humans to understand the exact mapping from input

to prediction – it is a ‘black box’ (Fig. 3). As a result, when

such networks fail, they often break down spectacularly

without providing meaningful error explanations (Lipton,

2018). Therefore, these networks should provide visualizations

on their predictions along with standard evaluation metrics.

To this end, the computer vision community has developed

methods to explain model predictions visually (Mahendran &

Vedaldi, 2015; Selvaraju et al., 2017; Simonyan et al., 2014).

Similarly, the crystallography community also uses these

visualization methods, such as class activation maps, to high-

light areas with Bragg peaks (Chen et al., 2021). Continuing

this process, we present here a comprehensive study exploiting

visualization methods from computer vision to highlight data

features (attributes) that contribute to the CNN prediction or

decision in classifying serial crystallography data into hit or

miss categories, using both synthetic and real experimental

data. In addition, we use computer vision methods to under-

stand what information different layers of a CNN extract from

the image. Our qualitative examples reveal that a CNN

focuses on discriminative regions of an image while classifying

data into hit or miss categories. In other words, it activates

different parts for images taken from miss or hit classes.

2. Method

Our goal is to understand, with visualization, how CNNs

classify serial crystallography data into hit and miss categories.

Fig. 3 shows our proposed methodology employing both

qualitative and quantitative components. In this work, we use

two computer vision methods to visualize the function of CNN

representations and CNN predictions. Generally, visualization

methods are applied to supervised neural networks. There-

fore, we selected the standard image classification networks

named AlexNet (Krizhevsky et al., 2012) and Residual

Network (ResNet) (He et al., 2016) to provide insights into

internal workings. In this section, we provide details of various

components of our proposed methodology, including data,

supervised neural network details and visualization methods,

along with implementation details.

2.1. Data sets

Previous work involving machine learning has used both

synthetic and experimental data sets (Ke et al., 2018; Souza et

al., 2019; Rahmani et al., 2023). Thus, we selected data sets to

visualize CNN representations along with the parts respon-

sible for a certain prediction. The DiffraNet data set is

composed of synthetic samples generated using the nano-

Bragg simulator (Souza et al., 2019; https://bl831.als.lbl.gov/

~jamesh/nanoBragg/). The simulator produces different

images by taking a single-crystal structure and varying the

X-ray beam intensity, simulating imperfections in the crystal

by breaking it up into smaller crystals, and also by varying

parameters like the sources of background noise and the

orientation of the crystal. DiffraNet consists of 25 000 samples

with an image size of 512 � 512 divided into five classes:

Blank, No crystal, Weak, Good and Strong. The Blank class

denotes images with no X-rays and only detector noise, while

in the No crystal class there is scattering from amorphous

material but no protein crystal. Weak, Good, and Strong

represent images with a crystal in the beam with increasingly

higher intensity.

We also used real experimental data sets (LN83 and LN84)

collected on the Macromolecular Femtosecond Crystal-

lography (Boutet et al., 2016) instrument of the LCLS (White

et al., 2015) with conveyor-belt delivery of crystal specimens

(Fuller et al., 2017). Previous work (Ke et al., 2018) unpacked

the first 2000 images from the native LCLS data format for

further study.

Table 1 shows the experimental settings for these two data

sets. We have used the same images and labels as in the

experiments (Ke et al., 2018). We note that the patterns

labelled as hits by the human annotator are spot-finder hits

having visible Bragg peaks. The indexable patterns would be

only a subset of these patterns. Ke et al. (2018) curated these

data sets to find a rapid screen for Bragg peaks so that non-hits

could be vetoed before they ever hit flash memory, for

example by implementing the CNN on a field-programmable

gate array (FPGA) or a graphical processing unit (GPU). To

this end, we fed LN83 and LN84 into the DIALS software tool

to find out if the labelled hit patterns are indexable. We

observed that 90% of the labelled hit patterns from LN83 and

LN84 are indexable.

2.2. Convolutional neural networks

In recent years, deep neural models have made remarkable

improvements in state-of-the-art image, video, speech and text

processing tasks (LeCun et al., 2015; Saeed et al., 2022; Nagrani

et al., 2017; Mikolov et al., 2013). One of the fundamental tools

leading to these remarkable results is a network named the

convolutional neural network (CNN). Typically, it is composed

of several building layers to transform one volume of activa-

tions to another through a differentiable function. We provide

a brief overview of three layers in a typical CNN, i.e. the

convolution layer, the pooling layer and fully connected

layers.
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Table 1
Experimental data.

LCLS data set (proposal, run) Incident energy (eV) Protein Space group, unit cell (Å) Instrument Sample delivery Detector

LN84, 95 9516 Photosystem II P212121, a = 118, b = 223, c = 311 MFX Conveyor belt Rayonix
LN83, 18 9498 Hydrogenase P212121, a = 73, b = 96, c = 119 MFX Conveyor belt Rayonix
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A convolutional layer extracts features from the input

image or previous layer using the mathematical operation of

convolution between the input and a filter of a particular size.

The operation is performed with a sliding window over the

input image and computes the dot product between the filters

and the parts of the input with respect to the size of the filter,

producing feature maps. These feature maps provide infor-

mation on where features such as edges, corners etc. occur in

the image and how well they correspond to the filter. The

weights of the filters can be trained using gradient-descent-

based algorithms such as stochastic gradient descent. The

linear operation of convolution is then followed by applying a

nonlinear activation function to each element of the feature

map; this makes it possible for the network to learn nonlinear

features of the input.

A convolutional layer is often followed by a pooling layer

which shrinks the size of the convolved feature map to reduce

the computational costs. In other words, the pooling operation

keeps the detected features in a smaller representation by

discarding less significant data at the cost of spatial resolution.

The pooling task independently operates on each feature map.

The most common methods are max and average pooling,

where the former finds the highest value within a window

region and discards the remaining values, while the latter finds

the mean of the values within the region.

A series of convolutional and pooling layers extract

increasingly high-level features of the image. These are

followed by fully connected layers of neurons which perform a

classification task. The final fully connected layer has one

output node for each class.

In this work, we used a standard network named AlexNet

(Krizhevsky et al., 2012). Although it is one of the earlier

neural networks, it has all the necessary fundamental

components which are required for the two visualization

methods. For example, it has both convolutional and fully

connected layers. The network has eight layers, which is fewer

than many more recent architectures, but it is still considered a

deep neural network. The first five layers are convolutional

layers, some of them followed by max-pooling layers, and the

last three are fully connected layers, as shown in Fig. 4.

Moreover, it uses the rectified linear unit (ReLU) activation

function which is computationally cheap and widely used in

CNNs.

We also employed a more recent and popular network

known as ResNet (He et al., 2016). The network introduces

residual blocks to alleviate the vanishing gradient problem

(generally, the performance of CNNs can be improved by

stacking more layers, but it has been observed that after some

depth the performance deteriorates) (Bengio et al., 1994;

Glorot & Bengio, 2010). The residual blocks consist of a skip

connection which hops some layers in between. These skip

connections allow the CNN to learn the identity functions,

which ensures that the later layer will perform at least as well

as the initial layer. Typically, ResNets can have variable sizes,

depending on how big each of the layers are; we trained

ResNet-101 in our experiments.

2.3. Visualization of representations

Image representations are a crucial component of almost

any image-understanding system. They provide information to

understand what is encoded by a CNN layer. This is done by

taking the output of a CNN layer (referred to as representa-

tions) and attempting to reconstruct the original input image

from it. Later CNN layers contain increasingly high-level

information, so we do not expect an accurate or detailed
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Figure 4
The AlexNet architecture. It contains eight layers; the first five being convolutional layers and the last three fully connected layers. The final fully
connected layer has the same number of outputs as the number of classes in the data set.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


reconstruction, but the reconstruction can indicate what

features a layer retains. Fig. 5 shows an overview of the process

to reconstruct the original image from the CNN representa-

tions. Mathematically, it is formulated as follows:

x� ¼x2RH�W�C l �ðxÞ;�0

� �
þ �RðxÞ; ð1Þ

where �(x) refers to the representations obtained by passing

some image x to the network, and �(x0) = �0 are the repre-

sentations obtained from the original image.

R : RH�W�C
!R is a regularizer capturing an image prior,

which is helpful for the reconstruction process by restricting

the inversion to the subset of images. Intuitively, it produces

an image x* that is similar to x0 from the representation view

point. The process ensures that the output is some kind of

reasonable image, not just computational noise. The loss

function l employed in this work is the Euclidean distance,

l �ðxÞ;�0

� �
¼ �ðxÞ ��0

�� ��2
; ð2Þ

which minimizes the distance between the representations of

the original image and reconstructed image. In addition, the

regularizer improves the reconstruction process with the help

of two image prior methods. The first prior used is called the

�-norm, which is defined as

R�ðxÞ ¼ kxk
�
�; ð3Þ

where x is the vectorized and mean-subtracted image. It

favours images with a narrower spread of pixel values. The

second prior used for a discrete image x is called the total

variation, defined as

RV� ðxÞ ¼
X

i;j

xi;jþ1 � xi;j

� �2
þ xiþ1;j � xi;j

� �2
h i�=2

; ð4Þ

where � = 1. This favours images in which neighbouring pixels

have similar values. Finally, the overall objective function is

�ð�xÞ ��0

�� ��2

2

�0

�� ��2

2

þ ��R�ðxÞ þ �V�RV� ðxÞ; ð5Þ

where the scaling � is the average Euclidean norm of natural

images in a training set and �� is the �-norm to encourage the

reconstructed image �x to be contained in a natural range.

As explained in Section 2.2, typically a CNN detects edges

from pixels in the first layer(s), then uses those edges to detect

shapes in the next layer(s), and then uses that result to infer

complex shapes and objects in higher or later layers. Thus, the

reconstructed image from the initial layers may look very

similar to the original image (Mahendran & Vedaldi, 2015).

2.4. Visual explanations from predictions

Visual explanations or interpretations are employed by

CNNs to highlight features (attributes) that mostly contribute

to a specific prediction. For example, visual explanations can

show the part(s) or region(s) of an image responsible for a

‘dog’ prediction with a model trained on dog and cat samples.

Likewise, our goal is to visualize the part(s) of serial crystal-

lography images responsible for hit or miss classifications. To

this end, we use gradient-weighted class activation mapping

(Grad-CAM) which requires a differentiable layer, general-

izing it for a wide variety of CNN architectures (Selvaraju et

al., 2017).

Grad-CAM takes the feature map of the last convolutional

layer and multiplies every channel by the gradient of the

output class. A heat map is then generated to highlight the

activated region(s) of the input image for a specific class. We

use the following steps to create heat maps for visual expla-

nations on a specific prediction:

(i) Compute the gradient of the score for a specific class yc

(the raw output of the last convolutional layer before softmax,

which is a mathematical function that converts a vector of K

real numbers into a probability distribution of K possible

outcomes) with respect to each of the feature map activations

(Ak) of a convolutional layer.

(ii) Average-pool the gradients over the width and height

dimensions to get the neuron importance weights (�c
k). This

gives us a measure of how strongly each feature map (k)

contributes to an image being classified as a particular class (c),

�c
k ¼

1

Z

X
i

X
j

zfflfflfflfflffl}|fflfflfflfflffl{global average pooling

@yc

@Ak
ij

:|ffl{zffl}
gradients via backprop

ð6Þ

(iii) Calculate the heat map by finding the sum of all the

feature maps, weighted by their importance, and follow it by a

ReLU to obtain

Lc
Grad-CAM ¼ ReLU

X
k

�c
kAk

 !
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
linear combination

: ð7Þ

ReLU is applied to the linear combinations which have a

positive influence on the specific class, suppressing negative

pixels belonging to other classes.

(iv) Reshape and project the maps onto the original image.
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Figure 5
An overview of the process of visualizing CNN representations, prepared
using the method of Mahendran & Vedaldi (2015). The method starts
with random noise and iteratively reconstructs an equivalent image,
demonstrating the CNN representations.
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(v) Finally, the merged original image and heat map high-

light the discriminative region(s) contributing to the classifi-

cation process.

2.5. Implementation details

We used a standard set of hyperparameters to train the

AlexNet and ResNet-101 networks in all experiments. Speci-

fically, the networks were trained on a GPU for 50 epochs

using a batch size of 128 with an Adam optimizer (Kingma &

Ba, 2014) having an exponentially decaying learning rate

(initialized to 10�5). We followed the same train and test splits

as used in previous work (Ke et al., 2018; Souza et al., 2019).

We evaluated the performance of the networks with standard

classification evaluation metrics, i.e. accuracy, precision and

recall, defined as follows:

Precision ¼
TP

TPþ FP
; ð8Þ

Recall ¼
TP

TPþ FN
; ð9Þ

Accuracy ¼
TPþ TN

TPþ TNþ FPþ FN
; ð10Þ

where TP is true positive, TN is true negative, FP is false

positive and FN is false negative.

3. Experiments

In this section, we provide an overview of the data sets and

implementation details along with qualitative and quantitative

results. In our experiments, we visualized the CNN repre-

sentations along with the region(s) important for making a

specific prediction. The aim of these experiments was to

understand the internal working of a standard CNN (AlexNet

and ResNet-101) while classifying serial crystallography data.

In the first experiment, we trained the standard CNNs

AlexNet and ResNet-101 on the simulated DiffraNet data set

(Table 2). Our implementation produced competitive quan-

tative performance compared with DeepFreak (Souza et al.,

2019). We also used a confusion matrix to summarize the

prediction results on AlexNet (Table 3). We observed that

misclassification often occurs between Weak and Good and

Good and Strong categories. These results indicate that

neighbouring classes are similar. Our implementation achieves

perfect quantitative performance on Blank and No crystal

categories. For the purposes of data reduction, which is the

main aim, we do not care about Weak versus Good versus

Strong, as long as we get hit versus non-hit correct. Thus, we

can discard patterns from the Blank and No crystal categories,

achieving meaningful data reduction. The quantitative

performance (accuracy) indicates that the model is success-

fully classifying the synthetic images. Similarly, we performed

the classification experiments with experimental data

consisting of two diverse data sets denoted LN83 and LN84

(Table 4). Our implementation produced slightly lower accu-

racy than the previous work (Ke et al., 2018).

Table 5 provides a detailed comparison between deep

learning (Ke et al., 2018) and automatic spot-finding methods

(DIALS spot finding; Winter et al., 2018), and Table 6 lists the

DIALS parameters used to identify peaks or spots in the

pattern. The traditional spot-finding method reliably discards

miss patterns, but it does also throw away some hit patterns

research papers

1500 Shah Nawaz et al. � Explainable machine learning for diffraction patterns J. Appl. Cryst. (2023). 56, 1494–1504

Table 2
Classification results with AlexNet and ResNet-101 on DiffraNet data
sets.

GLCM is the grey-level co-occurrence matrix, ORB is the oriented FAST and
rotated BRIEF feature extractor, and MLP is a multilayer perceptron. The
best result is shown in bold.

Method Accuracy

DeepFreak (GLCM + random forest) (Souza et al., 2019) 98.4
DeepFreak (GLCM + support vector machine) (Souza et al., 2019) 97.6
ORB + MLP (Rahmani et al., 2023) 97.5
DeepFreak (Souza et al., 2019) 98.8
AlexNet (our implementation) 98.1
ResNet-101 (our implementation) 98.3

Table 3
DiffraNet confusion matrix for the test set with AlexNet.

Blank
No
crystal Weak Good Strong

Recall
(%)

True
class

Blank 2069 0 0 0 0 100
No crystal 2 3266 0 0 0 99.9
Weak 3 24 3273 46 0 97.8
Good 0 0 62 2341 41 95.8
Strong 0 0 0 60 1412 95.9

Precision (%) 99.9 99.3 98.1 95.7 97.1

Table 4
Classification results (accuracy) on real experimental data sets with
AlexNet and ResNet-101.

The best results are shown in bold.

Data sets

Method LN83 LN84

Ke et al. (2018) 96.0 90.0
AlexNet (our implementation) 82.2 87.0
ResNet-101 (our implementation) 90.4 91.2

Table 5
Comparison between deep learning [AlexNet and ResNet-101 in the
present work, and the results of Ke et al. (2018)] and an automatic spot-
finding method (Winter et al., 2018).

AlexNet
(present work)

ResNet-101
(present work)

Ke et al.
(2018)

Spot
finding

Data
set

Human
expert

Hit or
maybe Miss

Hit or
maybe Miss

Hit or
maybe Miss

Hit or
maybe Miss

LN83 Hit or
maybe

75.5 24.5 85.6 14.4 98.5 1.5 85.8 14.2

Miss 15.2 84.8 6.5 93.5 3.1 96.9 0.1 99.9

LN84 Hit or
maybe

95.9 4.1 93.0 3.0 98.5 1.5 69.9 30.1

Miss 20.0 80.0 7.2 92.8 10.1 89.9 0.4 99.6
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which are useful for downstream tasks such as indexing. On

the other hand, deep learning methods reliably differentiate

between hit and miss classes.

Evaluation numbers from previous work do not provide

insight on how a CNN classifies images from serial crystal-

lography. Thus, we provide qualitative insights with the

following two experiments:

(i) Analyse CNN representations of various layers with the

serial crystallography data. In other words, our goal is to

analyse the information contained in a convolutional layer for

distinct classes, for example Strong and Blank.

(ii) Visualize the input images while classifying the serial

crystallography data into hit or miss categories. In other words,

our goal is to analyse which regions are activated for distinct

classes in serial crystallography data.

We extracted representations from each layer (Conv1,

Conv2, Conv3, Conv4, Conv5) of AlexNet. These repre-

sentations were then used to visualize the information for

serial crystallography data. For example, Fig. 6 shows a

representation reconstructed from distinct classes (Strong and

No crystal). We have included a natural image example in

order to understand the qualitative visualizations. The first few

layers are significantly similar to the input images because a

CNN (AlexNet) detects edges from pixels in the first layer

(Conv1) (Mahendran & Vedaldi, 2015). Thus, the first couple

of layers maintain a faithful copy of the input image (Fig. 7).

We observe that all convolutional layers maintain a

photographically faithful representation of the input image,

although with increasing fuzziness. Likewise, the natural

image also maintains similar representations (Mahendran &
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Figure 6
Three examples of CNN representations at the first five convolutional layers of AlexNet. The network detects edges from pixels in the first layer, then
uses those edges to detect shapes in the next layer, and then uses that result to infer complex shapes and objects in later layers. Thus, despite growing
fuzziness, convolutional layers continue to maintain photographically accurate representations of input images. (Best viewed in colour and enlarged.)

Figure 7
CNN representations of the first convolutional layers of AlexNet with
two distinct classes (Strong and No crystal). The visual representations
indicate that the network extracts uniquely different representations for
the two classes.

Table 6
Automatic spot-finding parameters (Ke et al., 2018).

Data
set

Gain
(ADU photon�1)

Global
threshold
(ADU) �Strong

Minimum
spot area
(pixels)

Wall clock
time (s), 16
processors

LN83 0.27 200 3 3 80.3
LN84 0.31 200 3 3 89.3
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Vedaldi, 2015). The reconstructed representations from the

Strong and No crystal images are dissimilar, indicating that the

model extracts unique representations for each of them. We

can conclude that our trained network learns different

representations for each class.

In the second set of experiments, we visualized the input

images of different classes to analyse the regions or parts that

contribute to a hit or miss prediction. Fig. 8 utilizes heat maps

to focus on the regions that are activated while making a

prediction with AlexNet. Heat maps generated with Grad-

CAM show that the network localizes distinct regions while

classifying the input images into Strong, Good, Weak, No

crystal and Blank categories. We have added a guided Grad-

CAM visualization to provide fine-grained details like pixel-

space gradient visualization. We observe that the activations

or focused areas are increased from Blank to Strong classes,

indicating the presence of Bragg peaks (see Fig. 9). In another

experiment, we merged Blank and No crystal classes into miss,

and Weak, Good and Strong classes into hit, to train AlexNet

with the aim of visualizing discriminative regions (Fig. 10).

These visualizations show that the network focuses on distinct

regions encompassing Bragg peaks while making a prediction.

We trained ResNet-101 with the aim of visualizing regions

of different classes across other networks. Fig. 11 shows the

heat map of activation values extracted from layer 4, a

common practice to visualize regions with Grad-CAM and

guided Grad-CAM. We observe that ResNet-101 activates

regions encompassing Bragg peaks while making a prediction,

similar to AlexNet, although the activations vary slightly for

the two networks. However, these are generally increased
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Figure 8
Grad-CAM visualization of five classes of DiffraNet, highlighting contributing features. Guided Grad-CAM images are included to highlight fine-grained
details. (Best viewed in colour and enlarged.)

Figure 9
Histograms of the activation values. These values extracted randomly selected samples representing (left) Blank and (right) Strong classes in the
DiffraNet data set.
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from miss to hit classes, indicating the presence of peaks.

Finally, we visualized discriminative regions for the experi-

mental data sets LN83 and LN84. We selected random

samples from the hit and miss categories (Fig. 12). We observe

that the hit image contains higher activations than a miss for

experimental data sets LN83 and LN84.

Our qualitative results indicate that the network encodes

both the Bragg peaks and background of the input samples.

Interestingly, a CNN focuses on regions of the image where

Bragg peaks are present, if there are any. DiffraNet contains

synthetic data with a high number of Bragg peaks which made

the regions more prominent in our visualization. However,

experimental data such as LN83 and LN84 contain fewer

visible Bragg peaks, resulting in fewer activated regions. Our

results indicate that the number of visible Bragg peaks affects

the performance of the network along with the visualization

(Table 4 and Fig. 12). Interestingly, Ke et al. (2018) used

threshold values of 14 and 29 for LN83 and LN8, respectively,

to classify the data as hit or miss. We observe that the hit and

miss data are similar in nature when the number of Bragg

peaks is smaller, which in turn affects the performance of the

network.

4. Conclusion

In recent years, massive amounts of experimental data have

been produced in serial femtosecond crystallography at X-ray

free-electron laser facilities. Although these data sets are

large, only a fraction of the data are useful for later analysis.

There has thus been interest in using convolutional neural

networks to process serial crystallography data. CNNs

successfully categorize these data into the desired categories

(hit and miss), but previous work has not explained how these

networks achieve such results, making them a ‘black box’. We

have presented here a qualitative and quantitative study to

visualize the representations and discriminative regions

significant to classifying serial crystallography data. Our study

reveals that our trained networks encode both Bragg peaks

and background to classify these test image sets into hit or

miss categories.
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