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Abstract

The recent focus has been made on the perovskite solar cells (PSCs) with

an inverted configuration, where substantial improvements have been already

achieved. However, the p–i–n structure needs a buffer layer for most of the

configurations to modify the work–function of a deposited electrode. Addi-

tionally and very importantly, such a layer can also serve as a protective film

that improves a stability of solar cells. Here, we study the semitransparent in-

verted PSCs, which have been prepared with the SnO2 buffer layer deposited

by a spin–coating method. The main goal was to understand the dominant

loss mechanisms in the operation of PSCs. Four photovoltaic parameters (an

open–circuit voltage, a short–circuit current, a fill factor and a power conversion

efficiency) were measured for a wide range of the light intensity. Their analy-

sis allowed us to identify the transportation and recombination effects using an

electrical modeling based on the drift–diffusion model. In addition, it has been

concluded that the solution processed PCBM layer might not fully cover the

perovskite film. As a consequence, the band–bending effect can occur at the

PCBM/perovskite interface, where PCBM plays a role of the Electron Trans-

pot Layer (ETL). Therefore, we theoretically investigated the influence of this

interface phenomenon on four photovoltaic parameters and the ideality factor

simulated as a function of the ETL interface defect density. The increasing
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of the ideality factor to a high value (above 4) observed for the band–bending

level around 300 eV indicates inhomogeneity of the interface. The results of

this study should help to better understand the dominant electrical losses in

the semitransparent inverted PSCs with a buffer layer which should further

help to improve the performance of such devices.

Keywords: Photovoltaics, Renewable Energy, Perovskite Solar Cells, Energy

Efficiency, Buffer Layer

1. Introduction

World energy consumption still increases and it leads to the development of

different types of energy sources. Photovoltaics seems to be a very promising

form of a renewable energy. Still, solar cells based on crystalline silicon (c–Si)

or amorphous silicon (a–Si) are very popular for the conversion of a sunlight

into electricity [1]. However, other semiconductors such as gallium arsenide

(GaAs) [2] or cadmium telluride (CdTe) [3] can be also used to produce efficient

photovoltaic devices. The other effective compound is CuInxGa1−xSe2 (CIGS)

[4], where cadmium sulfide (CdS) often plays a role of the buffer layer [5, 6].

Although photovoltaic panels based on these materials are already used in

a daily life, there is a need to find more efficient or cheaper compounds to

fabricate solar cells. The class of high absorbing semiconductors Cu2XSnS4 (X

= Fe, Co, Ni, Cu, Zn, Mn) seems to become an alternative to the CIGS system

[7, 8, 9, 10]. In addition, researchers try to find optical transparent materials to

use them in semitransparent solar cells. Good candidates are Sb2S3 and Sb2Se3

characterized by a wide band gap [11, 12]. In recent decades, photovoltaic

devices with organic materials (like donor–acceptor structures [13] and hybrid

dye–sensitized solar cells [14]) have attracted a lot of attention. The reason is

a low manufacturing cost and possibility to obtain flexible solar cells.

The other type of promising photovoltaic devices are perovskite solar cells

(PSCs). Here, we can distinguish hybrid organic–inorganic PSCs [15, 16, 17].

They are recently getting attention due to the outstanding increase in power
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conversion efficiency (PCE), which is already reaching over 20% [18]. It is

believed that lead halide PSCs will deliver a very low cost of solar energy (< 32 $

per MWh) [19]. In addition, efficient semitransparent PSCs have been fabricated

using hybrid organic–inorganic perovskites [20, 21, 22], which increases their

attractiveness. However, we also observe intensive studies of all–inorganic PSCs

[23, 24, 25, 26, 27].

At the beginning of the PSCs development, the n–i–p (regular planar) stack

has been more often used due to achieving higher efficiencies [28]. Here, n is

the n–type semiconductor and represents an Electron Transport Layer (ETL), i

denotes an undoped intrinsic semiconductor which is a perovskite absorber layer,

and p represents the p–type semiconductor called a Hole Transport Layer (HTL).

However, further studies have indicated problems with PSCs with a regular

layout mostly due to the transport layers which are sensitive to a moisture [29]

and thermal stresses [30]. Therefore, the recent focus has been made on the

p–i–n (inverted planar) stack to see if there are new possibilities for improving

the PSC’s efficiency and stability [31].

One of the very important aspects of an inverted stack is the need for

a buffer layer to improve the contact with the metal collecting electrode de-

pending on its work–function. The most preferred used buffer material is or-

ganic bathocuproine (BCP) [28, 32]. However, there are also attempts to ap-

ply a very thin layer of LiF [33, 34], polyethylenimine (PEIE) [35] or tris(8–

hydroxyquinolinato)aluminum (Alq3) [36]. The usage of these compounds has

its own advantages and, in general, increases the efficiency of PSCs. However,

it does not improve a stability of the solar cells against the oxygen and the

moisture from an environment [37]. Thus, one of the solutions on that is to

apply a dense buffer layer that would protect the absorber material.

Theoretically, there should be no interaction between the buffer and the

absorber layers due to the ETL sandwiched in between. Therefore, one can

believe that a role of the buffer layer can be only limited to the work–function

modification and stability improvement. However, a solution process is still the

most frequently used technique for making ETL and it might not be able to fully
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cover a perovskite layer. This seems to be extremely important if considering

a manufacturing process, where a large area perovskite film has to be covered

with the ETL [40]. Especially, since the morphology of a perovskite layer might

depend on the used solvents [41] or a perovskite composition [42]. Therefore,

there is a need to recognize all effects which can occur at the ETL/perovskite

interface in the presence of a buffer layer.

Here, we investigate the influence of the buffer layer created from the solution

processed SnO2 nanoparticles. The PSCs have been prepared in the semitrans-

parent p–i–n stack with glass/ITO/PTAA/perovskite/PCBM/SnO2/ITO con-

figuration. Here, ITO is the tin–doped indium oxide, PTAA denotes poly(triaryl

amine), whereas PCBM represents [6,6]–phenyl–C61–butyric acid methyl es-

ter. Our studies are supported by experimental and theoretical investigations.

Therefore, PSCs are measured under different light intensities with the current–

voltage (J–V) characterization to examine the dominant effects using the drift–

diffusion numerical model [43]. Also, the device’s bifaciality due to the usage of

two ITO electrodes allowed us to measure samples illuminated from both sides.

Meaning, more physical effects can be considered in the model, thereby making

the simulations much more accurate. We should mention that, as to our knowl-

edge, the interfacial processes occuring at the ETL/perovskite boundary have

not been widely investigated for the semitransparent PSCs with a buffer layer.

In addition, the influence of the interface band–bending effect, which might

appear at this boundary, has not been deeply analyzed in such a structure.

2. Materials and methods

2.1. Device fabrication

In order to prepare a precursor for the perovskite Cs0.15FA0.85Pb(I0.98Br0.02)3

solutions, the following chemicals have been used: lead iodide (PbI2, 99.99%,

TCI), formamidinium iodide (FAI, GreatCell Solar), caesium iodide (CsI, 99.999%,

Alfa Aesar), caesium bromide (CsBr, 99.999%, Alfa Aesar), dimethylformamide

(DMF) solvent (99.8%, Sigma–Aldrich) and 1–methyl–2–pyrrolidinone (NMP)
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solvent (99.5%, ACROS Organics). We did not purify these commercial com-

pounds. The amounts: 1.4M PbI2, 1.19M FAI, 0.126M CsI and 0.084M CsBr

have been applied to produce the precursor. The prepared compositions have

been dissolved in a solvent mixture (DMF:NMP, 9:1 volume ratio). Later, the

solutions were stirred overnight at room temperature.

The substrates for solar cells made from the patterned glass/ITO were ul-

trasonically cleaned and, additionally, UV–ozone treated for 30 min. The N2–

filled glove–box (with the oxygen and the moisture levels at about 1 ppm) has

been used to fabricate PSCs. The HTL layer was created by a spin–coating

method using 4 mg mL−1 of PTAA (Solaris M) solution dissolved in toluene

(at 5000 revolutions per minutes (RPM) for 35 s and with an acceleration equal

to 5000 RPM s−1). Next, the samples were annealed for 10 min at a temper-

ature of 100°C. Further, the gas quenching method [45] has been applied for a

dynamical spin–coating of the precursor solution (150 µL). To obtain the de-

sired thickness of a perovskite material, a two–step program was used: firstly,

2000 RPM rotational speed for 10 s with an acceleration 200 RPM s−1, and sec-

ondly, 5000 RPM for 30 s with 2000 RPM s−1. After 15 s of this spin–coating

process, a gun with nitrogen (at 6 bars pressure) located at 10 cm vertical dis-

tance from the substrate has been used for quenching of the perovskite layer for

15 s. Immediately after the quenching, the samples were annealed at 100°C for

10 min on the hot–plate. The solution for ETL (20 mg mL−1) has been created

with PCBM (99%, Solenne) dissolved in a chlorobenzene solvent. This solution

was stirred overnight at 60°C. Subsequently, it was spin–coated on the samples

with a speed 1500 RPM for 50 s and 3000 RPM s−1 acceleration. Later, the

solution made from SnO2 nanoparticles (Avantama N–31) 2.5 wt% in a mixture

with a butanol filtered with 0.2 µm polypropylene filter has been prepared. It

was used to create the next layer by a spin–coating process (3000 RPM speed

for 50 s and 3000 RPM s−1 acceleration). Further, the samples were annealed

on the hot–plate (at 80°C for 5 min).

Afterward, ITO prepared for the second electrode was cleaned in the air with

DMF:chlorobenzene solution (1:6 volume ratio). The ITO material, character-
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ized with a sheet resistance equal to 22±2 Ω/�, has been deposited at room

temperature with the radio frequency (RF) magnetron sputtering [46] (AJA

Sputtering System) to create a 180 nm layer. At last, metal electrical con-

tacts with a thickness of 100 nm have been prepared by the thermal deposition

technique under the pressure of 10−6 mbar.

2.2. Experimental and theoretical methods

The crystal structure of perovskite films was characterized with a Bragg–

Brentano geometry X–ray diffractometer (XRD) from PanAlytical Empyrean,

whereas the atomic force microscope (AFM) with the Park NX–10 tool was used

to study the morphology of the perovskite material. The Bruker XT Dektak

profilometer has been applied to measure thicknesses of all layers.

The J–V characteristics of PSCs have been recorded using Keithley 2400.

These measurements were conducted in N2 environment under a white light

halogen lamp simulating the standard Air Mass 1.5 (AM1.5) spectrum with

a light intensity calibrated to 1 sun (100 mW cm−2) using a silicon reference

cell. The illuminated cells had active areas equal to 0.09 cm2. For the light

intensity studies, the neutral filters have been used to achieve 0.001, 0.01, 0.1,

0.33, 0.53, 0.83 and 1 sun. All the J–V characteristics were recorded with a

scanning rate of 0.165 V s−1 with 20 mV step and with 2 minutes of light soaking

preconditioning. In order to analyze the hysteresis effect, the scanning direction

has been performed firstly in the reverse (from 1.2 V to -0.2 V) and then in the

forward (from -0.2 V to 1.2 V) applied voltage directions. The measurement

setup combined with two different holders for the front and the rear side of

illumination has been used to measure the external quantum efficiency (EQE).

To find the maximum power point tracking (MPPT), the representative solar

cell was continuously illuminated for about 2 minutes with the control of voltage

and current.

To simulate the PSCs, we have decided to apply the drift–diffusion model

which was explained in details in our previous studies [43]. With the use of con-

tinuity equations for electrons and holes, it quantitatively describes the mecha-
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nisms of the generation, the transport and the recombination of charge carriers.

The Shockley–Read–Hall, the modified Langevin and the Auger effects are the

dominant recombination processes in the considered system. Here, we have not

taken into account the migration of ions. The reason is that an influence of

ions on the operation of PSCs is negligible for steady–state conditions [44]. The

Scharfetter–Gummel method with the Chebyshev polynomials has been used for

the discretization of the applied model [43]. To not neglect energy differences,

which might occur between layers in a solar cell, the full PSC stack has been

studied with the method of generalized potentials [47, 48, 49]. A fitting pro-

cedure has been done with the differential evolution algorithm [38, 50] to find

a global minimum, and also with the Nelder–Mead model [51, 52] for further

optimization. For both algorithms, the Chi–Square test was used to define the

goodness of fit. All simulations were performed using our own numerical code

written in C++.

3. Results and discussion

3.1. Characterization of the semitransparent PSCs

The sandwich structure of investigated solar cells is presented in Fig. 1a.

The PSCs have been prepared with the front (ITO on glass) and the rear (ITO)

collecting electrodes in the p–i–n configuration. The PTAA serves as the HTL,

whereas PCBM as the ETL. The thicknesses of HTL and ETL are equal to

14.01±2.00 nm and 40.95±1.83 nm, respectively. The double–cation (2C) per-

ovskite Cs0.15FA0.85Pb(I0.98Br0.02)3 plays a role of the absorber with a thickness

equal to 536.48±4.84 nm. The SnO2 buffer layer (around 45 nm) is located be-

tween PCBM and the rear ITO electrode.

Fig. 1b shows the J–V characteristics of a representative solar cell. The

photovoltaic parameters presented in Table 1 are calculated for the same PSC.

It can be seen that the PCE reverse scan gives higher results by about 2%

if compared to the forward scan. This is mostly due to the Fill Factor (FF)

which has a value higher by approximately 4% for the reverse direction of the
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measurements. It leads to a hysteresis effect which is often observed in PSCs

[53]. The observed hysteresis has also slightly influenced an open–circuit voltage

(Voc) and a short–circuit current (Jsc), see Table 1. The Hysteresis Index (HI)

[54] is different for samples measured from the front and the rear sides. HI has

been calculated for 12 devices for each variation. It is equal to 0.083±0.015

and 0.075±0.014 for the front and the rear side, respectively. Thus, we observe

a higher hysteresis for the front side of PSCs. The dissimilarity of HI from

the front to the rear side could be related to the asymmetrical charge carriers

distributions. The recent findings show that the hysteresis effect is most likely

accounted for both, the transport of ionic charge carriers and the trap–assisted

recombination [55].

The samples have been also measured with the EQE technique from both

sides, see the results for the representative sample presented in Fig. 1c. The

small differences are found to be batch–to–batch related probably due to a film

thickness variation. Most of the optical losses for the front side at short wave-

lengths can be associated with the parasitic absorption of the ITO substrate [56].

However, the optical losses from the rear side at the same range of wavelengths

are coming from PCBM and SnO2 layers which highly absorb in the range from

300 nm to 500 nm [56, 57, 58]. The calculated Jsc from the integration of EQE

is equal to 19.54 mA cm−2 for the front side of the sample. It shows the same

trend observed in J–V measurements, thus qualifying our measurements.

Figs. 1d–g illustrate four photovoltaic parameters (PCE, Jsc, FF and Voc)

measured with illumination from the front and the rear sides. The bifacial factor

is approximately equal to 88% for PSCs by statistical meaning. Interestingly,

the differences from both side measurements are negligible. It could be also

mentioned that FF has always a higher value for the front side if compared to

the rear one, see Fig. 1f. It exhibits approximately 8% higher FF for samples.

To better understand the dominant mechanisms of operation, we have mea-

sured the representative PSC under different light illuminations in the range

from 0.0001 suns to 1 sun. The obtained experimental results have been simu-

lated using the drift–diffusion model under steady–state conditions. Table 2 in-
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cludes all the simulation parameters used in the modeling. The values of quanti-

ties for the HTL (PTAA [59, 60, 61]) and for the ETL (PCBM [62, 63, 64, 65, 66])

have been taken from the literature. The electrical properties of the perovskite

material were described in the reference [67] or were found from fitting to the

experimental data [68, 69]. The very low charge carrier mobility equal to 0.003

cm2 V−1 s−1 was obtained for SnO2 material [70, 71]. However, its high intrinsic

donor doping [72] equal to 1022 m−3 allows for negligible losses in the operation

of PSCs. Also, the energetical levels are assumed to create a junction based on

the Fermi levels of an intrinsic PCBM and a donor doped SnO2. This shifts

the conduction band of SnO2 [73] from -4.5 eV by around 0.6 eV. Additionally,

to calculate the generation profile, the optical transfer–matrix model has been

applied [74, 75]. The optical real and imaginary refractive indices for PTAA,

perovskite and PCBM were provided from our previous work [43], whereas these

quantities for SnO2 were adopted from the literature [76].

Fig. 2 shows the experimental and simulation results for the front and rear

sides of the representative sample. The theoretical results match very well (R2

coefficient of determination is equal to 93.3%) to the experiment in the short–

circuit (SC) to the open–circuit (OC) range, and also above OC. This range

of applied voltage is mostly related to diffusion currents which depend on the

transport properties of the device. Therefore, a very good correlation has been

possible to acquire only if using well–matching electrical parameters of all the

layers. The same good correlation is observed for the front (Fig. 2a) and the

rear (Fig. 2b) sides of measurements. The only discrepancy has been found

for Voc under different light illumination from the rear side which affects the

precision of a fitting procedure. This might be explained by the ion migration

effects [77] or multiple trap defects distributed at different energy levels [78, 79].

Fig. 3 illustrates the photovoltaic parameters for the same representative

sample, where the correlation between the experiment and the simulations is

presented for both illuminated sides. Fig. 3a shows the dependence of PCE on

light intensity. We should notice that the bifacial factor changes for different

intensities. It is equal to 90% for 1 sun and increases to 100% at 0.0001 suns.
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The efficiency has always a higher value for the front side if compared to the rear

side mostly in the FF and PCE values. This has been already observed in PSCs

[80]. The experimental trend is again very well reproduced by the simulation

results.

Fig. 3b shows the Jsc behavior as a function of the light intensity. It is ob-

served that the photocurrent indicates a linear relationship in the log–log plot.

This tendency has been already associated with monomolecular recombination

as a dominant process that is here related to the trap–assisted recombination

[81]. In the simulations, we apply the generation profile that is calculated sepa-

rately for the front and the rear sides using the aforementioned transfer–matrix

model. The stack in the optical model has been used exactly the same as in the

experiment to get the model as close as possible to the experimental data. As

it is visible, the photocurrent in light intensity results well matches the experi-

mental values.

Fig. 3c shows the FF measured and simulated for different light intensities.

This parameter is the most sensitive for simulations and only one possible set of

parameters can cover such a wide range of light illumination for both measuring

sides. Here, the simulations show a very good fit for the front and the rear

sides. Thus, it gives a set of values that leads to a very precise fitting. As it has

been already observed, FF is higher if measuring from the front to the rear side

of the PSC. The same tendency can be seen for the light illumination studies,

where FF differs from the front to the rear side by approximately 6% at 1 sun

and reduces to zero for the lowest measured light intensities. This effect has

been possible to reproduce with simulations only by adding a donor doping in

the bulk of a perovskite layer. The self–doping affects the type of electronic

conductivity making a perovskite of the n–type [82]. This intrinsic property

of the perovskite material might be of high importance to fabricating tandem

PSCs, where the light could illuminate the rear side [83].

Further, by analyzing the FF parameter in the function of light intensity,

we can learn more about the impact of the trap–assisted recombination and

also about the transport properties. A solar cell without any recombination or
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transport losses would be characterized by a flat curve with a value equal to

approximately 90% for all light intensities [84]. However, a real solar cell always

possesses some losses caused by defects or low transport properties. Therefore,

FF at around 85% at its peak value can be considered as a representation of

a very good solar cell. Here, we observe a low value of FF around 70% at a

high light intensity regime for the front side measurements. It is found that

this is only present in the semitransparent PSCs which have a higher series

resistance of the top electrode, see Table 2. However, the peak value of FF

reaches approximately 75% at 0.01 suns for both sides of illumination. This

loss is assigned to defect states in the bulk of the absorber layer which leads to

the trap–assisted recombination. We have found the trap defect density equal

to (7.23±0.09)×1021 m−3, see Table 2. In general, values below 1022 m−3 are

considered for a high quality perovskite film [85]. However, it should be also

understood that this value shows an average representation of the trap distri-

bution in the bulk. It has been already demonstrated by Ni et al. [86] that

the distribution is non–linear with the highest trap densities at the interfaces.

Thus, we separate both of the interfaces by giving two values of defect densi-

ties that resemble the non–linear defect distributions. For the sample, we have

found almost symmetric defect densities equal to (1.09±0.07)×1014 m−2 and

(1.03±0.05)×1014 m−2 for HTL/perovskite and perovskite/ETL interfaces, re-

spectively. For the regular quality PSCs, the interface defects are in the range

from 1013 m−2 to 1015 m−2 depending on the film quality [62]. Thus, a value

below 1014 m−2 should be considered as a low defect concentration.

The analysis of PSC would not be completed if we focus only on FF. In

general, we should analyze all photovoltaic parameters separately for better

readability but they are intrinsically related to each other. Fig. 3d shows Voc

as a function of light intensity which allows the calculation of the ideality pa-

rameter (nid) [87]. The value of nid can also give detailed information about

the dominant recombination process [88]. In the sample, the ideality factor is

closer to 2 which would suggest the bulk recombination processes as a dominant

one. However, the Voc=1071 mV at 1 sun and the losses are not very high.

11

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Therefore, the conclusion is that the bulk recombination process dominates in

the sample.

3.2. The interface band–bending effect

The energy levels used for calculations are presented in Table 2. However,

the edges of conduction and valence bands in samples could not be simply

explained with the flat energy levels and the Fermi level pinning might appear

in the perovskite absorber film [89]. The contact of the perovskite with the metal

precursor can lead to the reduction of tin oxide and to the decomposition of a

perovskite material. This phenomenon might occur locally, where PCBM does

not fully cover the perovskite film. The thickness of a PCBM layer is optimized

toward improvement of transport properties, thus it is most often chosen to be

as thin as possible. Therefore, it is very likely that SnO2 would find a pinpoint,

where it would locally make a junction with a perovskite layer. Thus, the

energetical band–bending might be observed for a direct contact of SnO2 with a

double–cation perovskite. The physical explanation of the band–bending effect

is related to the formation of a junction between these two materials. We could

describe it as the up–shift of the perovskite Fermi level and the down–shift of

the SnO2 Fermi level at the perovskite/SnO2 interface. The energetical shift

is explained with a higher donor doping of SnO2 if compared to the perovskite

material. Thus, although we have successfully simulated experimental results

without considering the band–bending effect, in the following, we will discuss

how this effect can affect the operation of the perovskite solar cell.

The diagram in Fig. 4a shows an energy alignment calculated under SC con-

ditions for the front side of illumination. We have been able to simulate this

effect by using few nanometers of a perovskite layer with down–shifted conduc-

tion and valence bands. As a consequence, a quantum well is created at the

PCBM/perovskite interface. This would mimic the perovskite solar cell, where

SnO2 has a direct contact with the absorber layer. Fig. 4b shows the results of

the J–V characteristics simulated under 1 sun conditions for different levels of

the band–bending. It can be noticed that a higher level of the band–bending
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process at the perovskite/ETL interface decreases FF, and also leads to an S–

shape effect [90]. Also, the J–V characteristics start to resemble experimental

results with SnO2 prepared directly on the top of a perovskite film [39]. This

proves the same mechanism of degradation but observed locally due to the par-

tial coverage of a perovskite film with a PCBM layer. The band–bending mech-

anism also affects the slope of the J–V characteristics above OC and slightly

increases Voc. This observation has been already reported for organic solar cells

[93]. Also, it is noticed that the band–bending process changes negligibly Jsc.

However, the effect drastically affects FF at high illumination, see Fig. 4c. This

is similar to an increase in the series resistance of the cell. The rise of an energy

barrier actually lowers the extraction properties which increases the interface

resistance of PSC. Interestingly, for a higher band–bending, we start to observe

a non–linear behavior of Voc which decreases mostly for lower light intensities,

as shown in Fig. 4d. The physical explanation of this phenomenon seems to be

related as an appearance of an additional shunt resistance in the device. This

is especially visible at the lowest light intensity, where both Voc and FF de-

crease drastically. Apparently, the increase of the band–bending effect at the

perovskite/ETL interface acts as an additional loss channel for charge carriers,

where their concentration is low (at the low light intensity).

Additionally, we have studied theoretically how the ETL interface defect

density and the changing of the band–bending level can influence four photo-

voltaic parameters. Fig. 5 shows these dependencies for a sample illuminated

from the front side, whereas Fig. 6 presents results for the rear side. Simula-

tions have been made with the same values as in Table 2 but the ETL interface

defect density changes here from 1014 m−2 to 1016 m−2. We can see that all

photovoltaic parameters have constant values for lower densities and a smaller

height of band–bending. As a consequence, two–dimensional plateaus appear at

the left–down corners in all parts of Fig. 5 and Fig. 6. In the case of the front il-

luminated side, areas of these plateaus are visibly greater than for the rear side.

This is mostly related to the self–doping of a perovskite layer which leads to

higher FF from the front side in comparison to the rear measurement side [91].
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It is visible especially for Jsc, where this parameter is constant in the whole ETL

density range (for depths of the interface quantum well lower than 220 meV).

The increase of both the ETL interface defect density and the band–bending

level causes a monotonic decrease of PCE and FF for both illuminated sides

and the same effect for Jsc, when the light shines on the rear side. However, if

the band–bending level is above ∼230 meV (the front side) and ∼320 meV (the

rear side), values of these three photovoltaic parameters become independent of

the ETL defect density. The Voc indicates a similar behavior for the front side

but we can see visible irregularities for higher levels of the band–bending. In

general, the photovoltaic behavior of the device illuminated from the front side

in respect to the defect concentration and the band–bending level is as expected.

Meaning, the interface recombination controls mostly Voc, especially in a higher

regime of the defect concentration. The band–bending similarly appears to af-

fect Voc but it simultaneously impacts other photovoltaic parameters. This is

because the band–bending influences both the charge carrier recombination and

the transportation losses. However, the impact from the front side even thought

both these parasitic processes are located on the rear side can be explained with

a long lifetime of charge carriers in a perovskite material [92]. In the case of

the second illuminated side, it is observed that Voc rises monotonically with

an increase of the band–bending level and reaches a maximal value when an

interface quantum well is the deepest. Only for this case, the maximum of this

photovoltaic parameter is not located on a two–dimensional plateau and has a

greater value for the rear side. As it has been shown in [93], the Voc can increase

with a certain increasing of the band–bending due to the change of a vacuum

level near the donor/acceptor interface. Seemingly, the same effect occurs in

a perovskite solar cell, where the band–bending level changes its value at the

perovskite/ETL interface.

Now, we will focus on the physical interpretation of the results presented in

Fig. 5 and Fig. 6. Firstly, differences observed for the front and the rear sides

can be partly explained based on the different optical losses for the illuminated

sides, see the EQE results in Fig. 1c. Secondly, electrical properties can be
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understood if we consider the ideality factor obtained for Voc. Fig. 7 shows

nid as a function of the ETL interface defect density and the band–bending

level for a sample illuminated from both sides. We observe that this factor

starts to decrease with the increase of both the defect density and the height of

the band–bending. This fact can be explained with an interface recombination

mechanism. Next, when the depth of an interface quantum well becomes larger

than ∼220 meV, then the nid increases to a value above 4 at the level of 300

meV and decreases for higher levels. This behavior is practically independent

of the ETL defect density. It has been experimentally demonstrated [94] that

perovskite solar cells with inhomogeneous interfaces can be characterized by a

very high nid equal to 5. Thus, a value above 4 obtained in these calculations

indicates a level of inhomogeneity. The observed decrease of nid above 300 meV

can be explained that charge carriers, which accumulate in a deep quantum

well, are located close to the interface deep states and have a high probability

to recombine through these states.

4. Conclusions

In this work, semitransparent PSCs with the tin oxide buffer layer have been

studied. Using the light intensity measurements and numerical simulations, we

identified the transportation and recombination effects. Additionally, the band–

bending effect, which can appear at the ETL/perovskite interface, has been

simulated and discussed. This phenomenon occurs when the solution processed

PCBM layer might not fully cover the perovskite film. Our findings of the

dominant electrical losses should lead to further optimization of high stability

PSCs.
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Table 1: Photovoltaic parameters for the representative sample measured from the front and

the rear sides.

front forward front reverse rear forward rear reverse

Jsc [mA cm−2] 18.89 19.19 17.98 18.35

Voc [mV] 1055 1069 1056 1065

FF [%] 67.02 71.36 61.64 64.30

PCE [%] 13.36 14.64 11.71 12.57
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Figure 1: (a) Illustration of the PSCs sandwich structure consisting of the SnO2 buffer layer

(not to scale). (b) The J-V characteristics of the representative sample. The solid lines show

the forward direction, whereas dash lines present the reverse scan. (c) The EQE results of

the representative sample. Results for the front and the rear sides in parts (b)–(c) are plotted

using blue and green lines, respectively. Photovoltaic parameters for all samples measured for

both sides of illumination are presented in (d) PCE, (e) Jsc, (f) FF and (g) Voc. Results for

the front and the rear sides in parts (d)–(g) are given by red and orange symbols, respectively.
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Table 2: Parameters applied in the simulations. Their values for holes are written in brackets

and for electrons without brackets. Parameters given with an error are results of fitting.

Name Unit PTAA 2C perovskite PCBM SnO2

Thickness nm 14 535 40 45

Permittivity 2.67 24.1 3.75 9.86

Mobility cm2 V−1 s−1 (0.006) 9 (9) 0.002 0.003

Capture rate 10−14 m3 s−1 - 1 (1) - -

Auger coefficient 10−40 m6 s−1 - 1.55 (1.55) - -

Langevin prefactor - 1.7×10−5 - -

Energy level eV (-5.35) -3.88 (-5.44) -3.90 -3.90

Doping concentration m−3 (0) (1±0.01)×1021 0 1022

Effective density of states m−3 2.5×1025 1024 2.5×1025 2.5×1025

Bulk trap density 1021 m−3 - 7.23 (7.23)±0.09 - -

HTL interface trap density 1014 m−2 (1.09±0.07) - - -

ETL interface trap density 1014 m−2 - - 1.03±0.05 -

Series resistance Ω cm2 7.52±0.08

Shunt resistance 106 Ω cm2 1.80±0.22
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Figure 2: The J–V experimental (dark red and light red solid lines) and simulation (dark red

and light red dash lines) characteristics measured under different light intensities from (a) the

front and (b) the rear sides.
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symbols) sides for the representative sample. (a) PCE, (b) Jsc with an inset having log–log

scale, (c) FF and (d) Voc.
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Parts (b)–(d) show the results for different heights of the band–bending equal to 0 meV (black

line or symbol), 260 meV (green line or symbol), 320 meV (yellow line or symbol) and 340
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32

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


1014 1015 1016

50

100

150

200

250

300

350

400

ETL interface defect density (m -2)

Le
ve

l o
f b

an
d-

be
nd

in
g 

(m
eV

)

4
6
7
8
9
11
12
13
15

PCE (%)

1014 1015 1016

50

100

150

200

250

300

350

400

ETL interface defect density (m -2)

Le
ve

l o
f b

an
d-

be
nd

in
g 

(m
eV

)

18.7
18.9
19.1
19.3
19.5
19.7
19.9
20.1

Jsc (mA cm-2)

1014 1015 1016

50

100

150

200

250

300

350

400

ETL interface defect density (m -2)

Le
ve

l o
f b

an
d-

be
nd

in
g 

(m
eV

)

1000

1030

1060

1090

Voc (mV)

1014 1015 1016

50

100

150

200

250

300

350

400
c)                                                           d)

ETL interface defect density (m -2)

Le
ve

l o
f b

an
d-

be
nd

in
g 

(m
eV

)

25
30
35
40
45
50
55
60
65

FF (%)

a)                                                           b)

Figure 5: Four photovoltaic parameters as a function of the ETL interface defect density and

the band–bending level for a sample illuminated from the front side. (a) PCE, (b) Jsc, (c)

FF, (d) Voc.
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Figure 6: Four photovoltaic parameters as a function of the ETL interface defect density and

the band–bending level for a sample illuminated from the rear side. (a) PCE, (b) Jsc, (c) FF,

(d) Voc.
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Figure 7: Ideality factors as a function of the ETL interface defect density and the band–

bending level for a sample illuminated from (a) the front side and (b) the rear side.
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